
0000

Dynamic and Efficient Private Keyword Search over Inverted
Index-Based Encrypted Data

RUI ZHANG, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences
RUI XUE, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences
TING YU, Qatar Computing Research Institute, Hamad Bin Khalifa University
LING LIU, College of Computing, Georgia Institute of Technology

Querying over encrypted data is gaining increasing popularity in cloud based data hosting services. Security
and efficiency are recognized as two important and yet conflicting requirements for querying over encrypted
data. In this paper we propose efficient private keyword search scheme (EPKS for short) that support binary
search and extend it to dynamic settings (called DEPKS) for inverted index-based encrypted data. First, we
describe our approaches of constructing a searchable symmetric encryption scheme that supports binary
search. Second, we present a novel framework for EPKS, and provide its formal security definitions in
terms of plaintext privacy and predicate privacy by modifying Shen et al.’s security notions [Shen et al.
2009]. Third, built on the proposed framework, we design an EPKS scheme whose complexity is logarithmic
in the number of keywords. The scheme is based on the groups of prime order and enjoys strong notions
of security, namely statistical plaintext privacy and statistical predicate privacy. Fourth, we extend EPKS
scheme to support dynamic keyword and document updates. The extended scheme not only maintains the
properties of logarithmic-time search efficiency and plaintext privacy and predicate privacy, but also has
fewer rounds of communications for updates, compared with existing dynamic search encryption schemes.
We experimentally evaluate the proposed EPKS and DEPKS scheme and show that they are significantly
more efficient in terms of both keyword search complexity and communication complexity than existing
randomized searchable symmetric encryption schemes.

CCS Concepts: rSecurity and privacy→Management and querying of encrypted data;

Additional Key Words and Phrases: Searchable symmetric encryption, binary search, plaintext privacy,
predicate privacy, dynamic updates

1. INTRODUCTION
The proliferation of a new breed of cloud applications that store and process data at
remote service providers has led to the emergence of search over encrypted data as
an important research problem. In a typical setting of the problem, a query generated
at the client side is transformed into a representation such that it can be evaluated
directly on encrypted data at the remote service provider. The returned results might
be processed by the client after decryption to determine the final answers.

Informally, a practical encryption scheme used above should satisfy the following
properties: search time is logarithmic (or sublinear) in the number of ciphertexts, and
the ciphertexts together with search tokens reveal no information about the under-

Rui Zhang and Rui Xue are supported by the Strategic Priority Research Program of the Chinese Academy
of Sciences, Grants No. XDA06010701, and National Natural Science Foundation of China (No.61402471,
61472414). Ling Liu is partially supported by the National Science Foundation under Grants IIS-0905493,
CNS-1115375, NSF 1547102, SaTC 1564097, and Intel ISTC on Cloud Computing.
Author’s addresses: R. Zhang and R. Xue, State Key Laboratory Of Information Security (SKLOIS), Institute
of Information Engineering, Chinese Academy of Sciences; T. Yu, Qatar Computing Research Institute and
Hamad Bin Khalifa University; L. Liu, College of Computing, Georgia Institute of Technology.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 ACM. 1533-5399/2016/-ART0000 $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:2 R. Zhang et al.

lying plaintext. Unfortunately, to the best of our knowledge, all existing encryption
schemes supporting keyword search can barely achieve the above two properties simul-
taneously. Some of them [Kamara et al. 2012; Kamara and Papamanthou 2013; Bellare
et al. 2007] achieve sublinear-time search complexity but their search tokens leak in-
formation of the query. Some others [Shen et al. 2009; Yoshino et al. 2012] achieve
strong notion of security but with low efficiency. Recently, Lu proposed logarithmic-
time search schemes [Lu 2012] for range predicate queries that achieve both plaintext
privacy and predicate privacy. However, his schemes only support queries over numer-
ical values and are based on the groups of composite order, which results in inefficiency
of pairing computation. Plaintext privacy here refers to the risk that if a third party
may learn the main content of a document by inferring any association between fre-
quent search keywords and encrypted dataset from the search index. Predicate privacy
here refers to the risk that a third party may learn any information beyond the out-
come of search by inference on the query keyword corresponding to a given search
token.

Besides the above properties, many cloud applications also require dynamic up-
dates of searchable symmetric encryption (SSE), namely after encrypted index for
specific collections of documents have been setup, dynamic additions or deletions of
keywords and documents can be performed without re-building the index. Many re-
cent works [Kamara et al. 2012; Kamara and Papamanthou 2013; Cash et al. 2014]
offer solutions to dynamic searchable symmetric encryption (DSSE). Unfortunately,
no known DSSE schemes achieve both the above security and efficiency requirements.
Most existing DSSE constructions [Kamara et al. 2012; Kamara and Papamanthou
2013; Cash et al. 2014] aim at practical efficiency with different trade-offs between
security, efficiency, and the ability to supporting dynamic updates.

In this paper, we first propose an Efficient Private Keyword Search (EPKS for short)
scheme for inverted index-based encrypted data, which satisfy both the above men-
tioned requirements, that is, (1) they search index in time logarithmic in the number
of keywords, and (2) the ciphertexts together with search tokens reveal essentially no
information about the underlying keywords. Then, we extend EPKS scheme to provide
the capability of dynamic keywords and documents updates with low communication
and computation cost. Our contribution can be summarized as follows:

— First, we describe our approaches of constructing EPKS schemes for inverted index-
based encrypted data. Intuitively, we want to keep the randomness of index and to-
ken, but make the scheme support binary search. Technically, we transform the un-
ordered plaintexts of index into a “special ordered array” and use vectors to express
them. This enables our schemes to perform binary search by computing the inner-
product of the index vector and a search token vector using Billnear Map (see Sec-
tion 4.2. Based on the re-ordered keyword structures, we present a modified frame-
work and its security definitions of EPKS in terms of plaintext privacy and predicate
privacy following Shen et al.’s security notions [Shen et al. 2009].

— Then, we propose a construction for EPKS based on the groups of prime order, which
can be implemented efficiently. It not only supports binary search and as a conse-
quence the time complexity of search is reduced from O(n2) to O(log n), where n is
the number of keywrods, but also offers stronger notions of security: statistical plain-
text privacy and statistical predicate privacy, which means the scheme is secure even
for any computationally-unbounded adversary. To the best of our knowledge, this
could be the first SSE scheme to achieve information-theoretical security.

— Third, we extend EPKS scheme to DEPKS scheme for supporting dynamic keyword
and document updates. DEPKS has fewer rounds of communication for updates,

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Dynamic and Efficient Private Keyword Search over Inverted Index-Based Encrypted Data 0000:3

specifically, one round of interaction for each update compared to one and half round
of interaction in existing DSSE schemes.

— Finally, we analytically and experimentally show that EPKS and DEPKS are sig-
nificantly more efficient for querying over encrypted data in the cloud environment,
compared with existing randomized SSE schemes.

2. PREVIOUS WORK
2.1. Searchable Symmetric Encryption
Searchable symmetric encryption (SSE) was first formally defined explicitly by Song
et al. in [Song et al. 2000], where they gave a non-interactive solution with search
complexity linear to the size of the encrypted data.

Formal security notions for searchable symmetric encryption have evolved over time.
The first security notion known as semantic security against chosen keyword attack
(CKA1) was formulated by Goh [Goh 2003]. Several works on SSE schemes use CKA1
as a security definition [Goh 2003; Chang and Mitzenmacher 2005; Curtmola et al.
2006]. Later, Curtmola et al. [Curtmola et al. 2006] proposed a stronger security no-
tion: adaptive security against chosen-keyword attack (CKA2). While several CKA2-
secure SSE schemes are proposed in the literature [Curtmola et al. 2006; Kurosawa
and Ohtaki 2012; Liesdonk et al. 2010; Kamara et al. 2012; Kamara and Papamanthou
2013; Cash et al. 2013a; Jarecki et al. 2013], none of them are explicitly probabilistic;
that is, the search tokens they generate with pseudorandom functions (PRFs) or pseu-
dorandom permutations (PRPs) are deterministic, which we call these SSE schemes
non-randomized SSE schemes. It means that the same token will always be generated
for the same keyword, and it will lead to the leakage of statistical information about a
user’s search pattern [Islam et al. 2012].

To deal with this problem, Shen et al. [Shen et al. 2009] designed a symmetric-key
predicate-only encryption (SKPOE) scheme with probabilistic token based on predi-
cate encryption [Katz et al. 2008; Shi and Waters 2008] (We call those SSE schemes, in
which the token generation algorithms are probabilistic, randomized SSE schemes).
They considered a new security notion called predicate privacy. The property of pred-
icate privacy is that tokens reveal no information about the encoded query predicate.
However, due to the use of complex probabilistic encryption algorithm to generate to-
kens, the construction of [Shen et al. 2009] requires at least linear time complexity in
the number of keywords to complete the search. Based on their work, Lu [Lu 2012]
proposed privacy-preserving logarithmic-time search schemes for range queries of nu-
merical values. Unfortunately, the constructions of his schemes are also based on the
groups of composite order, which need very large parameter size.1 Moreover, the pair-
ing computation is much slower over a composite-order than a prime-order elliptic
curve.2 [Guillevic 2013]

In the cloud computing setting, a lot of works have been done to support efficient
and more expressive search, such as multi-keyword ranked search [Sun et al. 2013;
Cao et al. 2011a; Wang et al. 2012], Similarity Search [Wang et al. 2012], query over
encrypted graph-structured data [Cao et al. 2011b] and biometric identification [Wang
et al. 2015], but at the expense of weaker security guarantees.

1For a supersingular elliptic curve of composite order with N = q1q2q3q4 used in SKPOE [Shen et al. 2009]
and RPE [Lu 2012], the size of G=G1×G2×G3×G4 is 2776-3260 bits and the size of element in GT should
be ≥ 5556− ≥ 6524 bits. While, for a supersingular elliptic curve of prime order, the size of G is only 256
bits and the size of element in GT should be 2644-3224 bits.
2For 128-bit security level, a pairing on an elliptic curve of composite order with two primes is about 254
times slower than over a prime-order elliptic curve.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:4 R. Zhang et al.

2.2. Dynamic Searchable Symmetric Encryption
The constructions by Song et al. [Song et al. 2000], Goh [Goh 2003] and Chang [Chang
and Mitzenmacher 2005] all support insertions and deletions of documents but require
linear search time. The recently introduced dynamic scheme by Kamara et al. [Ka-
mara et al. 2012] was the first one with sublinear search time, but it leaks hashes of
the unique keywords contained in the updated document. The scheme of Kamara and
Papamanthou [Kamara and Papamanthou 2013] overcomes the above limitation by
increasing the space of the user’s data structure. Very recently, Cash et al. [Cash et al.
2014] first implemented dynamic symmetric searchable encryption schemes in very-
large databases. But like the above schemes, their schemes are based on the CKA2
security model and cannot achieve predicate privacy: the search tokens as well as the
update tokens are deterministic and result in leakage of a user’s search pattern.

2.3. Oblivious RAM
Oblivious random-access machine (ORAM) [Goldreich and Ostrovsky 1996] can
be used to hide every memory access during searches and updates in SSE and
DSSE [Damgård et al. 2011; Goldreich 1987; Kushilevitz et al. 2012; Pinkas and Rein-
man 2010; Shi et al. 2011; Stefanov and Shi 2013; Cash et al. 2013b; Stefanov et al.
2013; Stefanov et al. 2014]. ORAM provides the strongest levels of security (not only
search pattern privacy but also access pattern privacy), namely the server only learns
the size of the document collection. However, ORAM schemes are very inefficient in
practice to handle large amount of queries and data due to poly-logarithmic overhead
on all parameters.

3. PROBLEM STATEMENT
3.1. The System Model
Consider a cloud data storage service, where a data owner has a set of documents D
to be outsourced to the cloud server in an encrypted form. To enable efficient query
over encrypted documents, we consider the inverted index-based data structure for
storing the outsourced files. Specifically, the data owner builds an encrypted searchable
inverted index set C with keywords w1, w2, · · · , wn fromD, and then both the encrypted
index set C and the encrypted document set E(D) are outsourced to the cloud server.
For every query of a keyword wi, a data user computes a search token TK and sends it
to the cloud server. Upon receiving TK from the data user, the cloud server queries over
the encrypted index set C and returns the candidate encrypted documents. Finally, the
data user decrypts the candidate documents and verifies each document by checking
the existence of the keyword.

3.2. Privacy Requirements
Intuitively, a searchable encryption scheme is secure if the server learns nothing about
the query as well as the documents except the encrypted query results [Song et al.
2000; Boneh et al. 2004; Goh 2003; Shen et al. 2009]. In this section, we discuss in de-
tail the specific privacy requirements for index-based data storage structures, where
the cloud server searches over a set of searchable index instead of searching on en-
crypted data directly.

Data privacy is a basic requirement which requires the data (or documents) to be
outsourced should not be revealed to any unauthorized parties including cloud service
providers. Typically, it can be guaranteed by symmetric encryption algorithms. The
user who has the secret key can effectively decrypt the encoded data after retrieving
them from the cloud server.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Dynamic and Efficient Private Keyword Search over Inverted Index-Based Encrypted Data 0000:5

With respect to plaintext privacy, if the cloud server deduces any association be-
tween frequent keywords and encrypted dataset from the index, it may learn the main
content of a document. Therefore, searchable index should be constructed in such a
way that prevents the cloud server from performing such kind of association attacks.
In the non-randomized SSE schemes [Song et al. 2000; Goh 2003; Chang and Mitzen-
macher 2005; Curtmola et al. 2006; Liesdonk et al. 2010; Kamara et al. 2012; Kamara
and Papamanthou 2013], this kind of security is also called security against chosen
keyword attack (CKA). In our schemes, the randomness of encrypted index guarantees
to prevent such attacks from the cloud server.

Data users usually prefer to keep their query from being exposed to others, i.e.,
the keyword indicated by the corresponding token. In the literature [Curtmola et al.
2006; Stefanov et al. 2014; Kamara and Papamanthou 2013; Kamara et al. 2012], this
kind of leakage is called search pattern. Namely search patterns reveal whether the
same search was performed in the past or not. Curtmola et al. [Curtmola et al. 2006]
claimed that with the exception of oblivious RAMs (ORAMs), all non-randomized SSE
constructions leak the user’s search pattern since their search tokens are determin-
istic. Like existing randomized SSE schemes, our schemes use randomly generated
tokens to guarantee the privacy of a user’s search pattern. This security notion of
randomized SSE schemes is called predicate privacy [Shen et al. 2009]. Note that ran-
domizing token generation algorithm only contributes to defend outside adversaries
of the cloud server but not inner adversaries (e.g., cloud administrators), because the
entry of index touched in each search process discloses the search pattern as well. A
possible approach to reduce this leakage is to re-order the keywords and re-generate
the index periodically, say semimonthly or monthly.

Besides the above privacy requirements, we note that the sequence of search out-
comes of all SSE constructions will likely reveal the information of the keywords since
the cloud server will always return the same document set for the same queried key-
word. This kind of leakage is referred to as access pattern [Curtmola et al. 2006]. Only
ORAM can hide access patterns. But ORAM is computationally intensive and do not
scale well for real world datasets. In practice, one may reduce (but not eliminate) the
leakage of access patterns. For example, one could randomly insert fake documents in
the bitmaps [Islam et al. 2012].

In this paper, we focus on ensuring plaintext privacy against any adversary and
predicate privacy against outside adversaries of the cloud server. The above mentioned
techniques can be combined with our schemes to reduce search and access pattern
leakage as well.

4. PRELIMINARIES
4.1. Notations
Throughout the paper, we use the following notation.

For an integer n ∈ N, let [n] be the set {1, · · · , n}, and let Un be the uniform distribu-
tion over the set {0, 1}n. For a finite set S, let x←S be the process of sampling a value
x according to the distribution over S, and let x R←− S the random choose process of a
value x from the uniform distribution over S. Let ~x be a vector (x1, · · · , x|~x|), where |~x|
and xi(1≤ i≤ |~x|) respectively denote the number of elements and the i-th element of
vector ~x. Let ~xT be the transposition of vector ~x.

We overload the notation gM to matrices: let gM ∈ Gn×n be the matrix defined as
(gM)i,j = gMi,j , where 1 ≤ i, j ≤ n. Let M−1 be the inverse matrix of M . Let g~x·M be
the product defined as (gx1M1,1+···+xnMn,1 , · · · , gx1M1,n+···+xnMn,n) and let gM ·~x

T

be the
product defined as (gM1,1x1+···+M1,nxn , · · · , gMn,1x1+···+Mn,nxn).

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:6 R. Zhang et al.

Fig. 1. The modified keyword structure

The scheme is parameterized by the security parameter λ. A function ε is negligible
if for every polynomial p(·) there exist an N such that for all integers n > N it holds
that ε(n) < 1

p(n) .

4.2. Bilinear Map
Let GroupGen be a probabilistic polynomial-time algorithm that takes as input a se-
curity parameter 1λ, and outputs (G,GT , q, g, e), where G and GT are groups of prime
order q, G is generated by g ∈ G, and q is a λ-bit prime number. Let GT be a (different)
group of order q. A bilinear map e : G×G→ GT has the following properties.

(1) Bilinearity: for all g1, g2 ∈ G, a, b ∈ Z it holds that e(ga1 , gb2)=e(g1, g2)ab;
(2) Non-degeneracy: e(g, g) 6= 1;
(3) It follows that gT

def
= e(g, g) generates GT .

Let ~x = {x1, · · · , xn} and ~y = {y1, · · · , yn} be two n-dimensional vectors. The bilinear
map of e(g~x1 , g

~y
2) is computed as follows:

e(g~x1 , g
~y
2) = e(gx1

1 , gy12) · e(gx2
1 , gy22) · · · e(gxn

1 , gyn2) = e(g1, g2)x1y1+···+xnyn

5. SEARCHABLE SYMMETRIC ENCRYPTION WITH BINARY SEARCH
For a searchable encryption scheme, the most difficult part is how to lower the search
time complexity while keeping the algorithm randomized. One intuitive idea is to en-
able the scheme to support binary search. Before introducing our approaches, we first
review the inverted index-based data structure in details.

5.1. Inverted Index-Based Data Structure
An inverted index is an index data structure storing a mapping from content, such
as keywords to a set of documents. The purpose of an inverted index is to allow fast
full text searches. It is the most popular data structure used in document retrieval
systems, used on a large scale for example in search engines.

The inverted index-based data structure is shown on the left of Fig. 1. Let D =
{d1, d2, · · · , dm} be the set of documents to be stored in an untrusted cloud server,
where |D| = m is the total number of documents. Each document di contains a set
of keywords. Let W = {w1, w2,· · ·, wn} be the set of keywords in D, where |W | = n
is the total number of keywords. Di∈[n] ⊆ D denotes the set of documents containing
keyword wi. The keywords and the sets of documents are respectively encrypted by
encryption algorithms Enc and E, and stored in the cloud as shown in Fig. 1. Note that
Enc and E are different encryption schemes: Enc is a searchable encryption scheme
supporting binary search proposed in this paper and E can be any secure symmetric
encryption scheme, such as Advanced Encryption Standard (AES). The n encrypted

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Dynamic and Efficient Private Keyword Search over Inverted Index-Based Encrypted Data 0000:7

ALGORITHM 1: Query with Binary Search (C, TK, pp)
Input: C, TK, pp
Output: result
round = 0; head = 1; end = n; mid = 0; result = ⊥;
repeat

mid = b(head+ end)/2c;
if Test(TK,Cmid, pp) = 1 then

end = mid− 1;
else

head = mid+ 1;
end
round++;

until head > end;
if Chead.value 6= φ then

result = Chead.value;
end

keywords can be regarded as index of the encrypted documents and expressed as
C = {C1, · · · , Cn} = {Enc(w1), Enc(w2), · · · , Enc(wn)}. A data user can issue a query
with a search token TK = TokenGen(wi) for the documents that containing keyword
wi, where TokenGen denotes the corresponding token generation algorithm. To avoid
leakage of the queried keyword from encrypted index and search token, the encryp-
tion and token generation algorithms should be randomized as existing randomized
searchable encryption schemes [Shen et al. 2009; Yoshino et al. 2012]. However, with
the randomness of encrypted index and tokens, the cloud sever has to successively
compare the search token TK with each Ci∈[n] in the search process as shown on the
left dashed box in Fig. 1. Obviously, the time complexity of such search method is linear
in the number of keywords.

5.2. Improvement of Keyword Structures
For efficient search, our first technique is to transform the unordered encrypted index
to an ordered structure, which can support efficient search such as binary search in
logarithmic-time complexity. We modify the keyword structure for satisfying the or-
dered requirement of binary search. As shown on the right dashed box in the Fig. 1,
we modify each index item to Ci = Enc(w1,· · ·, wi, ∗,· · ·, ∗), where ∗ can be any value
in the domain of keywords. Correspondingly, the search token generation is changed
into TK = TokenGen(0,· · ·, 0, wi, 0,· · ·, 0). Then, we use vectors to express them, that is,
< w1,· · ·, wi, ∗,· · ·, ∗ > and < 0,· · ·, 0, wi, 0,· · ·, 0 >. So that the cloud server can perform
binary search by computing the inner product of the search token vector and the in-
dex vector and locate the matched index item. Computing inner-product of these two
vectors is actually a process of checking whether the queried keyword satisfies the
predicate of each index item using Bilinear Map (recall Section 4.2). If it is, then the
server continues to check the search token with the former half of index; otherwise,
the server continues to check the search token with the latter half of index.

The pseudo-code for querying with binary search is shown in Algorithm 1. Given
a search token TK for keyword wi and the encrypted index C, the algorithm ex-
poses the corresponding index item Ci and returns E(Di) or ⊥ for ”not found”. The
Test(TK,Ci, pp) algorithm outputs a bit to indicate whether the index item Ci matches
with the queried keyword corresponding to the given search token TK. The symbol pp
in Algorithm 1 indicates the public parameters of our schemes (Readers can refer to
the Section 6.1 and 7).

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:8 R. Zhang et al.

The limitation of this method is that the order of the keywords needs to be known by
the data user (token generator) which is not required in other SSE schemes. However,
we think this is acceptable in the private key setting where the data user usually is
the data owner or the data owner should send the secret key as well as the order of
keywords to the data user through a secure channel. For the privacy of underlying
keywords, we require that the order of keywords should be arbitrary and decided by
the data owner. The reason we do not use the lexical order of the keywords is that it
will reveal partial information about the keywords, e.g., the adversary will successfully
guess the first keyword since it probably begins with the letter A.

6. FRAMEWORK AND DEFINITIONS OF EPKS
6.1. The Framework of EPKS
Let Π=(Setup, Enc, TokenGen, Test, Query) be an EPKS scheme over the set of keywords
Wλ consists of the following probabilistic polynomial time (PPT) algorithms as follows:

— Setup(1λ)→ (pp, sk): On input the security parameter 1λ, output public parameters
pp and a secret key sk.

— Enc(W, sk, pp) → C: On input the keywords set W = {w1, · · · , wn} ⊆ Wλ, the
symmetric key sk and public parameters pp, output searchable encrypted index
C = (C1, · · · , Cn).

— TokenGen(wi, i, sk, pp)→TK: On input the keyword wi ∈W and its sequence number
i, the secret key sk and public parameters pp, output a search token TK.

— Test(TK,Ci, pp)→ {0, 1}: On input a search token TK, each encrypted index item
Ci and public parameters pp, output a bit indicating whether the item matches with
the queried keyword corresponding to the search token.

— Query(TK,C, pp)→E(Di) or ⊥: On input a token TK, the searchable encrypted index
C = {C1, · · · , Cn} and public parameters pp, perform binary search with running
Test algorithm, output the candidate set of encrypted documents E(Di) or ⊥.

Remark. We restrict ourselves to symmetric key cryptography conditioned on the
event in which the data user has knowledge of the keywords collection when he
generate the token for keyword wi. To correctly create the search token, keywords wi
and its sequence number i are both needed in the process of token generation.

Correctness. The query correctness of an EPKS scheme can be defined as follows:

Definition 6.1 (Correctness). For all λ, all W ⊆ Wλ, letting (pp, sk) ← Setup(1λ),
C ← Enc(W, sk, pp), TK ← TokenGen(wi, i, sk, pp), and the Algorithm 1 is performed
correctly,

— If wi ∈ W and i is the sequence number of wi in set W , then Query(TK,C, pp) =
E(Di).

— Otherwise, Pr[Query(TK,C, pp)=⊥]>1−ε(λ), where ε(λ) is a negligible function.

6.2. Modeling Plaintext Privacy and Predicate Privacy for Efficient Search
In this section we introduce the notions of plaintext privacy and predicate privacy
for our EPKS scheme. Recall Shen et al.’s security notions of plaintext privacy and
predicate privacy [Shen et al. 2009], ask that both ciphertexts and tokens reveal no
information about the encoded predicate, but the definitions do not completely apply
to the framework of EPKS. The definition of plaintext privacy in [Shen et al. 2009]
only consider the security of single ciphertext, that is, the challenge is one cipher-
text corresponding to challenge keyword wb∈{0,1}. If directly applying this definition
in EPKS framework, the adversary will easily distinguish two ciphertexts with dif-

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Dynamic and Efficient Private Keyword Search over Inverted Index-Based Encrypted Data 0000:9

Expt
(b)
sPP1,Π,A Expt

(b)
sPP2,Π,A

1: (pp, sk)←Setup(1λ). 1: (pp, sk)←Setup(1λ).
2: (W ∗0 ,W

∗
1 , state)←A(1λ), 2: (w∗0 , w

∗
1 , j
∗, state)←A(1λ),

where W ∗0 ,W
∗
1 ⊆Wλ and |W ∗0 |= |W ∗1 |=n. where w∗0 , w

∗
1 ∈W and j∗∈ [n].

3: C∗←Enc(W ∗b , sk, pp). 3: TK∗←TokenGen(w∗b , j
∗, sk, pp), where j∗∈ [n].

4: b′←AEnc(·,sk,pp),TokenGen(·,·,sk,pp)(C∗, state), 4: b′←AEnc(·,sk,pp),TokenGen(·,·,sk,pp)(TK∗, state),
where b′∈{0, 1}. where b′∈{0, 1}.

5: For all token queries (wi,j , j), where j∈ [n], 5: For all ciphertext queries Wi,
Query(TKwi,j , CW∗0 , pp)=Query(TKwi,j , CW∗1 , pp), Query

(
TKw∗0 , Ci, pp

)
=Query

(
TKw∗1 , Ci, pp

)
.

then output b′, otherwise output ⊥. then output b′, otherwise output ⊥.

Fig. 2. The Experiments of Expt(b)sPP1,Π,A and Expt
(b)
sPP2,Π,A

ferent order in the keyword set. Considering plaintext privacy in binary search, the
challenge should be a set of ciphertexts C∗= {C∗1 , · · · , C∗n} corresponding to challenge
keyword set W ∗b∈{0,1}. Therefore we need to re-define the models of plaintext privacy
and predicate privacy under the EPKS framework.

Typically, our notions consider adversaries that are given the public parameters of
the scheme, and can interact with the encryption oracle Enc and the token generation
oracle TokenGen. The encryption oracle Enc takes as input any adversarially-chosen
vectors of keywords. For i-th encryption query Wi = (wi,1, · · · , wi,n), the encryption
oracle Enc responds with Ci ← Enc(Wi, sk, pp). The token generation oracle TokenGen
shares a state with the encryption oracle Enc, takes as inputs queries of the form
(wi,j , j), where wi,j is a keyword in Wi and j ∈ [n] denotes the sequence number of
wi,j , and responds with TKwi,j←TokenGen(wi,j , j, sk, pp).

We also consider the selective variants of plaintext privacy and predicate privacy
that ask adversaries to announce ahead of time the challenge keywords.

6.2.1. Plaintext Privacy. The basic notion of plaintext privacy asks that it should not be
possible to learn any information about keywords from the ciphertexts beyond the ab-
solute minimum necessary. For example, in the context of cloud services, plaintext pri-
vacy refers to the risk that an unauthorized cloud server may learn the main content of
a document by inference on any association between frequent keywords and encrypted
dataset from the index. Therefore, the design of our searchable index should be con-
structed in such a way that can prevent the third party cloud server from performing
such kind of association inference attacks.

Definition 6.2 (plaintext privacy). An EPKS scheme Π =
(Setup, Enc, TokenGen, Test, Query) is plaintext privacy if for any probabilistic
polynomial-time adversary A, there exists a negligible function ε(λ) such that

AdvsPP1
Π,A (λ)

def
=
∣∣∣Pr
[
Expt

(0)
sPP1,Π,A=1

]
− Pr

[
Expt

(1)
sPP1,Π,A=1

]∣∣∣ ≤ ε(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment Expt
(b)
sPP1,Π,A is defined as shown

in Fig. 2.Public parameters and a secret key is generated by running Setup(1λ).
Adversary A is given input 1λ. It outputs a pair of keywords sets W ∗0 ,W

∗
1 of the

same length. A uniform bit b ∈ {0, 1} is chosen, and then a challenge ciphertext
C∗ ← Enc(W ∗b , sk, pp) is computed and given to A. The adversary A is given oracle
access to Enc(·, sk, pp) and TokenGen(·, ·, sk, pp), but is not allowed to query the latter on
which Query(TKwi,j

, CW∗0 , pp) 6= Query(TKwi,j
, CW∗1 , pp). Eventually, A outputs a bit b′,

which is also the output of the experiment. If b′ = b, we say that A succeeds.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:10 R. Zhang et al.

Remark. In addition, such a scheme is statistically plaintext private if the above holds
for any computationally-unbounded adversary.

6.2.2. Predicate Privacy. The basic notion of predicate privacy asks that it should not
be possible to learn any information, beyond the outcome of search, on the queried
keyword wi,j corresponding to a given token TKwi,j

.

Definition 6.3 (predicate privacy). An EPKS scheme Π =
(Setup, Enc, TokenGen, Test, Query) is predicate privacy if for any probabilistic
polynomial-time adversary A, there exists a negligible function ε(λ) such that

AdvsPP2
Π,A (λ)

def
=
∣∣∣Pr
[
Expt

(0)
sPP2,Π,A=1

]
− Pr

[
Expt

(1)
sPP2,Π,A=1

]∣∣∣ ≤ ε(λ),

where for each b∈ {0, 1} and λ∈N the experiment Expt
(b)
sPP2,Π,A is defined as shown

in Fig. 2. Public parameters and a secret key is generated by running Setup(1λ).
Adversary A is given input 1λ. It outputs a pair of keywords w∗0 , w∗1 and a sequence
number j∗. A uniform bit b ∈ {0, 1} is chosen, and then a challenge search token
TK∗← TokenGen(w∗b , j

∗, sk, pp) is computed and given to A. The adversary A is given
oracle access to Enc(·, sk, pp) and TokenGen(·, ·, sk, pp), but is not allowed to query the
former on which Query

(
TKw∗0

, Ci, pp
)
6= Query

(
TKw∗1

, Ci, pp
)
. Eventually, A outputs a

bit b′, which is also the output of the experiment. If b′ = b, we say that A succeeds.

Remark. In addition, such a scheme is statistically predicate private if the above holds
for any computationally-unbounded adversary.

7. CONSTRUCTION OF EPKS
Inspired by [Cao et al. 2011b], we present a concrete EPKS scheme on the cyclic groups
of prime order, which can be efficiently implemented. Compared with existing ran-
domized SSE schemes, this scheme offers stronger security, i.e., statistical plaintext
privacy and statistical predicate privacy.

Let Π=(Setup, Enc, TokenGen, Test, Query) be an EPKS scheme. The detail construc-
tion of each algorithm is as follows.

— Setup(1λ)→ (sk, pp). The algorithm samples (G,GT , q, g, e)← GroupGen(1λ), where
G is a cyclic group of prime order q, an (n+ 1)-bit vector ~I

R←− {0, 1}n+1 subjects
to ~I 6= {~0}, two full rank matrices M ′,M ′′ R←−Zq(n+1)×(n+1), and a collision-resistant
hash functionH :{0, 1}∗→Zq. It then sets pp=(G,GT , q, g, e,H) as public parameters
and sk= (~I,M ′,M ′′) as the secret key. Note that M ′,M ′′ are invertible with all but
a negligible probability.

— Enc(W, sk, pp)→ C. With a collection of keywords W = {w1, · · · , wn}, the algorithm
encrypts it with secret key sk and outputs the encrypted index C={C1, C2, · · · , Cn},
where each element Ci is generated as follows.
(1) Generate an (n+1)-dimensional vector ~pi= (pi,1, · · · , pi,n+1) as follows. For j= 1

to n+1, if j ≤ i, set pi,j =H(wj); if i < j ≤ n, set pi,j = xi,j
R←− Zq; if j = n+1, set

pi,j=1.
(2) Split ~pi into two vectors ~p′i and ~p′′i with the splitting indicator ~I as follows. For

1 ≤ j ≤ n+1, if Ij = 0, set p′i,j = p′′i,j = pi,j (mod q); if Ij = 1, set p′i,j +p′′i,j = pi,j

(mod q), where p′i,j
R←−Zq and p′′i,j=pi,j−p′i,j (mod q).

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Dynamic and Efficient Private Keyword Search over Inverted Index-Based Encrypted Data 0000:11

(3) Encrypt these two vectors as Ci=(g~p
′
iM
′
, g~p

′′
i M
′′
)=(Ci,1, Ci,2) for keyword wi.

— TokenGen(wi, i, sk, pp)→TK. With the queried keyword wi and its sequence number
i, secret key sk and public parameters pp, the algorithm creates search token TK
for keyword wi as follows.
(1) Generate an (n+1)-dimensional vector ~t= {t1, · · · , tn+1} as follows. For j = 1 to

n+1, if j= i, set tj=r
R←−Zq; if j 6= i and j≤n, set tj=0; if j=n+1, set tj=a

R←−Zq.
(2) Split ~t into two vectors ~t′ and ~t′′ with the splitting indicator ~I as follows. For j=1

to n+1, if Ij = 1, set t′j = t′′j = tj (mod q); if Ij = 0, set t′j+t′′j = tj (mod q), where

t′j
R←−Zq and t′′j = tj−t′j (mod q).

(3) Compute β = H(wi) and output TK = (gM
′−1~t′T , gM

′′−1~t′′T , grβ+a) =
(TK1, TK2, TK3) for wi.

— Test(TK,Ci, pp)→{0, 1}. With the search token TK for keyword wi and ciphertext
Ci, the algorithm tests whether the following equation holds. If Equation (1) holds
it returns 1; otherwise it returns 0.

e(Ci,1, TK1) · e(Ci,2, TK2)
?
= e(g, TK3) (1)

— Query(TK,C, pp)→ E(Di) or ⊥. With the search token TK for keyword wi and en-
crypted index C, the server performs the binary search according to Algorithm 1. In
each round of search, it runs Test algorithm. Once the execution of binary search is
completed, it outputs the corresponding encrypted documents set E(Di) or a symbol
⊥ for ”not found”.

Correctness. We state the following theorem about the correctness of EPKS scheme.

THEOREM 7.1. If each algorithm is performed correctly, EPKS scheme Π satisfies
the correctness as defined in Definition 6.1.

PROOF. With a search token TK for keyword wj ∈ W and an encrypted index item
of keyword wi where j ≤ i, the left side of Equation (1) can be computed as follows.

e(Ci,1, TK1) · e(Ci,2, TK2)

= e(g~p
′
iM
′
, gM

′−1~t′T) · e(g~p
′′
i M
′′
, gM

′′−1~t′′T)

= e(g, g)~p
′
i
~t′T+~p′′i ~t

′′T

= e(g, g)~pi
~tT

= e(g, g)rβ+a

= e(g, TK3)

According to the feature of binary search in Query algorithm, we observe that if the
sequence number of queried keyword is less than or equal to the sequence number of
index, that is, j ≤ i, then Equation (1) holds; otherwise Equation (1) does not hold with
probability 1− 1/q for a large prime q.

Therefore, for a search token TK formed by a keyword w /∈ W , the probability that
Query(TK,C, pp) correctly outputs ⊥, once it has completed binary search, is greater
than or equal to 1− 1/qdlogne.

Security. We state the following theorem about the security of EPKS construction.

THEOREM 7.2. EPKS scheme Π is statistically plaintext private and statistically
predicate private when n ≥ 2.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:12 R. Zhang et al.

7.0.3. Proof of Plaintext Privacy

LEMMA 7.3. The EPKS scheme Π is statistically plaintext private when n ≥ 2.

PROOF. Let A be a computationally unbounded adversary that makes a polyno-
mial number of queries to the encryption oracle Enc and the token generation oracle
TokenGen. We prove that the distribution of A’s view in the experiment Expt

(0)
sPP1,Π,A

is statistically close to the distribution of A’s view in the experiment Expt(1)
sPP1,Π,A (we

refer the reader to Definition 6.2 for the descriptions of these experiments). We denote
these two distributions by View

(0)
PP1 and View

(1)
PP1, respectively.

Denote byW ∗0 =(w∗0,1, · · · , w∗0,n) andW ∗1 =(w∗1,1, · · · , w∗1,n) the two challenge keywords
collections with which A sends to the encryption oracle Enc. Having already fixed hash
function H and sk=(~I,M ′,M ′′), we can assume that

View
(b)
PP1 =((C∗1,1, C

∗
1,2), · · · , (C∗n,1, C∗n,2)) = ((g~p

′
1M
′
, g~p

′′
1M
′′
), · · · , (g~p

′
nM
′
, g~p

′′
nM
′′
))

for b∈{0, 1}, where (w1,· · ·, wn)=(w∗0,1,· · ·, w∗0,n) for b=0, (w1,· · ·, wn)=(w∗1,1,· · ·, w∗1,n) for
b=1.

Observe that M ′ and M ′′ are uniformly chosen from Z(n+1)×(n+1)
q , thus for every

i ∈ [n] the distributions of ~p′iM ′ and ~p′′iM
′′ are uniform as long as ~p′i, ~p

′′
i 6= ~0. Then

we further prove the joint distributions of (~p′1M
′, · · · , ~p′nM ′) and (~p′′1M

′′, · · · , ~p′′nM ′′) are
also uniform.

The above two distributions can be denoted by P ′M ′ and P ′′M ′′, where P ′ and P ′′

are two matrices respectively consist of ~p′1,· · ·, ~p′n and ~p′′1 ,· · ·, ~p′′n. We can infer that the
two distributions of P ′M ′ and P ′′M ′′ are uniform as long as ~p′1,· · ·, ~p′n and ~p′′1 ,· · ·, ~p′′n
are linearly independent. We first consider the linear dependence of vectors ~p1,· · ·, ~pn.
Note that H is a collision-resistant hash function, thus the probability of any two
H(wi) and H(wj) are identical is negligible. If any two vectors of ~p1,· · ·, ~pn are iden-
tical, then vectors ~p1,· · ·, ~pn are linearly dependent. Since each xi,j in ~pi is uniformly
chosen from Zq, the probability that vector ~pn−1 = (H(w1),· · ·, H(wn−1), xn−1,n, 1) and
~pn=(H(w1),· · ·, H(wn−1), H(wn), 1) are identical is 1/q. Therefore, the probability that
vectors ~p1,· · ·, ~pn are linearly dependent is at most 1/q. This implies the probability
that vectors ~p′1,· · ·, ~p′n are linearly dependent is at most 1/q, which is negligible, af-
ter randomly split by splitting indicator vector ~I 6=~0. The same clearly holds also for
vectors ~p′′1 , · · · , ~p′′n. Therefore, the statistical distance between View

(0)
PP1 and View

(1)
PP1 is

negligible in λ.

7.0.4. Proof of Predicate Privacy

LEMMA 7.4. The EPKS scheme Π is statistically predicate private when n ≥ 2.

PROOF. Let A be a computationally unbounded adversary that makes a polyno-
mial number of queries to the encryption oracle Enc and the token generation oracle
TokenGen. We prove that the distribution of A’s view in the experiment Expt

(0)
sPP2,Π,A

is statistically close to the distribution of A’s view in the experiment Expt(1)
sPP2,Π,A (we

refer the reader to Definition 6.3 for the descriptions of these experiments). We denote
these two distributions by View

(0)
PP2 and View

(1)
PP2, respectively.

Denote by (w∗0 , j
∗) and (w∗1 , j

∗) the two challenge keywords with which A sends to
the token generation oracle TokenGen. Having already fixed hash function H and sk=

(~I,M ′,M ′′), we can assume that

View
(b)
PP2 =(TK∗1 , TK

∗
2 , TK

∗
3) = (gM

′−1~t′T , gM
′′−1~t′′T , grβ

∗+a)

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Dynamic and Efficient Private Keyword Search over Inverted Index-Based Encrypted Data 0000:13

for b∈{0, 1}, where w∗b =w∗0 for b=0, w∗b =w∗1 for b=1, and r, a R← Zq.
Observe that only TK∗3 is related to the underlying keyword w∗b . The first two parts

TK∗1 and TK∗2 are only related to the sequence number j∗, which is identical in terms
of choosing b∈ {0, 1}. Thus for b ∈ {0, 1} we can directly infer that the distribution of
TK∗3 is statistically-close to uniform, as a R← Zq. This implies the statistical distance
between View

(0)
PP2 and View

(1)
PP2 is negligible in λ.

8. FROM EPKS TO DEPKS
Due to the requirement of addition, deletion and update the keywords and documents
after the index have been built, a practical SSE scheme should support dynamic up-
dates with low communication and computation cost. Fortunately, EPKS scheme can
be easily extended to dynamic settings.

In order to add new keywords into the index after they have been generated, we let
` be a predefined public parameter, which is the maximum dimension of vectors used
in the algorithms. That is, as long as the current number of keywords is less than `, a
new keyword can be easily added into the index without re-setup the whole system.

Let ΠD = (Setup, Enc, TokenGen, UpdateToken, Update, Test, Query) be a DEPKS
scheme over the set of keywords Wλ consists of the following probabilistic polynomial
time (PPT) algorithms as follows:

— Setup(1λ, `)→ (pp, sk): On input the security parameter 1λ and an upper bound `,
output public parameters pp and a secret key sk.

— Enc(W, sk, pp)→C: On input the keywords set W = {w1, · · · , wn} ⊆Wλ, where n≤ `,
the symmetric key sk and public parameters pp, output searchable encrypted index
C=(C1, · · · , Cn).

— TokenGen(wi, i, sk, pp)→TK: On input the keyword wi∈W and its sequence number
i, the secret key sk and public parameters pp, output a search token TK.

— UpdateToken(w′i, i, sk, pp)→ C ′i: On input the updated keyword w′i and its sequence
number i∈ [n+1], the symmetric key sk, and public parameters pp, output an updated
ciphertext C ′i.

— Update(C ′i, E(D′i), i, τu) → (C ′, n′): On input the updated ciphertext C ′i, the corre-
sponding encrypted document set E(D′i), the sequence number i ∈ [n+ 1] and the
update type τu ∈ {update, add, delete}, output a new encrypted index C ′ and a new
counter n′, which indicates the number of keywords contained in the underlying
plaintext of current ciphertexts.

— Test(TK,Ci, pp)→{0, 1}: On input a search token TK, each encrypted index item Ci
and public parameters pp, output a bit indicating whether the encrypted index item
satisfies the queried keyword corresponding to the search token.

— Query(TK,C, pp)→ E(Di) or ⊥: On input a search token TK, the set of searchable
encrypted index C = {C1, · · · , Cn} and public parameters pp, perform binary search
with running Test algorithm, output the candidate set of encrypted documents E(Di)
or ⊥.

Correctness. The query correctness of a DEPKS scheme can be defined as follows:

Definition 8.1 (Correctness). For all λ, all W ⊆ Wλ, letting (pp, sk) ← Setup(1λ),
C ← Enc(W, sk, pp), TK ← TokenGen(wi, i, sk, pp), C ′i ← UpdateToken(w′i, i, sk, pp),
(C ′, n′)←Update(C ′i, E(D′i), i, τu), and the Algorithm 1 is performed correctly,

— If wi∈W , and i is the sequence number of wi in set W , then Query(TK,C, pp)=E(Di).
— Otherwise, Pr[Query(TK,C, pp)=⊥]>1−ε(λ), where ε(λ) is a negligible function.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:14 R. Zhang et al.

Security. The security definitions of DEPKS are similar to the security defini-
tions of EPKS except that the adversary is allowed to query update token gener-
ation oracle UpdateToken as well as encryption oracle Enc and search token gener-
ation oracle TokenGen. Note that, for all update token generation queries (w′i,j , j),
Query

(
TKw∗0

, C ′i, pp
)

=Query
(
TKw∗1

, C ′i, pp
)
.

9. CONSTRUCTION OF DEPKS
Let ΠD = (Setup, Enc, TokenGen, UpdateToken, Update, Test, Query) be an DEPKS
scheme. The detail construction of each algorithm is as follows.

— Setup(1λ, `)→ (sk, pp). This algorithm performs the same as the Setup algorithm of
EPKS except that it generates an (`+1)-bit vector ~I R←− {0, 1}`+1 and two full rank
matrices M ′,M ′′ R←−Zq(`+1)×(`+1).

— Enc(W, sk, pp) → C. With a collection of keywords W = {w1, · · · , wn}, where n ≤ `,
the algorithm encrypts it with secret key sk and outputs the encrypted index C =
{C1, C2, · · · , Cn}, where each element Ci is generated as follows.
(1) Generate an (`+1)-dimensional vector ~pi= (pi,1,· · ·, pi,`+1) as follows. For j= 1 to

`+1, if j≤ i, set pi,j=H(wj); if i<j≤`, set pi,j=xi,j
R←−Zq; if j=`+1, set pi,j=1.

(2) Split ~pi into two vectors ~p′i and ~p′′i with the splitting indicator ~I as follows. For
1 ≤ j ≤ ` + 1, if Ij = 0, set p′i,j = p′′i,j = pi,j (mod q); if Ij = 1, set p′i,j +p′′i,j = pi,j

(mod q), where p′i,j
R←−Zq and p′′i,j=pi,j−p′i,j (mod q).

(3) Encrypt these two vectors as Ci=(g~p
′
iM
′
, g~p

′′
i M
′′
)=(Ci,1, Ci,2) for keyword wi.

— TokenGen(wi, i, sk, pp)→TK. With the queried keyword wi and its sequence number
i, secret key sk and public parameters pp, the algorithm creates a search token TK
for keyword wi as follows.
(1) Generate an (`+1)-dimensional vector ~t={t1,· · ·, t`+1} as follows. For j=1 to `+1,

if j= i, set tj=r
R←−Zq; if j 6= i and j≤`, set tj=0; if j=`+1, set tj=a

R←−Zq.
(2) Split ~t to two vectors ~t′ and ~t′′ with the splitting indicator ~I as follows. For j= 1

to `+1, if Ij = 1, set t′j = t′′j = tj (mod q); if Ij = 0, set t′j+t′′j = tj (mod q), where

t′j
R←−Zq and t′′j = tj−t′j (mod q).

(3) Compute β = H(wi) and output TK = (gM
′−1~t′T , gM

′′−1~t′′T , grβ+a) =
(TK1, TK2, TK3) for wi.

— UpdateToken(w′i, i, sk, pp)→C ′i. With the updated keyword w′i and its sequence num-
ber i, where i≤` and i∈ [n+1] and n is the current number of ciphertexts, secret key
sk and public parameters pp, the algorithm generates the updated ciphertext C ′i as
the same as the steps of Enc algorithm.

— Update(C ′i, E(D′i), i, τu)→ (C ′, n′): With the updated ciphertext C ′i, the corresponding
encoded documents set E(D′i), the sequence number i ∈ [n+1] of the ciphertext to
be updated, where n is the current number of ciphertexts, and an update type τu ∈
{update, add, delete}, the algorithm operates as following steps:
(1) if τu = update and i ∈ [n], then replace the i-th ciphertext Ci with C ′i and the

corresponding encoded documents set E(Di) with E(D′i), and set n′ = n;
(2) if τu = add, i = n+ 1 and n < `, then add the ciphertext C ′i at the end of the

ciphertexts, i.e., add it to the (n+1)-th position, and let it point to the address of
storing E(D′i), and set n′=n+1;

(3) if τu = delete and i ∈ [n], then delete the corresponding encoded documents set
and set Ci=C ′i, E(Di)=φ and n′=n.

Finally, the algorithm outputs the updated ciphertexts set C ′ and n′.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Dynamic and Efficient Private Keyword Search over Inverted Index-Based Encrypted Data 0000:15

— Test(TK,Ci, pp)→{0, 1}. The algorithm performs the same as the Test algorithm of
EPKS.

— Query(TK,C, pp) → E(Di) or ⊥. The algorithm performs the same as the Query algo-
rithm of EPKS.

Correctness. We state the following theorem about the correctness of DEPKS scheme.

THEOREM 9.1. If each algorithm is performed correctly, DEPKS scheme ΠD satis-
fies the correctness as defined in Definition 8.1.

The proof of this theorem is similar to the proof of Theorem 7.1 except the dimension
of vectors are extended to `, thus we omit it here.

Security. We state the following theorem about the security of DEPKS scheme.

THEOREM 9.2. DEPKS scheme ΠD when `≥ n≥ 2 is statistically plaintext private
and statistically predicate private.

The proofs are similar to the proofs of Lemma 7.3 and Lemma 7.4 except the dimen-
sion of vectors are extended to `. The security notions still can be guaranteed by the
randomness of ciphertexts, search tokens and update tokens.

9.1. The Support of Dynamic Updates
In a dynamic searchable encryption scheme, data adding, deletion and update oper-
ations should be supported without needing to either re-index the entire data collec-
tion or make use of generic and expensive dynamization techniques. The existing SSE
schemes that support data dynamics were proposed in [Liesdonk et al. 2010; Kamara
et al. 2012; Kamara and Papamanthou 2013; Cash et al. 2014; Stefanov et al. 2014].
The constructions in [Kamara et al. 2012; Kamara and Papamanthou 2013] support
dynamically update and delete documents but require re-encrypting each node of the
tree-based multi-map data structure when updating and deleting keywords. Moreover,
for updates and deletions, they need 1.5 rounds of interaction (i.e., three messages be-
tween client and server). That is, the client generates an update token with the help
of the server. Given such token, the server can update the index. Such interactive to-
ken generation may affect the update efficiency. As for the privacy, as far as we know,
existing dynamic searchable encryption schemes [Liesdonk et al. 2010; Kamara et al.
2012; Kamara and Papamanthou 2013; Cash et al. 2014; Stefanov et al. 2014] are rely
on the security notion of CKA2, which does not consider the information leakage from
the deterministic update token as well as the search token.

Our DEPKS construction can address the above problems and easily fulfill more
efficient updating, adding and deletion both for keywords and documents. The client
generates update token without the help with the server and the update operation is
completed in 1 round of interaction. Besides, in our DEPKS scheme, the update token
generation algorithm is randomized as well as search token generation algorithm and
encryption algorithm. Therefore, our scheme can achieve predicate privacy, in which
given the index, search tokens and update tokens, the adversary can not obtain any
information about the queried keyword.

9.1.1. Keywords Dynamic Updates. To update a keyword wi, the client (data owner) takes
as input the keyword w′i to be updated and the location i of the updated keyword, the
secret key sk and public parameters pp and runs UpdateToken to generate the updated
ciphertext C ′i. Once the cloud server receives C ′i, the encoded documents set E(D′i), the
sequence number i and an update type τu from the client, it performances as the three
cases of algorithm Update to output the new index and the number of keywords n′ after
updating.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:16 R. Zhang et al.

Table I. Comparison of SSE Schemes

Scheme Security Index size Search time Dynamics

N
on

-r
an

do
m

iz
ed SWP00 [Song et al. 2000] CPA N/A O(‖D‖) Yes

Z-IDX [Goh 2003] CKA1 O(m) O(m) Yes
CM05 [Chang and

Mitzenmacher 2005]
CKA1 O(m · n) O(m) Yes

SSE-1 [Curtmola et al. 2006] CKA1 O(
∑n

i=1 |Di|+ n) O(|Di|) No
SSE-2 [Curtmola et al. 2006] CKA2 O(m · n) O(|Di|) No
KO12 [Kurosawa and Ohtaki

2012]
UC O(m · n) O(n) No

KPR12 [Kamara et al. 2012] CKA2 O(
∑n

i=1 |Di|+ n) O(|Di|) Yes
OXT [Cash et al. 2013a] CKA2 O(

∑n
i=1 |Di|+ n) O(|Di|) No

R
an

do
m

iz
ed SKPOE [Shen et al. 2009] 2PP O(n2) O(n2) No

SK-PE [Yoshino et al. 2012] 2PP O(n2) O(n2) No
EPKS statistical 2PP O(n2) O(n logn) No

DEPKS statistical 2PP O(n2) O(n logn) Yes

Note: m is the total number of documents. n is the total number of keywords in documents. D is the
ensemble of documents. ‖D‖ is the bit length of the set of documents. |Di| is the number of documents
that contain the keyword wi. UC means universal composability. We write 2PP for both plaintext privacy
and predicate privacy.

Note that the vectors in Enc and TokenGen are always `-dimensional, we require that
the client can append a keyword and its corresponding documents set at the end of the
index as long as current number of ciphertexts is less than the preset upper bound `.
There are two advantages of preset maximum dimensions of vectors. The first is that
it can dynamically add and delete keywords without re-building the whole index. The
second is that it can keep the search correctness as long as the client generate search
token and the server performs correctly after adding and deleting keywords.

9.1.2. Documents Dynamic Updates. Basically, adding and deletion a document can be
done by updating the corresponding keywords. Specifically, when the client wants to
add or delete a document, it respectively adds or deletes the document in the docu-
ments set corresponding to each keyword, runs UpdateToken algorithm to generate the
new index item and sends the updated index item, the re-encrypted documents sets,
sequence numbers and corresponding update types to the server. The server updates
the index item and encoded documents sets in turn according to update types.

10. IMPLEMENTATION AND EVALUATION
Most existing randomized SSE schemes that achieve plaintext privacy and predicate
privacy, such as SKPOE [Shen et al. 2009], SK-PE1 [Yoshino et al. 2012] and RPE [Lu
2012], are constructed based on the groups of composite order that require very large
parameter sizes according to National Institute of Standards and Technology (NIST)
recommendations. Moreover, the pairing computation is much slower over a composite-
order than an elliptic curve [Guillevic 2013]. Fortunately, Freeman [Freeman 2010]
and Lewko [Lewko 2012] provided a generic conversion from the composite-order to
the prime-order setting. Based on this, Yoshino et al. gave a more efficient prime-
order group instantiation, called SK-PE2 of SK-PE1 [Yoshino et al. 2012]. Therefore,
our experiments mainly focus on the implementation of EPKS and DEPKS and the
comparisons between EPKS and SK-PE2.

10.1. Complexity Analysis
Table I summarizes the four important characters: security, storage space complexity,
search time complexity and dynamics of our schemes and other existing SSE schemes.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Dynamic and Efficient Private Keyword Search over Inverted Index-Based Encrypted Data 0000:17

Note that the last four SSE schemes (including our schemes) are randomized, that
is, both encryption and token generation are probabilistic, which offer stronger secu-
rity i.e., plaintext privacy and predicate privacy. Therefore, we mainly compare our
schemes with existing randomized SSE schemes, i.e., SKPOE [Shen et al. 2009] and
SK-PE [Yoshino et al. 2012] in this paper.

As shown in Table I, compared with existing randomized SSE schemes, our schemes
significantly reduces search time complexity. In addition, EPKS and DEPKS achieve
information-theoretical security, i.e., statistical plaintext privacy and statistical pred-
icate privacy.

10.2. Experimental Evaluation
For our experiments, we build datasets indexed by different number of keywords (i.e.,
n = 100, 1000, 2000, · · · , 10000). We encrypted the datasets with AES and encrypted the
indexes with SK-PE2, EPKS and DEPKS respectively, and the encrypted data and
indexes were stored on our machine. We then executed random queries over these
encrypted data.

We implemented our constructions in JAVA with Java Pairing Based Cryptography
library (JPBC) [JPB]. Our experiments were run on Intel(R) Core(TM) i7-3520M CPU
at 2.90GHz processor and 3537MB memory size. In our implementation, the bilinear
map is instantiated as Type A pairing (base field size is 512-bit), which offers a level
of security equivalent to 1024-bit DLOG [JPB].

10.2.1. EPKS Implementation. Fig. 3 shows the comparisons of computation, storage and
communication overhead between EPKS and SK-PE2 [Yoshino et al. 2012]. For the
time cost of encrypting each index item, EPKS is less than SK-PE2 when n is small
(say n < 480). With the increasing of n, the time cost of encryption of EPKS is grow
faster than SK-PE2. Similarly, for the time cost of token generation, EPKS is less
than SK-PE2 when n is small (say n < 970). But when n is large, EPKS is slower
than SK-PE2 for generating a search token. However, index encryption and search
token generation can be done offline. From the observation of Fig. 3(c), EPKS is much
more efficient than SK-PE2 for query. For example, EPKS takes about 44 minutes
to complete searching the whole index with 5000 keywords, in contrast to more than
6 days in SK-PE2. Moreover, with the increasing of n, this advantage becomes more
significant. Fig. 3(d) and Fig. 3(e) respectively show the storage and communication
overhead comparisons between EPKS and SK-PE2 [Yoshino et al. 2012]. Note that
here the storage overhead and communication overhead are respectively measured by
the size of index and the size of search token. The size of encrypted documents is not
considered since it is decided by the size of original documents and the symmetric
encryption scheme, which beyond the scope of this paper. The experimental results of
Fig. 3(d) conform to the theoretical results in Table I, which shows that EPKS have
the same index size with SK-PE2 [Yoshino et al. 2012]. As shown in Fig. 3(e), for the
bandwidth consumption of a single query, the cost of EPKS is slightly more than SK-
PE2.

10.2.2. DEPKS Implementation. To support dynamically keyword and document up-
dates, we extend the vectors from n-dimension to `-dimension in the construction of
DEPKS. Therefore, the time complexity of each algorithm in DEPKS is related to the
preset parameter `. Here, we set ` = 10000 for the following experiments. With the
fixed vector dimension ` = 10000, the time cost for encrypting each index item is about
64 minutes and the time cost for generating a search token is about 32 minutes.

Fig. 4 shows the performance of DEPKS respectively in terms of computation, stor-
age and communication overhead. As demonstrated in the Fig. 4(a), with the preset
value ` = 10000, the time cost for query increases logarithmically with the number

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:18 R. Zhang et al.

(a) The Computation
Overhead of Encrypting
One Index Item

(b) The Computation
Overhead of Token Gen-
eration

(c) The Computation
Overhead of Query with
One Keyword

(d) The Storage Overhead
of Index

(e) The Communication
Overhead of Query with
One Keyword

Fig. 3. The Computation, Storage and Communication Overhead Comparisons between EPKS and SK-PE2

(a) The Computation
Overhead of Query

(b) The Computation
Overhead of Adding
and Deleting a Doc-
ument with α Key-
words

(c) The Storage Over-
head of Index

(d) The Communi-
cation Overhead of
Adding or Deleting
a Document with α
Keywords

Fig. 4. The Computation, Storage and Communication Overhead of DEPKS

of keywords. For a single query, the cloud only needs to take about 95 minutes to
complete search the whole index with 10000 keywords. Fig. 4(b) shows the compu-
tation overhead of adding and deleting a document with α keywords. The time cost
for adding or deleting a document increases linearly with the keywords number of
the document. In addition, the time costs for adding and deleting a document with
same keywords number are almost the same. As shown in Fig. 4(c), the index size of
DEPKS increases linearly with the number of keywords. For example, the cloud server
needs about 382M to store an encrypted index with 5000 keywords. While, when the
keywords number is increased to 10000, it needs about 763M to store the index. As

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Dynamic and Efficient Private Keyword Search over Inverted Index-Based Encrypted Data 0000:19

demonstrated in Fig. 4(d), the bandwidth consumption for adding or deleting a single
document increases linearly with the number of keywords of the document.

As can be seen, although the computation costs on client side in our schemes are
more than existing scheme [Yoshino et al. 2012], when the number of keywords is
large (e.g., n = 10000), our EPKS and DEPKS schemes achieve high efficiency of query
over encrypted data. The larger the index size (i.e., the number of keywords) is, the
higher query efficiency gain can be achieved.

11. CONCLUSIONS
In this paper we have proposed EPKS and DEPKS scheme for inverted index-based
encrypted data. First, we have described our approaches of constructing a searchable
symmetric encryption scheme that supports binary search. Then, we have presented
frameworks and formal security definitions both for EPKS and DEPKS. Built on the
proposed frameworks, we have respectively designed scheme for EPKS and DEPKS,
which are based on the groups of prime order. Both proposed schemes have high ef-
ficiency and enjoy strong notions of security, namely statistical plaintext privacy and
statistical predicate privacy. Moreover, DEPKS not only maintains the properties of
logarithmic-time search efficiency and high privacy, but also has fewer rounds of com-
munication for updates, specifically, one round of interaction for each update compared
to one and half round of interaction in existing DSSE schemes.

REFERENCES
The java pairing based cryptography library. http://gas.dia.unisa.it/projects/jpbc
Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic and Efficiently Searchable En-

cryption. In CRYPTO 2007. LNCS, Vol. 4622. Springer Berlin Heidelberg, 535–552.
Dan Boneh, Giovanni Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. 2004. Public Key Encryption

with Keyword Search. In EUROCRYPT 2004. LNCS, Vol. 3027. Springer Berlin Heidelberg, 506–522.
Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. 2011a. Privacy-preserving multi-keyword

ranked search over encrypted cloud data. In INFOCOM 2011. 829–837.
Ning Cao, Zhenyu Yang, Cong Wang, Kui Ren, and Wenjing Lou. 2011b. Privacy-Preserving Query over

Encrypted Graph-Structured Data in Cloud Computing. In ICDCS’11. 393–402.
David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu, and

Michael Steiner. 2014. Dynamic Searchable Encryption in Very-Large Databases: Data Structures and
Implementation. In NDSS’14.

David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu, and Michael
Steiner. 2013a. Highly-Scalable Searchable Symmetric Encryption with Support for Boolean Queries.
In CRYPTO 2013. LNCS, Vol. 8042. Springer Berlin Heidelberg, 353–373.

David Cash, Alptekin Küpçü, and Daniel Wichs. 2013b. Dynamic Proofs of Retrievability via Oblivious RAM.
In EUROCRYPT 2013. LNCS, Vol. 7881. Springer Berlin Heidelberg, 279–295.

Yan-Cheng Chang and Michael Mitzenmacher. 2005. Privacy preserving keyword searches on remote en-
crypted data. In ACNS’05. Springer-Verlag, Berlin, Heidelberg, 442–455.

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable symmetric encryption:
improved definitions and efficient constructions. In CCS ’06. ACM, New York, NY, USA, 79–88.

Ivan Damgård, Sigurd Meldgaard, and JesperBuus Nielsen. 2011. Perfectly Secure Oblivious RAM with-
out Random Oracles. In Theory of Cryptography, Yuval Ishai (Ed.). LNCS, Vol. 6597. Springer Berlin
Heidelberg, 144–163.

David Mandell Freeman. 2010. Converting Pairing-based Cryptosystems from Composite-order Groups to
Prime-order Groups. In EUROCRYPT’10. Springer-Verlag, Berlin, Heidelberg, 44–61.

Eu-Jin Goh. 2003. Secure Indexes. Cryptology ePrint Archive, Report 2003/216. (2003). http://eprint.iacr.
org/2003/216/

O. Goldreich. 1987. Towards a Theory of Software Protection and Simulation by Oblivious RAMs. In STOC
’87. ACM, New York, NY, USA, 182–194.

Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation on oblivious RAMs. J. ACM
43, 3 (May 1996), 431–473.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

0000:20 R. Zhang et al.

Aurore Guillevic. 2013. Comparing the Pairing Efficiency over Composite-Order and Prime-Order Elliptic
Curves. In ACNS 2013. LNCS, Vol. 7954. Springer Berlin Heidelberg, 357–372.

Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access Pattern Disclosure on
Searchable Encryption: Ramification, Attack and Mitigation. In NDSS 2012.

Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and Michael Steiner. 2013. Outsourced
symmetric private information retrieval. In CCS ’13. ACM, New York, NY, USA, 875–888.

Seny Kamara and Charalampos Papamanthou. 2013. Parallel and Dynamic Searchable Symmetric Encryp-
tion. In FC 2013. LNCS, Vol. 7859. Springer Berlin Heidelberg, 258–274.

Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic searchable symmetric encryp-
tion. In CCS’12. ACM, New York, NY, USA, 965–976.

Jonathan Katz, Amit Sahai, and Brent Waters. 2008. Predicate Encryption Supporting Disjunctions, Poly-
nomial Equations, and Inner Products. In EUROCRYPT 2008, Nigel Smart (Ed.). LNCS, Vol. 4965.
Springer Berlin Heidelberg, 146–162.

Kaoru Kurosawa and Yasuhiro Ohtaki. 2012. UC-Secure Searchable Symmetric Encryption. In FC’12.
LNCS, Vol. 7397. Springer Berlin Heidelberg, 285–298.

Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2012. On the (in)Security of Hash-based Oblivious RAM
and a New Balancing Scheme. In SODA ’12. SIAM, 143–156.

Allison Lewko. 2012. Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order
Setting. In EUROCRYPT’12. Springer-Verlag, Berlin, Heidelberg, 318–335.

Peter Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker. 2010. Computationally
Efficient Searchable Symmetric Encryption. In Secure Data Management. LNCS, Vol. 6358. Springer
Berlin Heidelberg, 87–100.

Yanbin Lu. 2012. Privacy-preserving logarithmic-time search on encrypted data in cloud. In NDSS 2012.
Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM Revisited. In CRYPTO 2010. LNCS, Vol. 6223.

Springer Berlin Heidelberg, 502–519.
Emily Shen, Elaine Shi, and Brent Waters. 2009. Predicate Privacy in Encryption Systems. In TCC ’09.

Springer-Verlag, Berlin, Heidelberg, 457–473.
Elaine Shi, T.-H.Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious RAM with O((logN)3) Worst-

Case Cost. In ASIACRYPT 2011. LNCS, Vol. 7073. Springer Berlin Heidelberg, 197–214.
Elaine Shi and Brent Waters. 2008. Delegating Capabilities in Predicate Encryption Systems. In ICALP ’08.

Springer-Verlag, Berlin, Heidelberg, 560–578.
Dawn Xiaodong Song, D. Wagner, and A. Perrig. 2000. Practical techniques for searches on encrypted data.

In SP 2000. 44 –55.
Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dynamic Searchable Encryption

with Small Leakage. In NDSS’14.
E. Stefanov and E. Shi. 2013. ObliviStore: High Performance Oblivious Cloud Storage. In SP 2013. 253–267.
Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas

Devadas. 2013. Path ORAM: An Extremely Simple Oblivious RAM Protocol. In CCS ’13. ACM, New
York, NY, USA, 299–310.

Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y. Thomas Hou, and Hui Li. 2013. Privacy-
preserving Multi-keyword Text Search in the Cloud Supporting Similarity-based Ranking. In ASIA
CCS ’13. ACM, New York, NY, USA, 71–82.

Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. 2012. Enabling Secure and Efficient Ranked Keyword
Search over Outsourced Cloud Data. IEEE Transactions on Parallel and Distributed Systems 23, 8
(2012), 1467–1479.

C. Wang, K. Ren, S. Yu, and K. Urs. 2012. Achieving usable and privacy-assured similarity search over
outsourced cloud data. In INFOCOM 2012. 451–459.

Qian Wang, Shengshan Hu, Kui Ren, Meiqi He, Minxin Du, and Zhibo Wang. 2015. ESORICS 2015. Springer
International Publishing, Cham, Chapter CloudBI: Practical Privacy-Preserving Outsourcing of Bio-
metric Identification in the Cloud, 186–205.

Masayuki Yoshino, Noboru Kunihiro, Ken Naganuma, and Hisayoshi Sato. 2012. Symmetric Inner-Product
Predicate Encryption Based on Three Groups. In Provable Security. LNCS, Vol. 7496. Springer Berlin
Heidelberg, 215–234.

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

Online Appendix to:
Dynamic and Efficient Private Keyword Search over Inverted
Index-Based Encrypted Data

RUI ZHANG, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences
RUI XUE, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences
TING YU, Qatar Computing Research Institute, Hamad Bin Khalifa University
LING LIU, College of Computing, Georgia Institute of Technology

c© 2016 ACM. 1533-5399/2016/-ART0000 $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Internet Technology, Vol. V, No. N, Article 0000, Publication date: 2016.

