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Abstract—Clouds are becoming an important platform for scientific workflow applications. However, with many nodes being deployed
in clouds, managing reliability of resources becomes a critical issue, especially for the real-time scientific workflow execution where
deadlines should be satisfied. Therefore, fault tolerance in clouds is extremely essential. The PB (primary backup) based scheduling is
a popular technique for fault tolerance and has effectively been used in the cluster and grid computing. However, applying this
technique for real-time workflows in a virtualized cloud is much more complicated and has rarely been studied. In this paper, we
address this problem. We first establish a real-time workflow fault-tolerant model that extends the traditional PB model by incorporating
the cloud characteristics. Based on this model, we develop approaches for task allocation and message transmission to ensure faults
can be tolerated during the workflow execution. Finally, we propose a dynamic fault-tolerant scheduling algorithm, FASTER, for real-
time workflows in the virtualized cloud. FASTER has three key features: 1) it employs a backward shifting method to make full use of
the idle resources and incorporates task overlapping and VM migration for high resource utilization, 2) it applies the vertical/horizontal
scaling-up technique to quickly provision resources for a burst of workflows, and 3) it uses the vertical scaling-down scheme to avoid
unnecessary and ineffective resource changes due to fluctuated workflow requests. We evaluate our FASTER algorithm with synthetic
workflows and workflows collected from the real scientific and business applications and compare it with six baseline algorithms. The
experimental results demonstrate that FASTER can effectively improve the resource utilization and schedulability even in the presence
of node failures in virtualized clouds.

Index Terms—Virtualized clouds, fault-tolerant scheduling, primary-backup model, overlapping, VM migration
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1 INTRODUCTION

CLOUD computing has become an enabling paradigm for
on-demand provisioning of computing resources to

dynamic applications’ workload [1]. Virtualization is com-
monly used in cloud, such as Amazon’s elastic compute
cloud (EC2), to render flexible and scalable system services,
and thus creating a powerful computing environment that
gives cloud users the illusion of infinite computing resour-
ces [2]. Running applications on virtual resources, notably
virtual machines (VMs), has been an efficient solution for
scalability, cost-efficiency, and high resource utilization [3].

There are an increasing number of scientific applications
in the areas such as astronomy, bioinformatics, and physics
[4]. The ever-growing data and complexity of those applica-
tions make them demand a high-performance computing
environment. Cloud as the latest distributed computing par-
adigm can offer an efficient solution.

Many scientific applications are of the real-time nature
where the correctness depends not only on the computa-
tional results, but also on the time instants at which these
results become available [5]. In some cases, it is necessary to
guarantee the timeliness of applications. For instance, the
workflows of weather forecasting and medical simulations
have strict deadlines which, once being violated, can make
the result useless [6]. Therefore, it is critical for these kinds
of deadline-constrained applications to obtain guaranteed
computing services even in the presence of machine fail-
ures. It is reported in [7] that for a system consisting of 10
thousand super reliable servers (MTBF of 30 years), there
will still be one failure per day. Moreover, each year, about
1-5 percent of disk drives die and servers crash at least twice
for a 2-4 percent failure rate. Note that, it is even worse that
large-scale cloud providers such as Google, also use a large
number of cheap commodity computers that may result in
much more frequent failures [8]. As a consequence, deliver-
ing fault-tolerant capability in clouds, especially for real-
time scientific workflows is critical and has become a hot
research topic.
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For real-time scientific workflows on clouds, scheduling
plays an essential role for satisfying applications’ require-
ments while efficiently utilizing system resources. Schedul-
ing basically maps tasks in a workflow to machines such that
deadlines and response time requirements are satisfied, even
in the presence of hardware and software failures. To date, a
lot of fault-tolerant scheduling strategies have been investi-
gated (e.g., [5], [8], [13], [14], [17]) in the distributed system
domain. One of the popular strategies for fault tolerance is
using the primary-backup (PB, in short) model, in which two
copies of one task are allocated on two different processing
units.

Distinct from other computing environments such as
clusters and grids, clouds have the following unique fea-
tures: 1) Clouds use VMs (a physical host can have multiple
VMs) as basic computational instances and allow VMs to
migrate among multiple hosts. Tasks in a workflow are allo-
cated to VMs instead of directly to physical hosts; 2) The
resources assigned to run workflows can be dynamically
changed at run-time according to the demand of workflows,
i.e., a cloud can be scaled up to satisfy the increased
resource requests and scaled down to improve the system’s
resource utilization when the demand is reduced.

These two unique features improve the scheduling flexi-
bility, but also lead to increased scheduling complexity and
difficulty, especially for the fault-tolerant scheduling using
PB model. The challenge is two-fold: 1) A host’s failure may
result in multiple computational instances’ (i.e., VMs’) fail-
ures, which causes execution failure of a task if two copies
of the task are all allocated to the failed VMs. It is, however,
not the case for traditional PB fault-tolerant scheduling
algorithms where the two copies of a task are mapped to
two different processing units; 2) The VM migration in
fault-tolerant scheduling algorithms with the PB model
must consider extra constraints such as task execution pre-
cedence and data transmission order, to ensure that faults
can be tolerated effectively.

To the best of our knowledge, no work has been done on
fault-tolerant scheduling for real-time workflows on virtual-
ized clouds. In this paper, we address this problem with the
following contributions:

! We establish a real-time workflow fault-tolerant
model on virtualized clouds, which extends the tra-
ditional PB fault-tolerant model by incorporating the
cloud characteristics;

! We provide analytical strategies for task allocation
and message transmission to support fault tolerant
execution;

! We innovatively apply the overlapping and VM
migration mechanisms to the task scheduling so that
both fault tolerance and high resource efficiency can
be achieved;

! We propose a resource elastic provisioning mecha-
nism that has three merits: 1) enabling full use of the
idle resource through a backward shifting schedul-
ing method, 2) allowing fast resource provisioning
through the vertical and horizontal resource scaling,
and 3) avoiding unnecessary frequent resource allo-
cation changes caused by fluctuated workflow
requests;

! Based on our fault model, scheduling strategies, and
resource provisioning scheme, we design a novel
dynamic fault-tolerant scheduling algorithm for
real-time scientific workflows - FASTER to support
them running on virtualized clouds.

The remainder of this paper is organized as follows. The
next section reviews related work in the literature. Section 3
formally models the dynamic real-time fault-tolerant sched-
uling problem for scientific workflows on clouds. Section 4
analyzes the constraints of task allocation and message
transmission. Our FASTER algorithm and its supporting
principles are discussed in Section 5. Section 6 presents the
experiments and performance analysis using synthetic tasks
and tasks from real-world traces. Section 7 concludes this
paper and points out our future work.

2 RELATED WORK

Since occurrences of faults are often unpredictable in com-
puter systems, fault tolerance must be taken into consider-
ation when designing scheduling algorithms [9]. There are
two fundamental and widely recognized techniques that
are able to support dynamic fault-tolerant scheduling in dis-
tributed environment: resubmission and replication [6]. So
far as the resubmission is concerned, it resubmits a task to
the system after a fault occurs in the resource on which the
task was allocated. For example, Plankensteiner and Prodan
suggested a resubmission heuristic to meet soft deadlines
even in the absence of historical failure trace information
and models [10]. Dean and Ghemawat employed the resub-
mission technique when designing the MapReduce in
which if a handle worker—a computational unit—fails, it
will be reset back to its initial state and the tasks allocated
on it will be rescheduled to other workers [11]. Resubmis-
sion normally leads to much late finish time for tasks, and
may cause them to miss their deadlines.

On the other hand, the replication approach makes mul-
tiple copies of a task and allocate each copy to a different
resource to guarantee the successful completion of the task
before its deadline, even in the presence of some resource
failure. Basically, the more copies are allocated, the higher
fault-tolerant capability of the system, which, nonetheless,
may incur large resource consumption. Thereby, the two-
copy replication (also known as the primary-backup model,
or PB in short), has gained its popularity. With the PB
model, a task gets only two copies: primary copy and
backup copy [12].

In order to improve system schedulability while provid-
ing fault tolerance with low overhead, many studies have
concentrated on overlapping techniques when using the PB
model. Currently, there are two overlapping schemes:
backup-backup overlapping (BB overlapping in short, in
which multiple distinct backup copies are allowed to over-
lap with each other on the same computational unit) and
primary-backup overlapping (PB overlapping in short, in
which primary copies are allowed to overlap with other
tasks’ backup copies on the same computational unit). For
example, Ghosh et al. employed a BB overlapping scheme
allowing multiple backup copies overlap in the same time
slot on a single processor; in their design, a deallocation
scheme was used to release the resource reserved for
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backup copies after their corresponding primary copies fin-
ish successfully [13]. The work was extended for multipro-
cessor systems in [14], where processors are divided into
groups to tolerate multiple simultaneous failures. Al-Omari
et al. studied a PB overlapping policy for scheduling real-
time tasks to achieve high schedulability [15]. Some research
works combine both the BB and PB overlapping in schedul-
ing algorithms. Sun et al. investigated a hybrid overlapping
technique and provided a comprehensive redundance anal-
ysis on real-time multiprocessor systems [16]. Qin and Jiang
considered the overlap constraints of the BB overlapping
and PB overlapping for precedence constraint tasks and
proposed an algorithm eFRD to enable a system’s fault tol-
erance and maximize its reliability [5]. Zhu et al. also stud-
ied some fault-tolerant scheduling algorithms using hybrid
overlapping schemes on clusters where QoS, reliability,
adaptivity, timing constraint and resource utilization are
considered [17], [18]. With the two-copy based approaches,
the backup copy can be further implemented in two ways:
passive backup and active backup. Passive backup copy
starts to execute only when a fault occurs in its primary
copy and the backup copy is deallocated once its primary
copy finishes successfully (see examples in [14], [15]).
Although this scheme is able to reduce the resource occupa-
tion, it cannot guarantee that all tasks meet their deadlines
if some deadlines are relatively tight. In contrast, the active
backup copy scheme allows the primary and backup copies
of a task to execute simultaneously (see examples in [19],
[20]). With the active backup copy, the probability of miss-
ing tasks’ deadlines can be reduced, but the resource utiliza-
tion will also be degraded. Therefore, some research made
trade-off between the two schemes [17], [21]. Although the
above methods consider real-time tasks (both dependent
and independent), they do not take the emerging virtualiza-
tion technology into account. They are suitable to some tra-
ditional distributed systems but not effective to the
virtualized cloud computing environment.

Very recently, there appear some studies about scientific
workflow scheduling in clouds. Mao and Humphrey stud-
ied workflow scheduling for systems with heterogeneous
VMs (where each VM may have varied types and prices), to
minimize the execution cost by applying a set of heuristics
such as task merging [22]. Abrishami et al. proposed a static
scheduling algorithm for a single workflow instance on a
cloud. In their approach, all tasks on a partial critical path in
the workflow were allocated to a single machine so as to
minimize the execution cost [23]. Malawski et al. presented
several static and dynamic scheduling algorithms to
enhance the guarantee ratio of workflows while meeting
QoS constraints such as budget and deadline. Also, they
took the variant of tasks’ execution time into account to
enhance the robustness of their methods [24]. Rodriguez
and Buyya suggested a resource provisioning and schedul-
ing strategy for scientific workflows on IaaS cloud, in which
the particle swarm optimization technique was employed
to minimize the overall workflow execution within the tim-
ing constraint [25]. Calheiros et al. proposed a scheduling
algorithm that uses the idle time of provisioned resources
and budget surplus to replicate tasks, which efficiently miti-
gates the effects of performance variation of cloud resources
on soft deadlines for workflows [26]. Unfortunately, all the

work does not take the faults of machines into consideration
while scheduling, thus they are not suitable for solving the
fault tolerance issue on clouds. Zheng investigated the Map-
Reduce fault tolerance in clouds and proposed heuristics to
schedule backups, move backup instances, and select back-
ups upon failure for fast recovery [8]. Plankensteiner and
Prodan studied the fault-tolerant problem in clouds and
proposed a heuristic that combines the task replication and
task resubmission to increase the percentage of workflows
that finish within soft deadlines [10]. The main distinction
between their work and ours is three-fold. First, they do not
consider the virtualization—the most unique feature of
cloud—whereas our work takes VM as a basic computa-
tional unit. Second, elasticity is not considered in their work
while our work allows the cloud scales dynamically based
on the workload. Third, our work takes the overlapping
technique into account to improve the resource utilization,
which was not considered in previous work. In this paper,
we present a novel dynamic fault-tolerant scheduling model
and a scheduling algorithm FASTER for real-time scientific
workflows executing on a virtualized cloud. Specifically, we
apply the PB-based replication and the task overlapping,
and exploit the cloud virtualization and elasticity in our
approach to tolerating host failures.

3 SYSTEM MODEL

In this section, we introduce the task and fault models and
related notation and terminology used in this paper.

3.1 Task Model
A real-time scientific workflow with dependent tasks can be
modelled by a Directed Acyclic Graph (DAG). In this paper,
a DAG is defined as G ¼ fT;Eg, where T ¼ ft1; t2; :::; tng
represents a set of real-time tasks that are assumed to be
non-preemptive, and E is a set of directed edges that repre-
sents dependencies among tasks. An eij ¼ ðti; tjÞ in E indi-
cates that task tj depends on the data or message generated
by task ti for its execution, thus, tj cannot start to execute
until ti finishes and the data or message yielded by ti has
been transferred to the location where tj will execute. Task
ti is a parent of tj and tj is a child of ti. For each task ti 2 T ,
we use P ðtiÞ and CðtiÞ to denote its parents set and children
set, respectively. P ðtiÞ ¼ ; if ti has no parents, and CðtiÞ ¼ ;
if ti has no children. Each workflow1 G has an arrival time
aðGÞ and a deadline dðGÞ. A task ti 2 T , it can be modeled
by ti ¼ ðai; di; siÞ where ai, di, and si represent ti’s arrival
time, deadline, and task size, respectively. Each task’s dead-
line in a workflow can be calculated based on the work-
flow’s deadline [5]. The task size is measured by Million of
Instructions (MI), as used in [26], [27], [28]. With the PB
model, each task ti has two copies: primary copy tPi and
backup copy tBi . They are allocated to two different hosts
for fault tolerance. Given a task ti 2 T , sPi and fP

i represent
the start time and the finish time of tPi , respectively. Like-
wise, sBi and fBi denote the start time and the finish time of
tBi . P ðtPi Þ and P ðtBi Þ represent the parents sets of tPi and tBi ,

1. The terms workflow, job and DAG are used interchangeably
throughout this paper.
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respectively. And CðtPi Þ and CðtBi Þ represent the children
sets of tPi and tBi , respectively.

We consider a virtualized cloud which contains a set
H ¼ fh1; h2; % % %g of unlimited number of physical computing
hosts, to provide the hardware infrastructure for virtualized
resources. The active host set is modeled by Ha with n ele-
ments,Ha & H. For a given host hk, its processing capability
pk is characterized by its CPU performance in Million
Instructions Per Second (MIPS). For each host hk 2 H, it con-
tains a set Vk ¼ fv1k; v2k; % % % vjVkjkg of virtual machines and
each VM vjk 2 Vk has the processing capability pjk that is sub-

ject to
PjVkj

j¼1 pjk ' pk. The ready time of vjk is denoted by rjk.

In a virtualized cloud, one host may have one or multiple
VMs on it and tasks are mapped on VMs instead of on hosts
directly. In this study, we assume heterogeneous VMs; each
VM can have different processing abilities. Therefore, the
execution time of tasks’ copies can be defined in the two
execution time matrices EP and EB, where elements ePijk
and eBijk specify the estimated execution time of task tPi on

vjk and task tBi on vjk, respectively. We use xP
ijk and xB

ijk to

reflect mappings of primary copies and backup copies to
VMs at different hosts; xP

ijk (x
B
ijk) is “1” if task tPi (tBi ) is allo-

cated to VM vjk, otherwise, it is “0”. Also, we use vðtPi Þ and
vðtBi Þ to denote the VMs where tPi and tBi are allocated, hðtPi Þ
and hðtBi Þ the corresponding hosts. Consequently, xP

ijk ¼ 1

means vðtPi Þ ¼ vjk, and xBijk ¼ 1means vðtBi Þ ¼ vjk.

Considering the PB model, we use eXY
ij to denote the edge

between tXi and tYj whereX;Y 2 fP;Bg, i.e., tXi can be either

tPi or tBi , and tYj can be either tPj or tBj . For each edge eXY
ij ,

there is an associated data transfer time ttXY
ij that is the

amount of time needed by tYj from vðtXi Þ. If two tasks tXi and

tYj with dependence are assigned to the same host, the data

transfer time ttXY
ij ¼ 0. Additionally, let dvij denote the

transfer data volume between task ti and tj. Let
tsðhðtXi Þ; hðtYj ÞÞ denote the transfer speed between hðtXi Þ
and hðtYj Þ. Subsequently, we have ttXY

ij ¼ dvij
tsðhðtXi Þ;hðtYj ÞÞ when

hðtXi Þ 6¼ hðtYj Þ. The earliest start time estYj of tYj assigned to

the VM vpq can be calculated as:

estPj ¼
maxðaj; rpqÞjxP

jpq ¼ 1 if P ðtPj Þ ¼ ;;
max

tXi 2P ðtPj Þ
ðfX

i þ ttXP
ij Þ otherwise:

8
><

>:
(1)

estBj ¼
maxðaj; rpqÞjxB

jpq ¼ 1 if P ðtBj Þ ¼ ;;
max

tXi 2P ðtBj Þ
ðfX

i þ ttXB
ij ; sPj Þ otherwise:

8
><

>:
(2)

The latest finish time lftYj of tYj is determined by the
task’s deadline, namely,

lftYj ¼ dj: (3)

The actual start time sYj of task tYj is the time at which the
task is scheduled for execution. Task tYj is able to be placed

between estYj and lftYj if there exist slack time slots that can

accommodate tYj . To make the scheduling accurate and to

achieve real-time guarantee, the completion time of a task
will be sent to the scheduler after it is finished, and the VM
resource information will be maintained and updated by
the scheduler for facilitating the next round of scheduling
decision making process.

One of the goals of our scheduling algorithm is to find suit-
able start time of tasks so that workflows can be processed as
many as possible, hence achieving high overall throughput.

3.2 Fault Model
The fault tolerance problem addressed in this study is simi-
lar to those in [5], [8], [17] and is summarized below.

! Host failures are focused, which can trigger failures
at other levels including VMs and applications.

! Failures on hosts are transient or permanent, and
independent. Namely, a fault occurred on one host
will not affect other hosts.

! Since the probability that two hosts fail simulta-
neously is small, we assume that at most one host
fails at a time. The backup copies can be successfully
finished if their corresponding primary copies are on
the failed host.

! A fault-detection mechanism such as the fail-signal
and acceptance test [13], [14] is available to detect
host failures. New tasks will not be allocated to any
known failed host.

! Reclamation mechanism [13] is obtainable. If the pri-
mary copy is finished successfully, the execution of
the backup copy will be terminated and the resource
reserved for the backup copy is reclaimed to
improve resource utilization.

It should be noted that our fault model can be extended
to tolerate multiple host failures by dividing hosts in a cloud
into multiple groups, in each of which our fault-tolerant
mechanism can be used like that described in [15].

A key issue for the fault-tolerant scheduling using Pri-
mary/Backup model is to address the problem of how the
allocation of tasks including primary copies and backup
copies can guarantee the fault tolerance and what the
impact of message transmission among dependent tasks
may have on fault tolerance. Given that the constraints for
fault tolerance guarantee are complex, in Section 4 we will
provide a formal analysis on these two issues in detail.

4 ANALYSIS OF TASK ALLOCATION AND MESSAGE

TRANSMISSION

In this section, we analyze the scheduling conditions of
tasks’ allocation (including primary copies and backup cop-
ies) and message transmission when the PB model (for fault
tolerance) and overlapping technique (for resource utiliza-
tion efficiency) are applied. To facilitate the analysis, we
firstly introduce some definitions.

Definition 1. Strong Primary Copy: Given a task tPj , t
P
j is a

strong primary copy if it is scheduled in such a way that when
its host hðtPj Þ is operational (without failure), tPj can always be

executed.

Take an example as shown in Fig. 1a where ti is a parent
of tj, namely, tj must receive message or data sent from ti
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be successfully executed because tPj is able to receive a mes-

sage based on our assumption that at most one host fails at
one time instant. Therefore, tPj is a strong primary copy.

Definition 2. Weak Primary Copy: Given a task tPj , t
P
j is a

weak primary copy if it is scheduled in such a way that it may
not be executed even if hðtPj Þ is operational.

An example of weak primary copy is illustrated in
Fig. 1b. Suppose hðtPi Þ, i.e., h1 fails before fPi , then tBi has to
execute. Since tPj cannot receive the message from tBi , t

P
j can-

not execute even though hðtPj Þ, i.e., h3 is operational. There-

fore, tPj is a weak primary copy.

Based on the above definitions, we have the following
proposition.

Proposition 1. 8tj 2 T , if tPj is a strong primary copy, it must
belong one of the three cases: (1) P ðtjÞ ¼ ;; (2) 8ti, ti 2 P ðtjÞ,
hðtPi Þ 6¼ hðtPj Þ, sPj ) fP

i þ ttPPij ^ sPj ) fB
i þ ttBPij ; (3) 8ti,

ti 2 P ðtjÞ, hðtPi Þ ¼ hðtPj Þ, sPj ) fPi þ ttPPij ; otherwise, tPj is a

weak primary copy.

The first case is straightforward from Definition 1. The
second case has been demonstrated in Fig 1a. Here we show
two examples for the third case in Fig. 2, where both pri-
mary copies are allocated to the same host and the backup
copies to different hosts.

From Fig. 2, we can observe that whether tPj can receive a
message from tBi or not, tPj is able to get messages from tPi
and execute successfully since h1 is assumed to be opera-
tional before fP

j .

4.1 Basic Constraints for Dependent Tasks
in a DAG

We now analyze the scheduling constraints between parent
tasks and child tasks when fault tolerance is considered. We
assume ti; tj 2 T , ti 2 P ðtjÞ and tj 2 CðtiÞ .

Lemma 1. For two dependent tasks ti and tj, ti is the parent of tj,
if tPi finishes successfully, tPi must send the resulting message
to tPj and tBj .

Proof. We prove the lemma by contradiction. If tPi
finishes successfully, according to the fault model (see
Section 3.2), its backup tBi should be cancelled and the
message path from the parent task ti to tBj is broken. Sup-

pose that tPi only sends message to tPj . If tPj fails, the

backup tBj cannot execute, which makes the scheduling

invalid. Contradiction happens. Therefore, a message
from tPi must be sent to both tpj and tBj . tu

Lemma 1 specifies the transmission connections from a
parent task. However, for a child task, the connections to its
parents can be varied, depending on the parent type and
their host allocations, which are discussed below.

4.1.1 When tPi is a Strong Primary Copy

If tj is a child of ti, tPj can be either a strong primary copy or
a weak primary copy, and either hðtPi Þ 6¼ hðtPj Þ or

hðtPi Þ ¼ hðtPj Þ. Therefore, there are four cases.
Case 1. tPj is a strong primary copy and hðtPi Þ 6¼ hðtPj Þ.

Fig. 3a shows an example of this case.
From Fig. 3a, we can observe that the edge eBBij is redun-

dant, namely tBj does not require the message from tBi .

According to Lemma 1, the edges ePPij and ePBij are needed. If

the edge eBBij is required, tBi may need to execute. If tBi exe-

cutes, hðtPi Þ must fail before fPi , then other hosts should
work (based on our fault model). Hence tPj should get exe-

cuted. Consequently, the edge eBBij is redundant.

By eliminating the edge eBBij , the start time of tBj can be
shifted to an earlier time, which increases the probability of
finishing tBj before its deadline. The earliest start time of tBj
can be recalculated as follows:

estBj ¼ max sPj ; f
P
i þ ttPBij

n o
: (4)

Case 2. tPj is a weak primary copy and hðtPi Þ 6¼ hðtPj Þ.
Fig. 1b shows an example of this case.

In this case, edges ePPij , ePBij , and eBBij are not redundant.
Otherwise, fault tolerance cannot be achieved. It should be
noted that tBj must have two edges connected with both tPi
and tBi unlike tPj that has only one edge with tPi because it is

Fig. 1. Examples of strong primary copy and weak primary copy. The
dashed lines with arrows represent messages sent from parents to
children.

Fig. 3. Examples of hðtPi Þ 6¼ hðtPj Þ.

Fig. 2. Examples of the third case in Proposition 1.

ZHU ET AL.: FAULT-TOLERANT SCHEDULING FOR REAL-TIME SCIENTIFIC WORKFLOWS WITH ELASTIC RESOURCE PROVISIONING... 5
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which tBj only receives a message from tPi (Only two depen-

dent tasks ti and tj are considered). From Fig. 3b, we can
find that if hðtPi Þ fails before fPi , neither t

P
j nor tBj can exe-

cute. Thus, tBj must connect to tBi , which gives the earliest

start time of tBj as below:

estBj ¼ max sPj ; f
P
i þ ttPBij ; fB

i þ ttBBij

n o
: (5)

From the above analysis in Case 1 and Case 2, we can get
the following propositions.

Proposition 2. Given two tasks ti; tj 2 T , ti 2 P ðtjÞ, tj 2 CðtiÞ,
if tPi is a strong primary copy and hðtPi Þ 6¼ hðtPj Þ: (1) if tPj is a

strong primary copy, then tPj must have edges with tPi and tBi
(i.e., ePPij and eBPij ), and tBj must have an edge with tPi (i.e.,

ePBij ); (2) if tPj is a weak primary copy, then tPj must have an

edge with tPi (i.e., ePPij ), and tBj must have edges with tPi and tBi
(i.e., ePBij and eBBij ).

Proposition 3. Given two tasks ti; tj 2 T , ti 2 P ðtjÞ, tj 2 CðtiÞ,
if tPi is a strong primary copy, tPj is a weak primary copy, and

hðtPi Þ 6¼ hðtPj Þ, then tBj cannot be allocated to hðtPi Þ.

In Proposition 3, it can be easily found that if
hðtPi Þ ¼ hðtBj Þ, when the host fails, tPj also cannot execute

due to the nature of weak primary copy. Therefore, tBj can-

not be allocated to hðtPi Þ.
Case 3. tPj is a strong primary copy and hðtPi Þ ¼ hðtPj Þ.

Fig. 4a shows an example of this case.
In Fig. 4a, the edge eBPij is redundant. Based on Lemma 1,

the edges ePPij and ePBij are needed. If the edge eBPij was

required, both tBi and tPj would have to execute. tBi executes

on condition that hðtPi Þ fails before fP
i , which means that tPj

cannot execute. Therefore, when tBi executes, it only needs
to send results to tBj and edge eBPij is redundant.

Case 4. tPj is a weak primary copy and hðtPi Þ ¼ hðtPj Þ.
Fig. 4b depicts an example of this case.

By Lemma 1, the edges ePPij and ePBij are needed. Besides,
the edge eBB

ij is required when hðtPi Þ fails. The earliest start

time of tBj in Case 3 and Case 4 can be calculated as Eq. (5).

Based on above analysis, we can get the following Propo-
sition 4.

Proposition 4. Given two tasks ti; tj 2 T , ti 2 P ðtjÞ, tj 2 CðtiÞ,
if tPi is a strong primary copy and hðtPi Þ ¼ hðtPj Þ, tPj must

have an edge with tPi (i.e., ePPij ), and tBj must have edges with

tPi and tBi (i.e., ePBij and eBBij ).

4.1.2 When tPi is a Weak Primary Copy

When tPi is a weak primary copy, the constraint analysis
becomes complicated. We have the following three defini-
tions to facilitate the analysis.

Definition 3. Set of Tasks that Cause Weak Primary Copy
Dif%g: a set of tasks that are parents of a task ti and tPi cannot
receive messages from those tasks’ backup copies.

Definition 4. Set of Primary Copies of Tasks that Cause
Weak Primary Copy DP

i f%g: a set of primary copies of tasks
that in the set Df%g.

Definition 5. Set of Hosts Accommodating Primary Copies
of Tasks that Cause Weak Primary Copy HSðDP

i f%gÞ: a set
of hosts accommodating primary copies of tasks that in the set
Dif%g.

Take an example as shown in Fig. 5. ti has three parents ta,
tb, and tc. However, only ta and tc make tPi a weak primary

copy. Thus, Dif%g becomes Difa; cg ¼ fta; tcg. DP
i fa; cg ¼

ftPa ; tPc g.HSðDP
i fa; cgÞ ¼ fhðtPa Þ; hðtPc Þg ¼ fh2; h5g.

Lemma 2. Given a weak primary copy tPi , its corresponding

backup copy tBi cannot be allocated to the host inHSðDP
i f%gÞ.

Proof. By contradiction. Assume tBi is allocated to a host

hk that is in HSðDP
i f%gÞ, tPk 2 DP

i f%g, and hftPk g ¼ hk. If
hk fails before fP

k , tPi cannot receive a message from
tPk , so tBi has to execute. However, tBi has been allo-
cated to hk resulting in failures of both tPi and tBi - a
contradiction. tu

Now, we consider the constraints in terms of task alloca-
tion of ti’s children. Suppose tj 2 CðtiÞ, tPj may be a strong
primary copy or a weak primary copy. In addition,
hðtPi Þ 6¼ hðtPj Þ or hðtPi Þ ¼ hðtPj Þ. Thereby, we analyze the con-

strains under the following four cases.
Case 1. tPj is a strong primary copy and hðtPi Þ 6¼ hðtPj Þ.

Fig. 6 shows an example of this case.

Theorem 1. Given two task ti; tj 2 T , tj 2 CðtiÞ, if tPi is a weak
primary copy, tPj is a strong primary copy, and hðtPi Þ 6¼ hðtPj Þ,
then (1) tPj cannot be allocated to any host in HSðDP

i f%gÞ, or

Fig. 4. Examples of hðtPi Þ ¼ hðtPj Þ.

Fig. 5. An example that Dif%g, DP
i f%g, and HSðDP

i f%gÞ. The solid line that
encircles primary copies represents the set DP

i f%g; the dashed line that

encircles hosts represents the setHSðDP
i f%gÞ.
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i f%gÞ, an edge eBBij
should be added.

Proof. We prove this theorem by contradiction. Suppose tPj
has been allocated to a host hk in HSðDP

i f%gÞ, tPk 2 DP
i f%g,

hftPk g ¼ hk, and there is no edge eBBij . If hk fails before fPk ,

tPi cannot execute, so tBi executes successfully based on
Lemma 2. Since tPj has been allocated to hk, tPj cannot exe-

cute, thus tBi must send a message to tBj . Unfortunately,

there is no edge eBB
ij . A contradiction occurs. tu

Case 2. tPj is a weak primary copy and hðtPi Þ 6¼ hðtPj Þ.
Fig. 7 shows an example of this case.

Case 3. tPj is a strong primary copy and hðtPi Þ ¼ hðtPj Þ.
Case 4. tPj is a weak primary copy and hðtPi Þ ¼ hðtPj Þ.
Fig. 8 shows an example of case 3 and case 4.

Theorem 2. Given two tasks ti; tj 2 T , tj 2 CðtiÞ, and
hftPk g ¼ hk. If tPi is a weak primary copy and tPj is a weak pri-

mary copy, then tBj cannot be allocated to any host in

HSðDP
i f%gÞ.

Proof. By contradiction. Suppose tBj has been allocated to a

host hk in HSðDP
i f%gÞ, tPk 2 DP

i f%g, and hftPk g ¼ hk. If hk

fails before fPk , t
P
i cannot execute, and thus tPj cannot exe-

cute. Based on Lemma 2, tBi executes and tBj must execute

after receiving a message from tBi . However, tBj has been

allocated to hk, tBj also cannot execute. A contradiction

happens. Therefore, tBj cannot be allocated to hk. tu

Theorem 3. Given two tasks ti; tj 2 T , tj 2 CðtiÞ, if tPi is a weak
primary copy, tPj is a strong primary copy, and hðtPi Þ ¼ hðtPj Þ,

then (1) tBj cannot be allocated to any host in HSðDP
i f%gÞ, or

(2) when tBj is allocated to a host in HSðDP
i f%gÞ, an edge eBPij

should be added.

Proof. Suppose tBj is allocated to a host hk in HSðDP
i f%gÞ,

tPk 2 DP
i f%g, hftPk g ¼ hk, and there is no edge eBPij . If hk

fails before fP
k , t

P
i fails to execute, thus tBi can execute

based on Lemma 2. Because no edge eBPij exists, tBj has to

execute. Nevertheless, tBj has been allocated to hk, tj can-

not be finished. A contradiction happens. Hence, tBj can-

not be allocated to hk. tu

4.2 Overlapping Mechanisms
Schedulability can be improved by efficiently utilizing the
cloud resources. Based on our fault model, a majority of
backup copies do not execute. We therefore employ the
overlapping mechanism to schedule tasks.

For the independent tasks in a DAG, the overlapping can
be done based on our previous work [17]. In this paper, we
focus on the overlapping mechanism and constraints for
dependent tasks in a DAG.

Unlike the independent tasks, the backup-backup (BB)
overlapping will be prohibited for dependent tasks (refer to
[5], [8] for more explanation). However, the primary-backup
(PB) overlapping is permitted. Fig. 9 shows two scenarios of
PB overlapping.

Fig. 9 shows two possible overlapping examples. In both
cases, ti and tj can be successfully executed even in the pres-
ence of a host’s failure. In Fig 9a, when tPi finishes success-
fully, tBi will be cancelled, and tPj can execute. Regarding

Fig. 9b, when tPi successfully finishes, tBi is cancelled and tPj
can start to execute, without timing conflict. Also, it is easy
to find that this kind of overlapping can achieve fault
tolerance.

Fig. 6. An example that tPi is a weak primary copy, tPj is a strong primary
copy, and hðtPi Þ 6¼ hðtPj Þ. tPj cannot be allocated to hðtPk Þ if there is no

edge eBBij .

Fig. 7. An example that tPi is a weak primary copy, tPj is a weak primary
copy, and hðtPi Þ 6¼ hðtPj Þ. tBj cannot be allocated to hðtPk Þ.

Fig. 8. An example that tPi is a weak primary copy and hðtPi Þ ¼ hðtPj Þ. tBj
cannot be allocated to hðtPk Þ whether tPj is a strong primary copy or not.

Fig. 9. Examples of PB overlapping.

ZHU ET AL.: FAULT-TOLERANT SCHEDULING FOR REAL-TIME SCIENTIFIC WORKFLOWS WITH ELASTIC RESOURCE PROVISIONING... 7



IEE
E P

ro
ofDefinition 6. Set OHSf%g: a set of hosts on which overlapped

tasks (either primary copies or backup copies) are allocated.

An overlapped task is the task that has its one copy over-
lapped with a copy of another task. For example in Fig. 10,
task ti overlaps with task tj and task tj also overlaps with
task tk. The three tasks are overlapped tasks. The related
OHSf%g is fh1; h2; h4g. We have a constraint of task alloca-
tion imposed by the PB overlapping.

Proposition 5. 8tk 2 T , if tPk overlaps with a backup copy whose
host is in OHSf%g, then tBk cannot allocated to any host in
OHSf%g.

Fig. 10 illustrates an example of Proposition 5. In Fig. 10,
tPk overlaps with tBj , t

B
k cannot be allocated to h1, h2 and h4.

For instance, if tPi fails before fP
i , t

B
i executes, thus tPj cannot

execute, and eventually leading to invoking tBk . However, tBk
cannot execute due to the failure of h1. Similar results will
happen when h2 fails.

4.3 Constraints of VM Migration
VM migration is an efficient approach to consolidating VMs
so as to improve resource utilization and energy efficiency in
clouds. Apart from the constraints (propositions, lemmas and
theorems) discussed above, extra conditions should be satis-
fied in the VMmigration in order to guarantee fault tolerance.

Proposition 6. Assume NHf%g is a host set on which a task copy
(primary copy or backup copy) cannot be allocated, the VM
where the task is sitting on cannot be migrated toNHf%g.

Take an example as shown in Fig. 11 that is derived from
Fig. 6. In Fig. 6, tPj cannot be allocated to h2. Consequently,
v41 cannot be migrated to h2.

Since the message transmission time may be varied after
VMmigration, a task on another host perhaps miss its dead-
line, thus the VM migration must guarantee the timing con-
straint as below.

Proposition 7. Suppose vðtXj Þ is migrated. 8ti 2 P ðtjÞ; tk 2
P ðtiÞ, fX

i þ ttXX0
ij þ eXj > dj, fX0

j þ ttXX0
jk þ eXk > dk. where

ttXX0
ij and ttXX0

jk are new transmission time and fX0
j is new fin-

ish time of tXj .

If the above constraints are followed, VM migration can
be used in our scheduling algorithm while satisfying the
real-time fault-tolerant requirements. Compared with tradi-
tional distributed systems, this technique is expected to
exhibit a considerable advantage in terms of improving
resource utilization.

5 FAULT-TOLERANT SCHEDULING

ALGORITHM * FASTER

Based on the aforementioned analysis, we develop a novel
dynamic fault-tolerant scheduling algorithm for real-time
scientific workflows - FASTER to support virtualized
clouds. FASTER consists of two parts: workflow scheduling
and elastic resource provisioning. It provides high resource
utilization while guaranteeing fault tolerance. When a
workflow arrives, each task in the DAG will be forked into
two copies, i.e., a primary copy and a backup copy. The
workflows will be scheduled based on the First Come First
Service policy, and the primary copy of a task will be sched-
uled before its backup copy. Different from the traditional
work where as long as a task cannot be allocated success-
fully, the workflow will be rejected, our approach relaxes
this strict restriction based on the fact that one single task’s
missing deadline does not mean the workflow will miss its
deadline. If a parent task cannot be finish before its dead-
line, our FASTER strives to make its children tasks finished
before their deadlines. If it is not possible, the workflow will
then be rejected. Once a workflow is rejected, all the
reserved resources by tasks in this DAG will be reclaimed.

Algorithm 1.Workflow Scheduling of FASTER

1 Estimate the deadline of each task based on the deadline of
the workflow G;

2 missDeadline ;;
3 while !all the task in G have been scheduled do
4 foreach P ðtiÞ ¼ ; k P ðtiÞ have been scheduled do
5 success schedulingPrimary(tPi );
6 success schedulingBackup(tBi );
7 if !success then
8 if there exits a task tj, tj 2 P ðtiÞ &

tj 2 missDeadline then
9 Reclaim the reserved resources;
10 Reject the workflow G;
11 else
12 missDeadline missDeadline [ ftig;
13 Re-calculate the possible earliest start time of

CðtiÞ;

5.1 Workflow Scheduling
When a workflow arrives at the system, its tasks will be
scheduled according to their precedence constraints. Algo-
rithm 1 gives the pseudocode for fault-tolerant workflow
scheduling.

Fig. 10. An example of Proposition 5. tBk cannot be allocated to h1, h2,
and h4.

Fig. 11. An example of VM migration constraint. v41 cannot be migrated
h2 because tPj cannot be allocated h2.
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Line 1 estimates the deadline of each task based on the
deadline of the workflow. For a task that has no parents or
its parents have been scheduled, Algorithm 1 attempts to
first schedule its primary copy then its backup copy. The
task is scheduled successfully only when both its primary
copy and its backup copy are scheduled to be finished
before its deadline. If one task misses its deadline, the sys-
tem will bring its children’s start time as early as possible
(AEAP) (see Line 13) to prevent the child from missing its
deadline. If two consecutive tasks miss their deadlines, the
algorithm will reject the workflow and reclaim the reserved
resources (see Lines 8-10).

Considering the fact that task scheduling in clouds is an
NP-complete problem, we use a heuristic method to sched-
ule primary copies and backup copies of tasks. In this work,
we schedule tasks by inserting them into appropriate time
slots based on our scheduling objectives. The following sec-
tions details the method of task insertion, primary copy
scheduling and backup copy scheduling.

5.1.1 Task Backward Shifting

In order to make full use of the idle resources and execute
new tasks as early as possible, it is desired that a new task is
inserted into the idle time slot between two scheduled tasks.
However, the idle time slot may be smaller than the execu-
tion time of new tasks, making use of the idle time not easy.
Here we propose a task backward shifting method to
improve the resource utilization, as explained below.

Definition 7. Backward Time Slack: indicates how long the
start time of a task can be shifted backward without any impact
on the start time and the status (i.e., strong primary copy or
weak primary copy) of the subsequent tasks.

If a primary copy tPi will be shifted backward, the back-
ward time slack btsPi of tPi is calculated as follows:

btsPi ¼ min min
tj2CðtiÞ

ðsPj * ttPPij * fPi Þ; sx * fPi

( )

; (6)

where sx denotes the start time of task tx that is scheduled
behind of tPi on the same VM, i.e., vðtPi Þ ¼ vðtxÞ. The first
item in the right side of Eq. (6) guarantees the children of ti
can start on time and the second item ensures no delay of
the following tasks scheduled on the same VM.

If a backup copy tBi will be shifted backward, the back-
ward time slack can be calculated as follows:

btsBi ¼ min min
tj2CðtiÞ

cj; sx * fB
i

( )
;

cj ¼
sPj * ttBPij * fB

i ; if fB
i þ ttBPij ' sPj

sBj * ttBBij * fB
i ; if fB

i þ ttBPij > sPj
;

( (7)

where the item mintj2CðtiÞcj in Eq. (7) ensure that the back-
ward shifting will not affect the start time and status of the
children of task ti. The backward shifting of tBi may put the
primary copy of its child, tj, into two different types. The
first case fBi þ ttBP

ij ' sPj in Eq. (7) is when tPj is made as a

strong primary copy. As a result, btsBi should not be larger
than sPj * ttBPij * fBi . The second case fB

i þ ttBPij > sPj is

when tPj is made as the weak primary copy; In this case, it is

not necessary to require tBi to finish before sPj . s
B
j * ttBBij *

fBi insures that tBj can receive the result data of tBi before its

start time.
By employing the backward shifting method, the system

is able to reduce the actual system idle time and effectively
increasing system resource utilization and performance.

5.1.2 Primary Copy Scheduling

In order to finish a task before its deadline, our algorithm
strives to finish a primary copy as early as possible. Besides,
to avoid that one host fault causes many primary copy fail-
ures, we attempt to distribute primary copies over all the
active hosts so that each host has a similar number of pri-
mary task copies. The even distribution also increases the
possibility of PB overlapping and hence enhances the
resource utilization. The pseudocode for scheduling pri-
mary copies is detailed in Algorithm 2.

Algorithm 2. Function schedulingPrimary(tPi )

1 SortHa in an increasing order by the count of scheduled pri-
mary copies;

2 Hcandidate  top a% hosts inHa;
3 eft þ1; v NULL;
4 while !all hosts inHa have been scanned do
5 foreach hk inHcandidate do
6 if hk satisfies tPi ’s scheduling constraints of Theorem

1 and Proposition 2 then
7 foreach vkl in hk:VmList do
8 Calculate the earliest start time estPi based on

Eq. (1), Lemma 1, and Theorem 3;
9 eftPi  estPi þ ePikl;
10 if eftPi < eft then
11 eft eftPi ;
12 v vkl;
13 if eft > di then
14 Hcandidate  next top a% hosts inHa;
15 else
16 break;
17 if eft > di then
18 if scale Up Resources(tPi ) then
19 return true;
20 else
21 Allocate tPi to vkl;
22 Update the Tshrink and Tcancel of vkl;
23 return false;
24 else
25 Allocate tPi to vkl;
26 Update the Tshrink and Tcancel of vkl;
27 return true;

Algorithm 2 first chooses the top a% hosts with fewer pri-
mary copies as the candidate hosts in Lines 1-2. Then, the
VMs on these hosts are searched and the one that offers the
earliest finish time for the primary copy is selected (see Lines
5-12). If no VM on the candidate hosts can finish the primary
copy before its deadline, the next top a% hosts are chosen for
the next round search (see Lines 13-16). By thismethod, a new
primary copy is likely mapped to the hosts with fewer pri-
mary copies; hence overall primary copies can be evenly dis-
tributed among all the active hosts. If no existing VMs can

ZHU ET AL.: FAULT-TOLERANT SCHEDULING FOR REAL-TIME SCIENTIFIC WORKFLOWS WITH ELASTIC RESOURCE PROVISIONING... 9
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accommodate the primary copy, the resource scaling-up
mechanism will be performed in Line 18. If the scaling is not
successful, Lines 21-23 attempt to schedule it on one VM and
return the false value indicating that the primary copy cannot
finish before its deadline. Note that although it misses dead-
line, our algorithm strives to bring forward its children’s fin-
ish time to guarantee the DAG’s deadline.

5.1.3 Backup Copy Scheduling

According to the analysis in Section 4, it can be found that a
weak primary copy incurs more scheduling constraints than
a strong primary copy. Proposition 1 also reveals that the
main reason for a primary copy to become weak is that one
backup copy of its parents cannot send results to the primary
copy before its start time. As a result, differing to the widely
used As Late As Possible strategy in the previous works [5],
[17], our algorithm tries to finish a backup copy as early as
possible to reduce the possibility of its children becoming
weak primary copies. The algorithm also tries to aggregate
backup copies to a smaller number of hosts so that when the
system is reliable and few primary copies fail, most backup
copies are cancelled, and the related hosts that mainly
accommodate backup copies can be switched off. Algorithm
3 is the pseudocode for scheduling backup copies.

Algorithm 3. Function schedulingBackup(tBi )

1 Hcandidate  the hosts on which no primaries are scheduled;
2 Hprimary  Sort Ha *Hcandidate in an increasing order by the

count of scheduled primaries;
3 eft þ1; v NULL;
4 while !all hosts inHprimary have been scanned do
5 foreach hk inHcandidate do
6 if hk satisfies tBi ’s scheduling constraints of Theorems 2,

3, Lemma 2, and Propositions 3, 5 then
7 foreach vkl in hk:VmList do
8 Calculate the earliest start time estBi based

on Eqs. (2), (4), (5), Propositions 2, 4, and
Theorems 1, 3;

9 eftBi  estBi þ eBikl;
10 if eftBi < eft then
11 eft eftPi ;
12 v vkl;
13 if eft > di then
14 Hcandidate  next top a% hosts inHprimary;
15 else
16 break;
17 if eft > di then
18 if scale Up Resources(tBi ) then
19 return true;
20 else
21 Allocate tBi to vkl;
22 Update the Tshrink and Tcancel of vkl;
23 return false;
24 else
25 Allocate tBi to vkl;
26 Update the Tshrink and Tcancel of vkl;
27 return true;

Following the steps similar to Algorithm 2, Algorithm 3
first chooses the candidate hosts with more backup copies
in Lines 1-2. Then, the VMs on these hosts are scanned to
find the one on which the finish time of backup copy is the

earliest (see Lines 5-12). The resource scaling-up mechanism
will function in line 18 to adjust the scale of resources when
no existing VMs can accommodate the backup copy. If the
resource scaling does not work, Lines 21-23 attempt to
schedule it on one VM and return the false value indicating
that the backup copy is not scheduled successfully.

5.2 Elastic Resource Provisioning
Elasticity is one of the most important characteristics of
clouds. In this study, we incorporate it into our scheduling
algorithm FASTER. The FASTER will adaptively add
resources to accommodate tasks when the system is under a
heavy workload, and decreases resources when the work-
load becomes light to enhance the resource utilization while
guaranteeing fault tolerance.

5.2.1 Resource Scaling-Up

If a task’s copy cannot be allocated to existing VMs, the
resource scaling up mechanism will increase the processing
capability of VMs or create a new VM to accommodate the
new task. For a task ti, the required processing capability pr
should satisfy the following formula:

esti þ si=pr þ delay < di; (8)

where esti is the earliest start time of task ti which can be cal-
culated by Eqs. (1) and (2), and delay represents the time
delay caused by the resource adjustment. If there is no VM
satisfying the above requirement, a new VM, hence more
resources, should be used. Scaling up can be done in two
ways: the vertical scaling-up and the horizontal scaling-up.

The horizontal scaling-up creates a new VM with the
required processing capability, and attempts to allocate it
an existing active host. If the attempt fails, a sleep host will
be turned on to accommodate the new VM. The horizontal
scaling-up is easy to implement but suffers from a large
delay from the VM creation and the host activation, which
is unacceptable if tasks have tight deadlines. The vertical
scaling-up approach temporarily increases the processing
capability of an existing VM for the new task. In fact, with
the virtualization technology, more and more real-world
mainstream cloud platforms, such as OpenStack and Cloud-
Stack, support the live adjustment of VMs’ processing capa-
bilities, which is done with only a small, or even negligible
performance overhead. The pseudocode for the resource
scaling up mechanism is presented in Algorithm 4.

In Algorithm 4, the vertical resource scaling-up is first
used in the mechanism. The active hosts are ordered by
their remaining capacities. Lines 4-6 obtain the possible ear-
liest start time for ti on each of available VMs. Line 7 checks
whether the remaining capacity of the host is sufficient for
the VM to expand to the required processing capacity. If the
vertical scaling up approach is feasible, Lines 8-9 map the
task to the expanded VM, otherwise, the horizontal scaling
up approach is called to create a new VM (see Lines 12-24).
If it fails to create a suitable VM for the task to finish before
its deadline, the algorithm will return false (see Line 24).

5.2.2 Resource Scaling-Down

To improve resource utilization, FASTER also incorporates
a resource scaling-down scheme. Similar to scaling-up, the
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scheme consists of two scaling techniques: vertical scaling-
down and horizontal scaling-down. The vertical scaling
tries to shrink the processing capacity of an idle VM, and
the horizontal scaling attempts to remove an idle VM.
When a VM is idle for a relatively long time, the system first
tries to shrink its processing capacity, and if the VM keeps
idle for a certain time, it will be removed to improve
resource utilization.

Algorithm 4. Function scaleUpResources(tXi )

1 SortHa in a decreasing order by the remaining MIPS;
2 foreach hk inHa do
3 if hk satisfies scheduling constraints for tXi then
4 foreach vkl in hk do
5 Calculate the earliest start time estXi ;
6 Calculate the required processing capacity pr based

on Eq. (8);
7 if pr * vkl:MIPS ' hk:MIPS then
8 Allocate tXi to vkl;
9 Update the Tshrink and Tcancel of vkl;
10 Expand vkl:MIPS to pr during the execution time

of tXi ;
11 Return true;
12 Select a newVmwhose processing capacity satisfies Eq. (8);
13 foreach hk inHa do
14 if hk:MIPS ) newVM:MIPS & hk satisfies scheduling con-

straints for tXi then
15 Create newVM on hk;
16 Allocate tXi to newVM ;
17 Return true;
18 Turn on a host hnew inH *Ha;
19 if hnew:MIPS ) newVM:MIPS then
20 Create newVm on hnew;
21 Allocate tXi to newVM ;
22 return true;
23 else
24 return false;

By introducing the vertical scaling-down approach, the
processing capacity of idle VMs can be shrunk to the lowest
level to reduce the resource waste, while when the system
workload becomes heavy, the processing capacity of the
shrunk VMs can expand in a relatively short time to accom-
modate the new tasks. Consequently, the system can adapt
to the workload in a more flexible manner, and avoid
unnecessarily creating or canceling VMs, especially when
the submitted request fluctuates very frequently.

For each VM, we use Tshrink and Tcancel to respectively
denote when the VM is expected to be shrunk and can-

celled. We set Tidle and T
0
idle for the VM shrinking time (to

the VM’s lowest processing capability) and VM canceling
time. Tshrink and Tcancel can be calculated as follows,

! When a primary tPi is scheduled on the VM,
Tshrink ¼ maxffPi þ Tidle; Tshrinkg, Tcancel ¼ maxffP

i þ
T
0
idle; Tcancelg;

! When a backup tBi is scheduled on the VM,
Tshrink ¼ maxffPi þ Tidle; Tshrinkg, Tcancel ¼ maxffP

i þ
T
0
idle; Tcancelg; if tBi is due to execute because of host’s

fault, Tshrink ¼ maxffB
i þ Tidle; Tshrinkg, Tcancel ¼

maxffB
i þ T

0
idle; Tcancelg.

Based on the above calculation method, the VM will be
shrunk or cancelled if there is no task running on it for a
period of Tidle or T

0
idle. Furthermore, because backup copies

may be reclaimed if primary copies finish successfully,
backup copies can be scheduled to finish or even start later
than the time instant Tshrink and Tcancel, by which the system
can effectively utilize the idle resources. Algorithm 5 shows
the pseudocode for the resource scaling-down mechanism.
And it runs independently in the scheduler by a thread
without any calling from other algorithms.

Algorithm 5. Function scaleDownResources()

1 while true do
2 foreach VM vkl in the cloud system do
3 if it reaches the time vkl:Tshrink then
4 Shrink the processing capacity of vkl to plowest;
5 if it reaches the time vkl:Tcancel then
6 Remove vkl from hk and cancel it;
7 if hk:utilization ' Ulow then
8 offTag true;
9 foreach vkl in hk do
10 migTag false;
11 foreach hi inHa except hk do
12 if hi can accommodate vkl & the migration

satisfies the constraints of Propositions 3, 5,
6, 7, Lemma 2, and Theorems 1, 2, 3 then

13 migTag true;
14 break;
15 ifmigTag ¼¼ false then
16 offTag false;
17 break;
18 if offTag then
19 Migrate VMs in hk to destination hosts;
20 Switch hk to sleep status and remove it

fromHa;
21 else
22 Give up the migration operation;

When a VM reaches the time instant Tshrink, the processing
capacity of this VM will be shrunk to the lowest level Plowest

to reduce the waste of resources (see Line 3). Further, if a VM
reaches the time instant Tcancel, the VM will be cancelled.
After that, if the host’s capacity utilization falls below the
lower threshold Ulow, the system tries to consolidate the VMs
on it to other hosts (see Lines 8-16), and then switches off the
host to further enhance resource utilization (see Line 19).

6 PERFORMANCE STUDY

To demonstrate the performance improvements gained
by FASTER, a series of experiments on both a simulated
cloud platform and a real virtualized cluster are
conducted. We compare FASTER with five baseline
algorithms: Non-Overlapping-FASTER (NOFASTER),
Non-VM-Consolidation-FASTER (NCFASTER), Non-
Vertical-Scaling-Up-FASTER (NVUFASTER), Non-Vertical-
Scaling-Down-FASTER (NVDFASTER), and Non-Back-
ward-Shifting-FASTER (NSFASTER). We also compare
them with a classical fault-tolerant scheduling algorithm
for dependent tasks, eFRD [5]. The main differences of
these algorithms to FASTER and their uses are briefly
described below.

ZHU ET AL.: FAULT-TOLERANT SCHEDULING FOR REAL-TIME SCIENTIFIC WORKFLOWS WITH ELASTIC RESOURCE PROVISIONING... 11
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! NOFASTER: no task overlapping. By comparing
with NOFASTER, the effectiveness of the over-
lapping technique can be tested;

! NCFASTER: no resource consolidation. It can be
used to test the improvement of resource utiliza-
tion by using the scaling-down mechanism;

! NVUFASTER: no vertical scaling up. By compar-
ing with NVUFASTER, the strength of vertical
scaling-up can be evaluated;

! NVDFASTER: no vertical scaling down. Select-
ing NVDFASTER as a baseline algorithm is to dem-
onstrate the performance improvements achieved by
vertical scaling-down technique;

! NSFASTER: no backward shifting. It can be used to
evaluate the effectiveness of backward shifting policy;

! eFRD: A classical fault-tolerant scheduling algorithm
for dependent tasks [5]. It uses as early as possible
strategy for both the primary copy scheduling and
backup copy scheduling. However, it has no ability
to dynamically adjust resources. To make the com-
parison fair, we slightly modify eFRD in such a way
that it does not consider the reliability cost.

The performance metrics by which we evaluate the sys-
tem performance are as follows:

! Guarantee Ratio (GR): the percentage of workflows
(DAGs) that are guaranteed to finish successfully
among all submitted workflows;

! Host Active Time (HAT): the total active time of all
hosts in cloud, reflecting the resource consumption
of the system;

! Ratio of Task time over Hosts time (RTH): the ratio of
the total tasks’ execution time over the total active
time of hosts, reflecting the resource utilization of
the system.

6.1 Experiments using Random Synthetic
Workflows

Simulation for repeatability is used as the part of our experi-
ments. In the simulations, the CloudSim toolkit [26]—a
widely used cloud environment simulator in both industry
and academia—is chosen as a simulation platform. We add
some new settings to conduct our experiments. The detailed
setting and parameters are given as follows:

Hosts are modeled with the processing capacity of 1,000,
1,500, 2,000 or 3,000 MIPS, and connected to 1 Gbps Ether-
net. Four types of VMs with the processing power equiva-
lent to 250, 500, 700 and 1,000 MIPS are considered. The

time required for turning on a host and creating a VM is set
as 90 and 15 s, respectively. Workflow arrival times follow
the Poisson distribution with the average interval time 1=!
being uniformly distributed in the range ½1! ;

1
!þ2,. The dead-

line of a workflow (DAG) is given as di ¼ ai þ a- emin
i ,

where emin
i is the possible minimal execution time of this

DAG, and a subjects to the uniform distribution, Uð1:5; 2:5Þ.
Each DAG is assumed to have random precedence
constraints that are generated by the following steps similar
to [5]:

! Choosing the number of tasks, N , for a workflow
and the number of messages, M, that are passed
between the N tasks. In our experiments, we set
N ¼ 200, andM ¼ u -N ;

! Generating a size for each task in the DAG; the ran-
dom task size is uniformly distributed in the range
½1- 105; 2- 105,MI;

! Randomly selecting a sender and a receiver for each
message based on the condition that such selection
does not generate communication loop in the work-
flow. The transfer data volume of this message is
uniformly distributed in the range [10,100] MB;

! A deadline for each task is calculated according to
the DAG deadline.

Table 1 gives the parameters and their values.

6.1.1 Performance Impact of DAG Count

In this section, we present a group of experiments to com-
pare performance of the seven algorithms with varied num-
ber of workflows (i.e., DAG count).

It can be observed from Fig. 12a that all the algorithms
except eFRD basically maintain stable GRs for different
DAG counts, which can be attributed to the fact that these
six algorithms consider the infinite resources in the cloud,
thus when DAG count increases, new hosts will be dynami-
cally available for more DAGs. While eFRD assumes fixed
available hosts and has no ability to adjust resource, so with

TABLE 1
Parameters of Workflows

Parameter Value(Fixed)*(Min, Max, Step)

DAG count (50)*(50, 300, 50)
Task sizeð-105 MIÞ ([1, 2])
Interval time 1=! (2)*(0, 10, 2)
a (2)*(1.5, 2.5, 0.5)
u (4)*(2, 7, 1)

Fig. 12. Performance impact of DAG count.
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spondingly. Since no overlapping technique is employed by
NOFASTER, more resources are occupied by backup copies.
Consequently, the GR of NOFASTER is lower than that of
FASTER. Also, NSFASTER has a lower GR than FASTER, it
is because NSFASTER does not use the backward time slack
method, resulting in allocation failures for some tasks in a
DAG. Although NCFASTER has the high GR similar to
FASTER, it uses more resources due to lack of resource con-
solidation, as can be seen from Fig 12b—NCFASTER has
the highest Host Active Time (HAT ).

From Fig. 12b, it can be seen that FASTER maintains the
lowest HAT among all algorithms except eFRD, which indi-
cates those integrated policies in FASTER can work well to
improve the resource utilization. In addition, because there is
no consolidation mechanism employed in NCFASTER, some
resources are in idle state, resulting in the highest resource
consumption; this consumption also increases rapidly with
the DAG count. The second big resource consumer is
VNUFASTER. This is because NVUFASTER does not effec-
tively reuse existing active VMs (namely, vertical scaling-up)
for new tasks; it can only accommodate more new tasks by
adding new VMs (horizontal scaling), which inevitably
increases the hosts active time. In contrast, our vertical scal-
ing-up mechanism can effectively reduce the resource usage.
The high HAT from NSFASTER also demonstrates the effec-
tiveness of the backward shifting techniques used in FASTER.

It can be seen from Fig. 12c that the resource utilization
increases with the DAG count for all algorithms except for
eFRD. For eFRD, its RTH increases first and then decreases,
which can be explained below. With eFRD, the system
resource is assumed fixed. The resource is sufficient enough
to accommodate most DAGs for small number of workflows
(in the range from 50 to 100). The task running time
increases with the DAG count, hence the resource utiliza-
tion increases. But the system becomes saturated when
DAG count is further increased (DAG count > 100), mak-
ing the host running longer and therefore lowing the
resource utilization. We can also observe from Fig. 12c that
among other algorithms NCFASTER has the lowest RTH
due to lack of resource consolidation. FASTER, on the other
hand, incorporates the mechanism to consolidate resources
and hence achieves the highest RTH.

6.1.2 Performance Impact of Arrival Rate

In this section, we inspect the impact of the workflow
arrival rate on the scheduling performance. The related
experimental results are given in Fig. 13.

From Fig. 13a, we can see that eFRD has a lower GR than
other FASTER related algorithms since those algorithms can
dynamically scale up system with extra resources for more
tasks. It can also be seen that the GRs from those algorithms
increase with the intervalTime. It is because the smaller
intervalTime means the heavier system workload, leading
to more VMs being created. Since the creation of VMs
causes the delay which may result in some workflows miss-
ing their deadlines. With the increase of the intervalTime,
the need to create new VMs is reduced, hence more tasks
can be finished within the deadline. In addition, similar to
Figs. 12a, Fig. 13a shows that FASTER and NCFASTER have
higher GRs than other algorithms—for the same reason as
given for Fig. 12a.

From Fig. 13b, we can see that among all FASTER related
algorithms, FASTER always keeps the resource consump-
tion (HAT ) lower than other algorithms when the
intervalTime varies. The worst performer is NCFASTER
and itsHAT becomes more and more significant than others
when the intervalTime increases. Additionally, when
intervalTime is 0, namely, a burst of DAGs surge into the
system, FASTER can effectively retain the resource over-
head (through overlapping of backup copies), achieving a
much lowerHAT than NOFASTER.

Similarly, from Fig. 13c we can observe the highest per-
formance of FASTER in terms of resource utilization (RTH)
under different task arrival rates. In contrast, the perform-
ances of NCFASTER and eFRD are quite poor, which is
understandable since NCFASTER does not consider
resource consolidation and eFRD cannot dynamically adjust
the resource usage; when the task arrival intervalTime
increases, more resources become idle, hence the cloud
resource utilization is decreased.

6.1.3 Performance Impact of Deadline

To investigate the impact of deadline on the performance,
we ran the experiments with the deadline parameter a vary-
ing from 1.5 to 2.5. High a values indicate the tighter dead-
lines. The related results are shown in Fig. 14.

As can be seen from Fig. 14a, when the deadline is very
tight (i.e., a ¼ 1:5), there is not enough time for resources to
scale up and most DAGs cannot be processed, hence GRs
are quite low for all FASTER related algorithms, particularly
for NVUFASTER where the vertical scaling-up is not imple-
mented. The vertical scaling-up takes less time than hori-
zontal scaling and thus can response to the system
workload quickly. Lacking the vertical scaling-up mecha-
nism results in low schedulability, especially in a tight

Fig. 13. Performance impact of arrival rate.
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becomes loose), the GRs of all algorithms are improved.
Fig. 14b shows that with the increase of a, the HATs

of all algorithms increase. This is because more DAGs
are accepted, requiring more host active time to finish
these DAGs. Notably, the increase speed of HAT by
NCFASTER is obviously faster than others, which indi-
cates that NCFASTER cannot sufficiently utilize active
host resources without the consolidation mechanism and
needs more hosts to finish DAGs compared with other
algorithms. Moreover, the HAT of NVDFASTER is larger
than those of others except NCFASTER. This is because
NCFASTER does not use VM vertical scaling and the
cloud system cannot be scaled down immediately, result-
ing in more idle resources.

The advantage of FASTER is again shown in Fig. 14c.
FASTER has the highest resource utilization. When dead-
line is tight (e.g., a ¼ 1:5), NCFASTER and NVDFASTER
also have higher RTHs. This can be explained that the
resource scale-down will hardly occur when deadline is
very tight, thus lacking VM consolidation mechanism
and VM vertical scaling-down mechanism will not
greatly affect the cloud resource utilization. However,
when deadline becomes looser, the RTHs of NCFASTER
and NVDFASTER are obviously inferior to others.
Regarding eFRD, its RTH is better when deadline is tight
because almost all the resources are used to enhance the
resource utilization whereas when deadline becomes
looser, some resources are idle resulting in decreased
RTH.

6.1.4 Performance Impact of Task Dependence

In this section, we examine the impact of task dependent
degree in DAGs on the performance. To measure the

dependence between tasks in a workflow, we use the num-
ber of messages that are passed between tasks. We set the
message number M ¼ u -N . The bigger the u is, the more
message connections between tasks, hence the higher the
task dependence. Parameter u varies from 2 to 7. Fig. 15
shows the experimental results.

From Fig. 15a, we can observe that with the increase of u,
the GRs of all the algorithms slightly decrease. This is
because the increased task dependency degrades the system
schedulability. It can also be seen that similar to other
experiments (Figs 12a and 13a) FASTER and NCFASTER
offer the highest GRs.

Fig. 15b shows that NCFASTER and NSFASTER have
higher HATs than other algorithms, which is especially evi-
dent for small u (i.e., low task dependence). With the small
task dependence, more tasks in a DAG can be executed in
parallel and can be finished earlier; hence some hosts can be
freed and shut down earlier. However, such an advantage
is neither exploited by NCFASTER (no resource consolida-
tion mechanism) nor effectively used by NSFASTER (no
backward shifting scheme). Hence they consume more
resources. When u increases, the tasks that can be executed
in parallel decrease, thus the difference of HATs between
them (NCFASTER and NSFASTER) and other algorithms
becomes smaller.

It can be observed from Fig. 15c that FASTER maintains
the highest RTH. With the increase of u, the RTHs of all the
algorithms except NSFASTER decrease. This is because
high task dependence increases execution constraints, mak-
ing less tasks available to VMs even if some of them are
idle, hence reducing resource utilization. When the value of
u becomes larger, the tasks that can be executed in parallel
decrease, hence less resource will be wasted leading to
lower RTH.

Fig. 14. Performance impact of deadline.

Fig. 15. Performance impact of task dependence.
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6.2 Experiments Using Trace-Based Workflows
In order to evaluate the feasibility of our proposed algorithm
to the real applications, we further test it based on the DAG
models using five real applications: LIGO, Montage, Cyber-
Shake, Epegenomics and SIPHT. For each application, we use
theWorkflowGenerator [29] to create jobs with the size of 50,
100, 200 and 500 tasks. For each job size, 20 different DAG
instances are generated based on the real workflow traces [4].
Hence, the total collection of synthetic DAGs contains five
kinds of applications, four job sizes for each application, and
20DAG instances,making a total of 400 synthetic DAGs.

In this trace-based experiment, 200 DAGs are submitted
to the cloud system at the rate following Poisson distribu-
tion with the average interval time 4. The calculation
method of the DAG’s deadline is similar to that for random
synthetic workflows discussed in the above section. To
reflect the diversity of DAGs in clouds, the DAG is selected
randomly among the 400-DAG set generated.

From the results listed in Table 2, it can be found that
FASTER performs better than the others. Compared with
the guarantee ratios of the random synthetic workflows in
the previous section, those in the trace-based experiment
are much better, especially FASTER and NCFASTER by
which nearly all the DAGs can be scheduled successfully.
This is because the precedence constraints of real applica-
tions are much lower than those of random synthetic work-
flows. There are a large number of independent tasks in the
real applications that can be processed in parallel with new
VMs. For eFRD, its guarantee ratio is lower than that of ran-
dom synthetic workflows due to the lack of the resource
adjustment mechanism in eFRD. The large number of paral-
lel tasks cannot be finished timely by limited computing
resources. This result from the real application again dem-
onstrates that the resource adjustment mechanism is essen-
tial for schedulability.

It can also be seen that the HATs in this group of experi-
ment are larger than those in the previous experiments.
This is due to the fact that the average execution time of
tasks in real applications is larger than that in random syn-
thetic workflows.

From Table 2, we can see that FASTER has high resource
utilization in the trace-based experiment. It outperforms
NCFASTER and NSFASTER by up to 46.15 and 26.67 per-
cent. FASTER achieves much higher RTH from the trace-
based experiment than from the synthetic-workflow based
experiment, which also can be attributed to the large num-
bers of parallel tasks in real applications. These parallel
tasks cause many new VMs to be created in the system.
When they are finished, the VMs become idle. However, for
NCFASTER, the idle hosts cannot be switched off immedi-
ately, wasting of resources. For NSFASTER, the differences
of the finish times between parallel tasks are more evident
when the count of parallel tasks increases. Without the

backward shifting technology, the VMs that finish tasks ear-
lier will be idle and wait for other tasks, and as a result the
computing resources are wasted. From the above results in
the trace-based experiments, it can be concluded that
FASTER can effectively improve schedulability and
resource utilization for real applications.

7 CONCLUSIONS AND FUTURE WORK

This paper investigates the fault-tolerant scheduling prob-
lem for real-time scientific workflows in virtualized clouds.
The scheduling goal is to improve the system’s schedulabil-
ity and cloud resource utilization while tolerating hardware
failures. The fault-tolerant capability of our FASTER algo-
rithm is realized through an extended primary-backup
model that integrates the virtualization and elasticity—char-
acteristics of clouds. We thoroughly studied the constraints
of task allocation and message transmission for PB based
workflow model in a virtualized cloud. For high system
resource utilization, the elastic resource provisioning, one
of the most important features of clouds, is considered and
instrumented with overlapping and VM migration techni-
ques. In addition, a backward shifting method is used to
allow FASTER to make full use of the idle resources. More
importantly, the vertical and horizontal scaling-up strate-
gies are both employed in FASTER for fast resource provi-
sioning when workflows burst into a cloud in a very short
period. Furthermore, FASTER adopts a vertical scaling-
down approach to avoiding the ineffective resource scaling
when the submitted request fluctuates very frequently.

To evaluate the performance of FASTER, we conduct
extensive experiments with random synthetic workloads
and real workflows to compare it with six baseline algo-
rithms: NOFASTER, NCFASTER, NVUFASTER,
NVDFASTER, NSFASTER, and eFRD. The experimental
results show that FASTER provides good performance in
both types of workloads. Based on the real-world trace used
in our experiments, FASTER outperforms eFRD by 239.66
percent in terms of guarantee ratio, and by 63.79 percent in
terms of resource utilization.

For future study, we will extend our fault-tolerant sched-
uling model to tolerate multiple hosts’ failure. Communica-
tion faults will also be considered. To improve the
scheduling accuracy, we will develop a prediction model
with feedback for DAG execution time.
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TABLE 2
Experimental Results Using Trace-Based Workflows

Metr. Alg. FASTER NOFASTER NCFASTER NVUFASTER NVDFASTER NSFASTER eFRD

GR (%) 98.5% 96.0% 99.0% 96.5% 97.5% 95.0% 29.0%
HAT (-106s) 3.02 3.34 4.26 3.59 3.61 3.56 1.45
RTH 0.95 0.85 0.65 0.77 0.76 0.75 0.58
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