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Abstract—Utilizing graph analysis models and algorithms to
exploit complex interactions over a network of entities is emerg-
ing as an attractive network analytic technology. In this paper,
we show that traditional column or row-based trace analysis may
not be effective in deriving deep insights hidden in the stor-
age traces collected over complex storage applications, such as
complex spatial and temporal patterns, hotspots and their move-
ment patterns. We propose a novel graph analytics framework,
GraphLens, for mining and analyzing real world storage traces
with three unique features. First, we model storage traces as
heterogeneous trace graphs in order to capture multiple com-
plex and heterogeneous factors, such as diverse spatial/temporal
access information and their relationships, into a unified ana-
lytic framework. Second, we employ and develop an innovative
graph clustering method that employs two levels of clustering
abstractions on storage trace analysis. We discover interesting spa-
tial access patterns and identify important temporal correlations
among spatial access patterns. This enables us to better char-
acterize important hotspots and understand hotspot movement
patterns. Third, at each level of abstraction, we design a unified
weighted similarity measure through an iterative dynamic weight
learning algorithm. With an optimal weight assignment scheme,
we can efficiently combine the correlation information for each
type of storage access patterns, such as random versus sequential,
read versus write, to identify interesting spatial/temporal correla-
tions hidden in the traces. Some optimization techniques on matrix
computation are proposed to further improve the efficiency of
our clustering algorithm on large trace datasets. Extensive eval-
uation on real storage traces shows GraphLens can provide broad
and deep trace analysis for better storage strategy planning and
efficient data placement guidance. GraphLens can be applied to
both a single PC with multiple disks and a distributed network
across a cluster of compute nodes to offer a few opportunities for
optimization of storage performance.

Index Terms—Heterogeneous Trace Graph, Random Walk,
Unified Weighted Spatial/Temporal Similarity, Spatial Extent
Clustering, Temporal Cycle Clustering, Full-rank Approximation.

I. INTRODUCTION

P ERFORMANCE optimization in enterprise storage sys-
tems has always relied heavily on the ability to isolate and
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control workloads that were relatively well understood [2]–[5].
With virtualized environments and cloud implementations,
enterprise storage systems see a mix of a large number of
disparate workloads from a varying set of applications [6]–[8].
The systems not only need to deal with changes within a single
workload, but also need to deal with changes to the workload
mix while the underlying infrastructure is shared. While Flash,
DRAM and newer high performance storage hardware can help
alleviate performance problem, intelligence and automation
are still required to identify the right data to be placed on these
devices.

Trace analysis is recognized as a viable model to assist
with characterizing workloads and gaining deeper insights into
workload behavior. Conventional storage trace analysis is pri-
marily carried out by the per-column based statistical analysis
(single attribute based access pattern) or the row-based statis-
tical analysis using vector similarity. Characterizing workloads
in depth and from different granularities of spatial and temporal
dimensions is challenging. The challenge can be more demand-
ing when a single volume represents a varying mix of work-
loads and such workload mix may change over time. We argue
that understanding similarity and causality of access patterns
can offer many opportunities for optimization of performance
such as intelligent data placement.

In this paper we present GraphLens, a novel graph analyt-
ics framework for mining and analyzing real world storage
traces. GraphLens offers the following three original contribu-
tions. First, storage traces are modeled as heterogeneous trace
graphs in order to use a unified analytic model to study the com-
plex spatial, temporal and spatial-temporal correlations among
storage addresses at different levels of granularity in terms
of their access patterns. Second, an innovative graph cluster-
ing method is developed, which conduct storage trace analysis
via two tiers of clustering abstractions. At the first tier, we
discover interesting spatial correlations by clustering storage
addresses with a dynamic weighting scheme that continuously
refines the weights to different access patterns of the storage
addresses towards clustering convergence. This allows us to
identify deeper spatial correlations among storage addresses
beyond direct neighboring addresses. At the second tier, we
employ temporal clustering abstraction to discover important
temporal correlations by utilizing significant spatial correla-
tions. We introduce a unified weighted temporal similarity
measure through an iterative dynamic weight-learning algo-
rithm. Our entropy-based optimal weight assignment scheme
can efficiently combine the correlation information for each
type of storage access patterns, such as random v.s. sequential,
read v.s, write, to identify hotspots and their movements along
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both spatial and temporal dimensions of the trace. We also
propose the optimization technique of full-rank approximation
based on the Matrix Neumann Series [9] to speed up the
matrix computation for random walk similarity calculation. It
reduces the number of matrix multiplication from (l − 1) to
(⌈log(l + 1)⌉ + 1) where l is the length limit of the random
walks. Extensive evaluation on three real storage traces demon-
strates that GraphLens can perform deep trace analysis to derive
new insights and new values for better storage strategy planning
and efficient data placement guidance.

This intelligent tool can be applied to both a single PC with
multiple disks and a distributed network across a cluster of
compute nodes to offer a few opportunities for optimization
of storage performance such as better storage strategy plan-
ning and efficient data placement guidance: (1) migrating the
data with similar access patterns to the same disks/nodes, in
order to improve the performance of disk I/O and commu-
nication I/O; (2) migrating the data frequently accessed to
the disks/nodes with fast storage devices, such as SSD, and
migrating the data infrequently accessed to the disks/nodes
with slow storage devices, such as HDD, to achieve a good
balance between improving system performance and reducing
overall disk/communication cost; (3) during weekends and hol-
idays, increasing the amount of backend jobs on the “Cold”
disks/nodes with few access activities to improve resource
utilization, while decreasing the amount of backend jobs on
the “Hot” disks/nodes to maintain system performance during
workdays.

II. BACKGROUND AND MOTIVATION

Storage Trace Analysis. Storage traces of production
servers are valuable and critical in gaining insights on design,
implementation and optimization of both modern storage
servers and I/O intensive applications. However, mining and
analyzing storage access patterns from real world workload
traces has been scarce and superficial for a number of reasons,
including difficulty in obtaining traces of production servers in
diverse domains and absence of effective trace analysis models
and algorithms that can infer deeper insight from limited traces
of production systems. More seriously, many past trace-based
studies have predated technology trends [10]. In the last decade,
there are only a few studies [2], [10]–[14] have dedicated to
developing methodologies for characterization of real world
workload traces. Kavalanekar et al. [11] analyzed four storage
workload traces of production Windows servers with respect
to block level requests, file access frequencies and read/write
ratios. It performs trace analysis by measuring the spatial and
temporal self-similarity based on variance and mean of stor-
age log data. The approach in [5] assumes that workloads are
well defined and can be cleanly isolated in order to train a
classifier to identify workload phases using supervised learn-
ing. In addition, Chen et al. [10] studied the same large scale
network file systems workloads as reported in [12] using a
multi-dimensional trace analysis methodology instead of sin-
gle dimension based method. Tarasov [14] demonstrated the
challenges of evaluating complex storage systems in his Ph.D.
dissertation and proposed a Multi-Dimensional Histogram

workload analysis technique to design a variety of evaluation
tools for analyzing workloads and system behaviors. However,
none of existing work has analyzed workload traces of pro-
duction storage servers based on graph analytics. A unique
advantage of modeling storage traces using graphs is the ability
to conduct deep-analytics on both self-similarity and neighbor-
hood similarity from both spatial and temporal perspectives.
More importantly, GraphLens derives insights from traces with
no assumption of a priori knowledge about workloads.

Heterogeneous Network Analysis. Recent studies on het-
erogeneous social network analysis combine links and content
into heterogeneous information networks to improve the qual-
ity of querying, ranking, clustering and classification [15]–[21].
Taskar et al. [15] proposed a general class of models for
classification and clustering in relational domains that cap-
ture probabilistic dependencies between related instances in a
relational database containing both attributes and links. Yang
et al. [16] proposed a unified model to combine link and con-
tent analysis for community detection. The conditional link
model and the discriminative content model are combined
via a probabilistic framework through the shared variables of
community memberships. Ji et al. [17] groups objects into
pre-specified classes, while generating the ranking information
for each type of object in a heterogeneous information net-
work. It is therefore beneficial to integrate classification and
ranking in a simultaneous, mutually enhancing framework. Yu
et al. [18] presented a query-driven discovery system for finding
semantically similar substructures in heterogeneous networks.
A filter-and-verification search framework is proposed to gen-
erate promising subgraph candidates using off-line indices,
and verify candidates with a recursive pruning matching pro-
cess. Zhou et al. [19] proposed a reinforcement algorithm is
provided to tightly integrate ranking and clustering by mutu-
ally and simultaneously enhancing each other. Zhou and Liu
[20] presented an activity-edge centric multi-label classification
framework for analyzing heterogeneous information networks
by doing multi-label classification of friendship multigraph
based on activity-based edge classification.

Graph Clustering. Graph as an expressive data structure
is popularly used to model structural relationship between
objects in many application domains, ranging from web, social
networks, biological networks to sensor networks [22]–[26].
Graph clustering has attracted active research in the last
decade [21], [24], [27]–[40]. Most of existing graph clus-
tering techniques have focused on the topological structure
based on various criteria, including normalized cuts [24], mod-
ularity [27], structural density [28], stochastic flows [31] or
clique [33]. The clustering results often contain densely con-
nected components within clusters. However, such methods
usually ignore vertex attributes in the clustering process. On
the other hand, K-SNAP [30] presented OLAP-style aggrega-
tion approach to summarize large graphs by grouping nodes
based on the user-selected attributes. Kenley and Cho [35]
exploited an information-theoretic model for clustering by
growing a random seed in a manner that minimizes graph
entropy. This kind of methods achieve homogeneous attribute
values within clusters, but ignore the intra-cluster topological
structure. Recently, Shiga et al. [29] presented a clustering
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method which integrates numerical vectors with modularity
into a spectral relaxation problem. SA-Cluster [32] and Inc-
Cluster [34] perform clustering based on both structural and
attribute similarities by incorporating attributes as augmented
edges to its vertices, transforming attribute similarity to ver-
tex closeness. BAGC [37] constructs a Bayesian probabilistic
model to capture both structural and attribute aspects. GenClus
[41] proposed a model-based method for clustering heteroge-
neous networks with different link types and different attribute
types. SI-Cluster [38] performs social influence based cluster-
ing over heterogeneous networks by dynamically combining
self-influence from social graph and multiple types of co-
influences from activity graphs. VEPathCluster [40] is the first
clustering algorithm to tightly integrate vertex-centric cluster-
ing and edge-centric clustering by mutually enhancing each
other with combining different types of meta paths over het-
erogeneous information network. However, to the best of our
knowledge, GraphLens is the first one that applies and extends
graph clustering to storage trace analysis. A unique feature
of GraphLens is its ability to effectively identify fine-grained
behavioral similarity across spatial and temporal dimensions
using storage block traces.

Scalable Graph Processing. With continued advances in
computing and information technology, big graphs have grown
at an astonishing rate in terms of volume, variety, and veloc-
ity. Efficient iterative computation on such huge graphs is
widely recognized as a challenging big data research problem,
which has received heated attention recently. We can broadly
classify existing research activities on scaling iterative graph
computations into two categories: (1) Distributed solutions and
(2) Single PC based solutions. Most of existing research efforts
are dedicated to the distributed graph partitioning strategies
that can effectively break large graphs into small, relatively
independent parts [42]–[47]. Several recent efforts [48]–[52]
have successfully demonstrated huge opportunities for optimiz-
ing graph processing on a single PC through graph parallel
abstractions that are efficient in both storage organization and
in-memory computation. However, most existing approaches
rely on vertex-centric graph parallel computation model. Many
existing algorithms fail to work effectively under the vertex-
centric computation model for several scenarios: (1) when the
algorithms require to load the whole graph into the main mem-
ory but the graph and its intermediate results of computation
together are too big to fit into the available memory; (2) when
high degree vertices and their edges combined with the nec-
essary intermediate results are too big to fit into the working
memory; (3) when the time of computing on a vertex and its
edges is much faster than the time to access to the vertex state
and its edge data in memory or on disk; and (4) when the
computation workloads on different vertices are significantly
imbalanced due to the highly skewed vertex degree distribution.

Enterprise Storage Traces. We analyze block-level traces
collected from three large enterprise storage installations: a
live banking environment, a retail backend system environment
and an email server environment. Each of the traces consists
of storage workloads collected over every 15 minute period
(referred to as “cycle”) for storage addresses, called “extents”,
each extent representing 1 GB logical address unit. The traces

Fig. 1. I/O Workloads by Four Access Patterns.

provide summary information on the number of random read,
random write, sequential read and sequential write IO accesses
over one week period (7 days). The only knowledge we know
about each of these environments is that multiple workloads
(such as applications and backup) may have been executing
simultaneously. But we have no details regarding the exact
nature of the workloads.

Figures 1(a), (b) and (c) exhibit the distribution four access
patterns observed on the three real world storage traces. For
ease of presentation, we group the total of 2010 cycles into
20 cycle groups and summarize the access account for each
extent in each cycle group. Figure 1(a) presents the access
activities on Bank Trace and “sequential read” is obviously
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Fig. 2. 24-hour I/O Workloads by Each Lun on Email Trace.

the dominating access pattern. However, the access activities
on Email Trace Figure 1(b)) are often dominated by “sequen-
tial read” access pattern, with “random write” and “sequential
read” as secondary behavior. In contrast, the workloads on
Store Trace is mainly dominated by “random read” access
pattern. From these three figures, we observe that real trace
datasets in different areas often have diverse access patterns.
We argue that by analyzing spatial, temporal and hot spot cor-
relations from block-level traces we can provide broader and
deeper insights for better tradeoffs in storage system design and
implementation.

Figures 2(a), (b), (c) and (d) present the activity distribu-
tion of seven Luns on each of four access patterns observed
on Email Trace. Each figure summarizes some access activ-
ities of seven Luns within one-day storage log. As shown in
Figures 2(a) and (c), there are a lot of read accesses (“random
read” and “sequential read”) on Lun “0x0004” and other read
activities are evenly distributed to other Luns except “0x0000”,
which has relatively low workloads on “sequential read”. On
the other hand, from Figures 2(b) and (d), there are heavy
write workloads (“sequential read” and “sequential read”) on
Lun “0x0005”. Other Luns have less write activities, especially
Luns “0x0006” and “0x0009”. To sum up, each Lun has differ-
ent workloads on diverse access patterns and the distribution
of access activities for each access patterns are quite differ-
ent. Thus, a unified hotspot identification method may not make
sense for multiple access patterns.

The traditional clustering algorithms, such as K-Means [53]
or K-Medoids [54], are usually non-graph clustering methods.
They partition the extents into clusters in terms of only their
direct correlations (self-similarity). However, partitioning the
extents without considering their indirect relationships based on
the view of graph analytics may lead to lots of cluster outliers
and inaccurate extent clustering. Our proposed unified neigh-
borhood random walk model provides a natural way to capture
both direct and indirect access correlations between extents
based on the heterogeneous graph representation of trace data.

As discussed above, there are usually multiple access pat-
terns in the context of enterprise storage systems. Most of the
conventional clustering methods only address each individual
access pattern separately and then simply combine multiple
access patterns into a unified framework with the equal weight-
ing factors. We argue that such static combination method in the
conventional approaches performs poorly when different access
patterns are correlated rather than completely independent. We

propose an iterative dynamic weight learning algorithm to find
the optimal weight assignment scheme for multiple access pat-
terns to enable us to better characterize important hotspots of
storage access and understand hotspot movement patterns.

III. OVERVIEW

GraphLens by design aims at exploiting graph data analytic
techniques on multi-dimensional storage traces to derive deep
insights hidden in the storage logs, such as spatial access cor-
relation, temporal access correlation and hot-spot dynamics.
For example, how are different addresses accessed similarly
within a cycle or amongst cycles? how does the access pat-
tern of a storage address change between cycles? do spatial
and temporal patterns interact with one another? what types
of spatial/temporal access patterns are common in real world
traces? and how hot spots move across extents (spatial) and
across cycles (temporal)?

One approach to discovering and mining interesting corre-
lations is to associate different storage addresses by utilizing
their common attributes (access patterns), such as random v.s.
sequential access and read v.s. write access. This motivates us
to introduce two levels of abstractions for analyzing storage
traces. First, we model storage traces as heterogeneous graphs.
Second, we employ innovative graph analytic methods to mea-
sure and discover correlations among storage addresses. This
two-level abstraction enables us to study the access correla-
tions among different addresses by examining two types of
vertices: structure vertices representing storage addresses (Lun
(Volume), Extent) and attribute vertices (access patterns such
as random, sequential, read or write) and their explicit and
implicit relationships. As compared to naive vector-based cor-
relation (record by record comparison) modeling storage access
logs as a graph, allows us to observe and understand not only
those shallow correlations reflected from direct relationship
between an address and its access pattern (attribute) but also
enables us to derive deeper correlations that can only be inferred
through reasoning over both direct and indirect correlations in
a probabilistic manner.

A. Modeling Traces as Graphs

An enterprise storage trace recorded with multiple cycles is
logged with a set of attributes (access patterns), such as random
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TABLE I
A SAMPLE TRACE FOR A CYCLE

read (RR), random write (RW), random transfer (RT), sequen-
tial read (SR), sequential write (SW), sequential transfer (ST),
etc. We model each cycle ti of the storage log as heterogeneous
trace graph, denoted as Gi = (V, A, Ei , Fi ), where n = |V |
specifies the size of the structure (extent) vertex set, m = |A|
defines the size of attribute vertex set in the trace, Ei denotes
a set of structure edges between structure vertices and Fi rep-
resents the set of m types of attribute edges between V and A
or between A and V . v ∈ V is a structure vertex, representing
a storage address and a ∈ A denotes an attribute vertex asso-
ciated to a structure vertex v, specifying an associated attribute
of the address v. A structure edge e ∈ Ei connects two structure
vertices and an attribute edge f ∈ Fi represents the relationship
between a structure vertex and its associated attribute, weighted
by the frequency of the corresponding access pattern within the
given cycle. The initial heterogeneous graph Gi for each cycle
ti is a bipartite graph with only attribute edges. By employing
GraphLens, we learn the correlations between structure vertices
via their associated attributes. For instance, the more the access
patterns shared by two addresses are, the greater the similarity
between two addresses is.

Table I presents an example of a real storage trace. Each
combination of Lun and Extent represents a unique storage
address. RR, RW, SR, and SW correspond to four kinds of
access patterns: random read, random write, sequential read,
and sequential write, respectively. Figure 3(a) is the hetero-
geneous graph representation of the sample trace in Table I.
This trace graph has heterogeneous vertices: structure vertices
(black square) represent the storage addresses, attribute ver-
tices (red circle) specify 4 types of attributes: RR, RW, SR
and SR. In addition, this trace graph has explicit attribute edges
(solid lines), each representing a relationship between an struc-
ture vertex and one of its four types of attributes, and derived
relationships (dashed lines) that represent the spatial correla-
tion between two structure vertices, as shown in Figure 3(b).
Although the four address vertices have no direct correlations,
we can learn the spatial correlations among different structure
vertices because they can be reached by traversing the graph via
attribute vertices.

Case 1: summarization of all paths between any pair of
extents. In Figure 4(a), there exists four 2-hop paths between
extents “0x0021, 0” and “0x0021, 1” through four attribute ver-
tices respectively. In comparison to Figure 4(b), there is only
one 2-hop path between two extents through RR. We make the
following observation: extents “0x0021, 0” and “0x0021, 1” are
more similar than extents “0x0021, 0” and “0x0021, 2” since
there are more reachable paths between the first two extents.

Case 2: attribute differentiation by attribute weight
match. For both Figure 5(a) and Figure 5(b), two extents are
reachable by two 2-hop paths through RR and RW respectively.

However, the two addresses in Figure 5(b) on each of RR and
RW have diverse edge weights. Thus, extent “0x0021, 3” and
extent “0x0021, 4” are more similar than extent “0x0021, 5”
and extent “0x0021, 6” because the first pair of extents not only
have the same access patterns (RR and RW) but also have the
same access counts (100 for RR and 200 for RW).

Case 3: attribute differentiation by attribute weight
significance. In both Figure 6(a) and Figure 6(b), two extents
are reachable by two 2-hop paths through RR and RW respec-
tively and the corresponding attribute edge weights are the same
respectively. However, the corresponding attribute edge weights
(100 for RR and 200 for RW) in Figure 6(a) are larger than that
(10 for RR and 20 for RW) in Figure 6(b). Thus, two extents in
Figure 6(a) are more similar than two extents in Figure 6(b).

Case 4: summarization of all possible k-hop paths
between pairwise extents. In the above cases, we only con-
sider 2-hop paths between extents, i.e., direct relationships
between extents. However, we should consider all possible k-
hop paths, i.e., both direct and indirect relationships, to achieve
a comprehensive and fair comparison result when we calculate
the similarity scores between two extents. The only differ-
ence between Figures 7(a) and (b) is the attribute edge weights
between extent “0x0022, 0” and access pattern RR. Note that
there is a 4-hop path between extent “0x0021, 3” (or “0x0021,
9”) and extent “0x0021, 4” (or “0x0021, 10”): “0x0021, 3”
(or “0x0021, 9”) → “Random_Read” → “0x0022, 0” →
“Random_Read” → “0x0021, 4” (or “0x0021, 10”). Similarly,
we can generate other k-hop paths between extent “0x0021, 3”
and extent “0x0021, 4” by executing a random walk process
with starting at “0x0021, 3”, walking through different interme-
diate extents and arriving at “0x0021, 4”. We argue that extents
“0x0021, 3” and “0x0021, 4” in Figure 7(a) have larger attribute
edge weights and thus are more similar than extents “0x0021,
9” and “0x0021, 10” in Figure 7(b). The similarity between
two extents depends on not only their direct relationships (their
own access patterns and access counts) but also their indirect
relationships (predecessors’ and successors’ access patterns and
access counts).

B. Trace Analysis With GraphLens

GraphLens performs trace analysis to derive deep insights on
spatial/temporal access correlations and hotspot characteriza-
tion in two phases: (1) extent similarity and spatial based graph
clustering and (2) cycle similarity and temporal based graph
clustering.

In Phase I, we measure pairwise extent similarity within a
cycle in terms of two factors: how similar their access pat-
terns (attribute) are (direct correlation) and how similar their
k-hop neighbor extents are in terms of their access patterns. In
order to capture the spatial access similarity between storage
addresses in terms of both direct and indirect correlations, we
introduce a unified weighted extent neighborhood random
walk similarity measure. It is used to measure the closeness
between extents based on all four types of attribute edges,
each with an initial weight. This unified similarity measure
captures the connectivity, vicinity and transition probabilities
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Fig. 3. An Illustrating Example of Heterogeneous Trace Graph.

Fig. 4. Summarization of all Possible Paths.

Fig. 5. Attribute Weight Match.

Fig. 6. Attribute Weight Significance.

between extents (structure vertices). We utilize this unified sim-
ilarity measure to cluster all extents in trace graph Gi into ki
clusters with initial centroids and initial weights. We employ
a dynamic weight tuning method combined with an iterative

refinement mechanism of centroid update and vertex assign-
ment to quantitatively estimate the importance of various types
of attributes and attribute links in terms of their contribu-
tion to the clustering process. Formally, given a heterogeneous
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Fig. 7. k-hop Path.

trace graph Gi for cycle ti , the problem of spatial extent
clustering is to partition the objective extents V into ki dis-
joint clusters C1, C2, . . . , Cki , where i ∈ {1, 2, . . . , N }, N is
the number of cycles, V = ⋃ki

p=1 C p and C p
⋂

Cq = φ for
∀p, q, 1 ≤ p, q ≤ ki , p ̸= q, to ensure: (1) the extents within
each cluster have larger similarity scores, while the extents in
different clusters have smaller similarity scores; and (2) the
extents within clusters have low diversity on access patterns,
while the extents in different clusters have highly diverse access
patterns.

In Phase II, pairwise cycle similarity is computed in terms
of similarities between the corresponding extents in two cycles
to capture the temporal access similarity between cycles from
historical storage workloads and predict future workload ten-
dency. Similarly, we define a unified weighted cycle similarity
measure to measure the closeness between cycles based on
connectivity, vicinity and random walk similarities between
each extent and their neighbors in the respective cycles.

The problem of temporal cycle clustering is to partition the
objective cycles T = {ti |i = 1, 2, . . . , N } into k disjoint clus-
ters C1, C2, . . . , Ck , where N is the number of cycles, T =⋃k

p=1 C p and C p
⋂

Cq = φ for ∀p, q, 1 ≤ p, q ≤ k, p ̸= q,
to ensure: (1) the cycles within each cluster have larger simi-
larity scores, while the cycles in different clusters have smaller
similarity scores; and (2) the corresponding extents and their
neighbors within cycle clusters have similar access patterns
on all attributes, while the corresponding extents and their
neighbors in different cycle clusters may have diverse access
patterns.

The spatial based clustering combined with the temporal
based clustering can indicate where the hotspots are and how
such hotspots move across extents (along spatial dimension)
and/or across cycles (along temporal dimension).

IV. METHODOLOGY

In this section we describe the two-phase correlation analy-
sis methodology in GraphLens: extent-similarity based spatial
clustering and cycle-similarity based temporal clustering.

A. A Unified Spatial Similarity Measure

In GraphLens, we propose to use a unified similarity mea-
sure based on the neighborhood random walk model to infer

the spatial access correlations between extents and the temporal
access correlation between cycles. In the heterogeneous graph,
some vertices are close to each other while some other vertices
are far apart based on connectivity. Random walk distance can
accurately capture such pairwise vertex closeness. Recall the
example in Figure 3, there exists a random walk path between
two extents v1, v2 ∈ V if (1) v1 and v2 have the same neigh-
bor extent v3 ∈ V ; or if (2) v1 and v2 have the same attribute
a ∈ A. If there are multiple random walk paths connecting v1
and v2, then they should be very close in terms of similar access
patterns. On the other hand, if there are very few or no paths
between v1 and v2, then they should be far apart in terms of
diverse access patterns.

Definition 1 (Transition Probability): Let V be the set of n
extents, A be the set of m associated attributes, the transition
probability matrix P(i) of a heterogeneous graph Gi for cycle
ti is defined as follow.

P(i) =
[

PSS PS A
PAS PAA

]
(1)

where PSS is an n × n matrix representing the transition prob-
abilities between structure vertices; an n × m matrix PS A
specifies the transition probabilities from structure vertices
to attribute vertices; PAS denotes the transition probabilities
from attribute vertices to structure vertices; and PAA is an
m × m matrix representing the transition probabilities between
attribute vertices.

In the context of heterogeneous trace graph, submatrices
PSS and PAA have all zero entries since there is no connec-
tion between structure vertices or between attribute vertices.
However, the corresponding submatrices in the power of P(i),
such as P(i)2, P(i)3, . . ., may contain non-zero elements since
there may exist possible paths through other vertices.

To capture the fact that each type of attribute edges may have
different degrees of contribution in random walk similarity, we
assign an individual weight for each type of attribute edges.
Initially, all weights are set to equal value, say 1.0. We design
a dynamic weight tuning method to produce an optimal weight
assignment for all types of links in the next section. Based on
this weight assignment, each submatrix in P(i) is defined as
follow.

PS A(p, q) =

⎧
⎨

⎩

αiqepq∑mi
r=1 αir epr

, if (vp, aq) ∈ Fi

0, otherwise
(2)
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where epq represents the count of access pattern aq that storage
extent vp has in the given cycle ti . For instance, a storage extent
of “0x0021, 0” has the count of 354 on “random read” in the
example cycle of Figure 3(a). αiq denotes the weight of attribute
edges from any of the structure vertices to attribute vertex aq
in the heterogeneous graph Gi . Since each row of transition
probability matrix should sum to 1, we employ the row-wise
normalization for PS A.

PAS(p, q) =

⎧
⎨

⎩

αi pepq∑ni
r=1 αi pepr

= epq∑ni
r=1 epr

, if (ap, vq) ∈ Fi

0, otherwise
(3)

where epq specifies the count of an access pattern ap achieved
by a storage extent vq in ti . αi p denotes the weight of attribute
edges from attribute vertex ap to structure vertices in Gi .
Different from the normalization in PS A, the count on pattern
ap by extent vq is normalized by the counts on pattern ap by all
extents.

A random walk on a heterogeneous trace graph Gi is per-
formed in the following way. Suppose a particle starts at a
certain vertex v0 and walks to a vertex vs in the sth step and
it is about to move to one of the neighbors of vs , denoted
as vt ∈ N (vs), with the transition probability P(i)(s, t), where
N (vs) contains all neighbors of vertex vs . The vertex sequence
of the random walk is a Markov chain. The probability of going
from vi to v j through a random walk of length l can be obtained
by multiplying the transition probability matrix l times.

Definition 2 (Unified Random Walk Similarity): Let P(i) be
the transition probability of a heterogeneous trace graph Gi , l
be the length that a random walk can go, and c ∈ (0, 1) be the
restart probability, the unified random walk similarity s(u, v)
from vertex u ∈ V

⋃
A to vertex v ∈ V

⋃
A in Gi is defined as

follow.

si (u, v) =
∑

τ :u!v
length(τ )≤l

p(τ )c(1 − c)length(τ ) (4)

where τ is a path from u to v whose length is length(τ ) with
transition probability p(τ ) which is equal to the multiplica-
tion of the transition probability of each step in path τ . si (u, v)
reflects the extent closeness within cycle ti based on multiple
types of attribute information.

The matrix form of the unified random walk similarity is
given as follow.

R(i) =
l∑

γ=1

c(1 − c)γ P(i)γ (5)

where an (n + m) × (n + m) matrix R(i) sums over the depen-
dency of all possible paths between two extents. Each entry
si (u, v) in R(i) measures the similarity between extent vertex u
and extent vertex v within cycle ti .

B. A Unified Temporal Similarity Measure

The access similarity between cycles in a workload trace
can help us identify hotspot periodicity and hotspot movement

across different extents and different cycles and discover deeper
correlations among different cycles to predict future trends of
workloads. Intuitively, two cycles are considered more (or less)
similar if (1) more (or less) corresponding extents in two cycles
share the same access patterns; and if (2) more (or less) neigh-
bors of the corresponding extents with the same access patterns
have the same access patterns.

Figure 8 presents an illustrative example of heterogeneous
trace graphs for three cycles. Cycle 1 in Figure 8(a) is more
similar to Cycle 2 in Figure 8(b) than to Cycle 3 in Figure 8(c)
for two reasons. This is because the corresponding extents in
Cycle 1 and Cycle 2 are more similar in terms of their extent
similarity and also have large weights, compared to Cycle 1
and Cycle 3.

Similar to the dynamic weight tuning method to generate an
optimal weight assignment for various types of attribute links
when we calculate the unified spatial random walk similarity
for each cycle, we also need to provide a unified cycle based
temporal similarity measure with diverse and tunable optimal
weight assignments. Thus, we split the original heterogeneous
trace graph for each cycle into mi subgraphs where mi is the
number of attribute vertices in cycle ti . For example, we first
split the heterogeneous trace graph in Figure 3(a) into four sub-
graphs based on RR, RW, SR and SW respectively. For each
subgraph, we only keep the related attribute edges. We then cal-
culate the individual spatial random walk similarity si j (u, v) or
R j (i) for the subgraph based on attribute a j in cycle ti by using
the same formulae of Eqs. (1) and (5).

Definition 3 (Inter-cycle Extent Similarity): Let V be the set
of n extents, A be the set of m associated attributes, the inter-
cycle extent similarity, denoted by si jh(vp), based on attribute
ah ∈ A between extent vp ∈ V in cycle ti and extent vp ∈ V in
cycle t j is defined as follow.

si jh(vp)

= 1 −

√√√√
∑n

q=1(sih(vp, vq)aih(vq) − s jh(vp, vq)a jh(vq))2
∑n

q=1(sih(vp, vq)aih(vq) + s jh(vp, vq)a jh(vq))2

(6)

where sxh(vp, vq) represents the individual spatial random walk
similarity between extents vp and vq for the subgraph based on
attribute ah in cycle tx . axh(vq) specifies the count achieved by
extent vq on attribute ah in cycle tx .

If vp has the similar similarity scores with its neighbors in
both cycles and the corresponding neighbors in both cycles have
the similar access count on attribute ah , then the inter-cycle
extent similarity si jh(vp) should be larger.

Definition 4 (Unified Cycle Similarity): Let V be the set of n
extents, A be the set of m associated attributes, the unified cycle
similarity, denoted by s(ti , t j ), between cycle ti ∈ T and cycle
t j ∈ T is defined as follow.

sh(ti , t j ) = 1
n

n∑

p=1

si jh(vp)

s(ti , t j ) =
m∑

h=1

βhsh(ti , t j )

(7)
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Fig. 8. Cycle Differentiation.

where sh(ti , t j ) represents the individual temporal similar-
ity between cycles ti and t j based on attribute ah . βh is
a weighting factor for the individual temporal similarity
based on attribute ah . The unified temporal similarity s(ti , t j )

sums over the dependency of all access patterns between
two cycles.

We argue that each type of access patterns may have differ-
ent degrees of importance in cycle similarity. Thus we assign an
individual weight for each kind of access patterns. All weights
are initialized to 1/m, but will be automatically updated dur-
ing clustering according to their contributions to clustering
convergence.

C. Spatial Extent Clustering

Our spatial extent clustering framework, SE-CLUSTER, par-
titions extents in a heterogeneous trace graph Gi into ki
densely connected clusters. SE-CLUSTER follows the tradi-
tional K-Medoids clustering method [54] by using the unified
random walk similarity R(i) with ki dense extents as the initial
centroids and the initial weights α0

i1, . . . ,α
0
im as an input. At

each iteration, based on unified extent random walk similarity
scores, we select the most centrally located extent in each of
the ki clusters to obtain ki new centroids, and assign the rest of
extents to their closest centroids. The objective of clustering is
to maximize intra-cluster similarity and minimize inter-cluster
similarity. The weight update method computes the weighted
contributions of each kind of attribute links to both clustering
convergence and clustering objective, and updates m weights
accordingly after each iteration. This process is repeated until
convergence. Thus the graph clustering problem is reduced to
three subproblems: (1) cluster assignment, (2) centroid update

and (3) weight adjustment, each with the goal of maximizing
the objective function.

1) Initialization: We will address two main issues in the
initialization step: (1) initial weight setup and (2) cluster cen-
troid initialization.

Good weight assignment for our unified extent neighborhood
random walk similarity measure is crucial to produce a good
clustering result. We first assign the initial value of 1.0 to all
m weights, i.e., αi1 = . . . = αim = 1.0, based on the assump-
tion that each kind of attribute edges has the same degree
of importance. By assigning an equal initial weight, we start
to combine the structure edges and the m kinds of attribute
edges into a heterogeneous trace graph with the unified tran-
sition matrix (Recall Eqs. (1)–(3) in Section IV-A). We will
update the m weight values in the subsequent iteration of the
clustering process using our dynamic weight update scheme,
which continuously quantify and adjust the weights on m kinds
of attribute edges towards the clustering convergence, while
maintaining the constraint

∑m
j=1 αi j = m. As a result, at each

iteration, weights of important attribute edges are increased
while weights of trivial attribute edges are decreased or become
zero, ensuring the clustering process progresses towards the
convergence. Note that choosing a weight assignment randomly
often results in incorrect clustering results. In Section IV-C5,
we will show that there exists one and only one optimal weight
assignment to maximize the clustering objective. Good initial
centroids are essential for the success of partitioning clustering
algorithms. SE-CLUSTER produces good cluster characteristics
from noisy data by choosing the local maxima of the density
function as centroids. Concretely, we first compute the density
for each extent vertex in the trace graph and then find the local
maxima of the density function as the centroids.
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Definition 5: [Extent Density Function] The density function
of one extent vertex vp is the sum of the unified similarity scores
between vp and all other extent vertices in V .

E D(vp) =
∑

vq∈V,vq ̸=vp

si (vp, vq) (8)

We know that the unified random walk similarity captures
both direct and indirect relationships between extents in the
trace graph. If one extent vertex vp has a large density value, it
means that, either vp connects to many extent vertices through
the structure edges within the trace graph, or vp has the similar
access patterns with many extent vertices through the attribute
links. Based on the density value of each extent vertices, we find
the extent vertices with a local maximum of the density value
by following the hill-climbing strategy in DENCLUE [55]. An
extent vertex which has a local maximum of the density value
often can diffuse its influence to many extent vertices along
multiple paths. A centroid-based cluster is thus formed when
influence is diffused to the margin of the trace graph. We sort
all such extent vertices in the descending order of their density
values and select top-ki extent vertices as the initial ki centroids
{c0

1, . . . , c0
ki

}.
2) Vertex Assignment and Centroid Update: With ki cen-

troids in the t th iteration, we assign each extent vertex vp ∈ V
to its closest centroid c∗ = argmaxct

q
si (vp, ct

q), i.e., a centroid
c∗ ∈ {ct

1, . . . , ct
ki

} with the largest unified similarity from vp.
When all vertices are assigned to some cluster, the centroid will
be updated with the most centrally located vertex in each clus-
ter. To find such a vertex, we first compute the “average point”
vp of a cluster C p in terms of the unified random walk similarity
matrix as

si (vp, vq) = 1
|C p|

∑

vr ∈C p

si (vr , vq),∀vq ∈ C p (9)

Thus, si (vp, :) is the average unified similarity vector for
extent cluster C p in the trace graph for cycle ti . Then we find
the new centroid ct+1

p in cluster C p as

ct+1
p = argminvq∈C p∥si (vq , :) − si (vp, :)∥ (10)

Therefore, we find the new centroid ct+1
p in the (t + 1)th iter-

ation whose unified similarity vector is the closest to the cluster
average.

3) Clustering Objective Function: The objective of clus-
tering is to maximize intra-cluster similarity and minimize
inter-cluster similarity. We design our clustering objective func-
tion according to this general goal. As our similarity measure
is the unified random walk similarity, we will maximize the
intra-cluster unified random walk similarity and minimize the
inter-cluster unified random walk similarity.

Definition 6 (Inter-cluster Similarity): Let Gi be a hetero-
geneous trace graph, si (vp, vq) denote the unified random walk
similarity between extents vp and vq , the inter-cluster similarity
between clusters Cx and Cy , denoted by si (Cx , Cy), is defined
as follow.

si (Cx , Cy) =
∑

vp∈Cx ,vq∈Cy
si (vp, vq)

|Cx | × |Cy |
(11)

where |Cx | or |Cy | represents the cardinality of vertex set Cx or
Cy . This inter-cluster similarity measure is designed to quanti-
tatively measure the extent of similarity between two clusters
of V .

Definition 7: [Extent Clustering Objective Function] Let
Gi be a heterogeneous trace graph with the weight factors
αi1, . . . ,αim for m kinds of attribute edges respectively, and
ki be a number of extent clusters. The goal of SE-CLUSTER

is to find ki partitions {Cx }ki
x=1 such that V = ⋃ki

x=1 Cx and
Cx
⋂

Cy = φ for ∀x, y, 1 ≤ x, y ≤ ki , x ̸= y, and the follow-
ing objective function O({Cx }ki

x=1,αi1, . . . , αim) is maximized.

O({Cx }ki
x=1,αi1, . . . , αim) =

∑ki
p=q=1 si (C p, Cq)

∑ki
p=1

∑ki
q=1,q ̸=p si (C p, Cq)

(12)

subject to
∑m

l=1 αil = m, αil ≥ 0, l = 1, . . . , m.
According to Eqs. (1)–(5), the objective function O is a

fractional function of multi variables αi1, . . . ,αim with non-
negative real coefficients. On the other hand, the numerator
and the denominator of O are both polynomial functions of the
above variables. Without loss of generality, we rewrite Eq. (12)
as follow.

max
αi1,...,αim

O({Cx }ki
x=1,αi1, . . . ,αim)

= max
αi1,...,αim

∑p
j=1 a j

∏m
l=1(αil)

b jl

∑q
j=1 o j

∏m
l=1(αil)

r jl

a j , b jl , o j , r jl ≥ 0, b jl , r jl ∈ Z,

s.t.
m∑

l=1

αil = m, αi1, . . . ,αim ≥ 0 (13)

where there are p polynomial terms in the numerator and
q polynomial terms in the denominator, a j and o j are the
coefficients of the j th terms respectively, and b jl and r jl are
the exponents of corresponding variables in the j th terms
respectively.

For ease of presentation, we revise the original objective
as the following nonlinear fractional programming problem
(NFPP).

Definition 8: [Nonlinear Fractional Programming
Problem] Let f (αi1, . . . ,αim) = ∑p

j=1 a j
∏m

l=1(αil)
b jl

and g(αi1, . . . ,αim) = ∑q
j=1 o j

∏m
l=1(αil)

r jl , the clustering
goal is revised as follow.

max
αi1,...,αim

f (αi1, . . . ,αim)

g(αi1, . . . ,αim)
, s.t.

m∑

l=1

αil = m, αi1, . . . ,αim ≥ 0

(14)

Our clustering objective is equivalent to maximize a quotient
of two polynomial functions of multiple variables. It is very
hard to perform function trend identification and estimation to
determine the existence and uniqueness of solutions.

4) Unique Optimal Weight Assignment: This section pro-
vides the theoretical analysis to demonstrate that there exists
a unique optimal assignment for the weights αi1, . . . , αim to
maximize the clustering objective function in Eq. (12).
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Definition 9: [Nonlinear Parametric Programming
Problem] Let f (αi1, . . . ,αim) = ∑p

j=1 a j
∏m

l=1(αil)
b jl

and g(αi1, . . . ,αim) = ∑q
j=1 o j

∏m
l=1(αil)

r jl , the NPPP is
defined as follow.

!(γ ) = max
αi1,...,αim

f (αi1, . . . ,αim) − γ g(αi1, . . . , αim),

s.t.
m∑

l=1

αil = m, αi1, . . . ,αim ≥ 0 (15)

Theorem 1: The NFPP in Definition 8 is equivalent to the
NPPP in Definition 9, i.e., γ = max

αi1,...,αim

f (αi1,...,αim )
g(αi1,...,αim ) if and only

if !(γ ) = max
αi1,...,αim

f (αi1, . . . ,αim) − γ g(αi1, . . . ,αim) = 0.

See Proof in the Appendix.
Now the original NFPP has been successfully transformed

into the straightforward NPPP. This transformation can help us
conveniently identify the existence and uniqueness of solutions.

Theorem 2: !(γ ) is convex. See Proof in the Appendix.
Theorem 3: !(γ ) is monotonically decreasing. See Proof in

the Appendix.
Theorem 4: !(γ ) = 0 has a unique solution. See Proof in

the Appendix.
5) Vote-Based Weight Self-Adjustment: We propose a

dynamic weight adjustment method to iteratively improve the
spatial extent clustering objective. Let αt

il(l = 1, . . . , m) be
the weights for m kinds of attribute edges between structure
(extent) vertices and attribute vertex al in the transition proba-
bility P(i) of Gi in the t th iteration. All α0

ils are first initialized
as 1.0. We then iteratively adjust αt+1

il with an increment △αt
il ,

which denotes the weight update of attribute edges between
structure vertices and attribute vertex al in P(i). The attribute
weight αt+1

il in the (t + 1)th iteration is computed as

αt+1
il = 1

2
(αt

il + △αt
il) (16)

To determine the extent of weight increment △αil , we design
a majority vote mechanism: if a large portion of extent vertices
within each cluster have similar access counts on attribute al
in Gi , which means it has a good clustering tendency, then the
attribute weight αil should be increased; on the other hand, if
extent vertices within clusters have a very random distribution
or have quite diverse access counts on al , then the weight αil
should be decreased. We define a vote measure which deter-
mines whether two extent vertices u and v have similar access
counts on attribute al in Gi .

voteil(u, v) =

⎧
⎨

⎩
1, 1 − |al(u) − al(v)|

|al(u) + al(v)|
> ϵ

0, otherwise
(17)

where al(x) specifies the count achieved by x on al in Gi . A
positive number ϵ denotes a threshold of similar extent of u and
v on al . Then the votes votet

il of αt
il for the entire trace graph Gi

is estimated by counting the number of structure vertices within
clusters which share similar access counts with the centroids c j

in cluster C j on attribute al .

votet
il =

ki∑

j=1

∑

v∈C j

voteil(c j , v) (18)

The weight increment △αt
il is then calculated as

△αt
il = votet

il
1
m

∑m
p=1 votet

ip

=
∑ki

j=1
∑

v∈C j
voteil(c j , v)

1
m

∑m
p=1

∑ki
j=1

∑
v∈C j

voteip(c j , v)
(19)

The larger number of extent vertices which have similar
access counts on attribute al , the larger △αt

il is. Then the
adjusted weight is calculated as

αt+1
il = 1

2
(αt

il + △αt
il) = 1

2

(

αt
il + votet

il
1
m

∑m
p=1 votet

ip

)

(20)

The denominator in Eq. (19) ensures that the constraint∑m
l=1 αil = m in Definition 7 is still satisfied after weight

adjustment. The adjusted weights may be increasing, decreas-
ing, or unchanged depending on the value of △αt

il . If △αt
il >

αt
il , then αt+1

il > αt
il , i.e., the attribute edges between ∀v ∈ V

and al make an increasing contribution to the unified random
walk similarity. Similarly, if △αt

il < αt
il , then αt+1

il < αt
il . If

△αt
il = αt

il , then αt+1
il = αt

il .
An important property of the weight self-adjustment mech-

anism is that the updated weights are adjusted towards the
direction of increasing the clustering objective function value.
We briefly illustrate this property qualitatively: if a large num-
ber of structure (extent) vertices within clusters have the similar
access counts on al , then the weight is increased, i.e., αt+1

il >

αt
il ; on the other hand, if extent vertices within clusters have

quite different access counts on al , the weight is then decreased,
i.e., αt+1

il < αt
il . There must be some weights with increas-

ing updates and some other weights with decreasing updates,
since

∑m
l=1 αil = m is a constant. Due to some increased

weights, the random walk similarities between pairwise end-
points of attribute edges with the increased weight will be
further increased. As a result, these extent vertices tend to be
clustered into the same cluster, thus increasing the objective
function towards convergence.

By assembling different parts, our spatial extent clustering
algorithm SE-Cluster is presented in Algorithm 1.

6) An Illustrating Example of Spatial Extent Clustering:
We use Table I, Figure 3 and Figure 9 as an example to illustrate
each component of our proposed spatial extent clustering algo-
rithm. Suppose that we are given the original trace dataset in
Table I, we generate the heterogeneous graph representation of
the trace dataset, as shown in Figure 3(a) and we only consider
2-hop paths between extents to derive the structure relationships
between extent vertices, as shown in Figure 9(a).

First, we compute the unified spatial similarity measure
in terms of Eq. (5) based on 2-hop random walk paths
between extents. In the context of this simple example, we will
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Fig. 9. An Illustrating Example of Spatial Extent Clustering.

Algorithm 1. Spatial Extent Clustering

Input: a heterogeneous trace graph Gi = (V, A, Ei , Fi ) for
cycle ti , a length limit l of random walk paths, a restart proba-
bility c, a cluster number ki , a threshold ϵ of similar extent, the
initial weights α0

i p = 1.0.
Output: ki extent clusters C1, . . . , Cki .

1: Calculate R(i) according to Eqs. (1)–(5);
2: Compute E D(vp) for each extent vertex vp ∈ V in terms of

Eq. (8);
3: Select ki initial centroids c0

1, . . . , c0
ki

;

4: Repeat until O({Cr }ki
r=1,αi1, . . . ,αim) converges:

5: Assign each extent vertex vp ∈ V to a cluster C∗ with a
centroid c∗ where c∗ = argmaxct

q
si (vp, ct

q);
6: Update ki centroids ct

1, . . . , ct
ki

in terms of Eqs. (9)–(10);
7: Update each weight αt

il according to Eqs. (17)–(20);
8: Re-calculate R(i) with the updated αt

il ;
9: Return C1, . . . , Cki .

have three positive spatial similarity scores: a similarity score
between extent vertices “0x0021, 0” and “0x0023, 2” since
they share two access patterns (RR and RW), a similarity score
between extent vertices “0x0021, 0” and “0x002f, 0” since they
share one access pattern (SR), and a similarity score between
extent vertices “0x002f, 0” and “0x0031, 12” since they share
one access pattern (SW).

Second, if we want to partition four extent vertices in
Figure 9(a) into 2 clusters, then we need to compute the extent
density value for each of four extent vertices in terms of Eq. (8).
Notice that two extent vertices “0x0021, 0” and “0x002f, 0”
have two structure edges (dashed lines) and two extent vertices
“0x0023, 2” and “0x0031, 12” have only one structure edge
respectively. Thus, “0x0021, 0” and “0x002f, 0” have larger
density values and then we choose these two denser extent
vertices as cluster centroids.

Next, we assign other two extent vertices to their closest
centroids. In Figure 9(a), “0x0023, 2” has a structure edge to
connect to centroid “0x0021, 0” since they have a positive spa-
tial similarity score and there does not exist any structure edge
between “0x0023, 2” and centroid “0x002f, 0”. Thus, “0x0023,
2” is closer to centroid “0x0021, 0” and it will be assigned to the
cluster where “0x0021, 0” belongs to. Similarly, “0x0031, 12”
is closer to centroid “0x002f, 0” and it will be assigned to the
cluster where “0x002f, 0” belongs to, since they have a positive
spatial similarity score.

D. Temporal Cycle Clustering

Our temporal cycle clustering framework, TC-CLUSTER,
partitions N cycles in the workload trace into k clusters.
TC-CLUSTER follows the same clustering framework as SE-
CLUSTER by using the unified similarity s(ti , t j ) with k dense
cycles as initial centroids and β0

1 , . . . ,β0
m as initial weights.

At each iteration, based on unified cycle similarity scores, we
select the most centrally located cycles in a cluster as a cen-
troid, and assign the rest of cycles to their closest centroids.
The objective of clustering is to maximize intra-cluster cycle
similarity and minimize inter-cluster cycle similarity. Unlike
SE-CLUSTER, TC-CLUSTER utilizes the entropy measure to
determine the degree of importance of attributes when we bal-
ance the individual temporal similarity based on each attribute.
The weight update method computes the entropy of each kind
of attributes, and updates m weights accordingly after each
iteration. This process is repeated until convergence.

1) Initialization: We choose the weights β1 = . . . = βm =
1/m as an initial input. Similarly, we utilize the hill-climbing
strategy to select k cycles, which have the local maxima of the
following density function, as the initial centroids {c0

1, . . . , c0
k }.

Definition 10: [Cycle Density Function] The density func-
tion of one cycle ti is the sum of the unified similarity scores
between ti and all other cycles in the objective cycles T .

C D(ti ) =
∑

t j ∈T,t j ̸=ti

s(ti , t j ) (21)

2) Vertex Assignment and Centroid Update: At the t th iter-
ation, we assign each cycle ti ∈ T to its closest centroid c∗ =
argmaxct

j
s(ti , ct

j ). The “average point” ti of a cluster Ci is
calculated as

s(ti , t j ) = 1
|Ci |

∑

tl∈Ci

s(tl , t j ),∀t j ∈ Ci (22)

where s(ti , :) is the average unified similarity vector for cycle
cluster Ci . The new centroid ct+1

i in cluster Ci is generated as

ct+1
i = argmint j ∈Ci ∥s(t j , :) − s(ti , :)∥ (23)

3) Clustering Objective Function: The objective of cluster-
ing is to maximize intra-cluster unified similarity and minimize
inter-cluster unified similarity.
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Definition 11 [Inter-cluster Similarity]: Let T be the set of
N cycles, s(ti , t j ) denote the unified cycle similarity between
cycles ti and t j , the inter-cluster similarity between clusters Cx
and Cy , denoted by s(Cx , Cy), is defined as follow.

s(Cx , Cy) =
∑

ti ∈Cx ,t j ∈Cy
s(ti , t j )

|Cx | × |Cy |
(24)

Definition 12 [Cycle Clustering Objective Function]: Let
T be the set of N cycles with the weight factors β1, . . . ,βm
for m attributes respectively, and k be a number of cycle
clusters. The goal of TC-CLUSTER is to find k parti-
tions {Cx }k

x=1 such that T = ⋃k
x=1 Cx and Cx

⋂
Cy = φ for

∀x, y, 1 ≤ x, y ≤ k, x ̸= y, and the following objective func-
tion O({Cx }k

x=1,β1, . . . ,βm) is maximized.

O({Cx }k
x=1,β1, . . . ,βm) =

∑k
p=q=1 s(C p, Cq)

∑k
p=1

∑k
q=1,q ̸=p s(C p, Cq)

(25)

subject to
∑m

l=1 βl = 1, βl ≥ 0, l = 1, . . . , m.
According to Eq. (7), we know that the numerator and

the denominator of the objective function O are both linear
functions of multi variables β1, . . . ,βm with non-negative real
coefficients. Thus, our clustering objective is equivalent to max-
imize a quotient of two linear functions of multiple variables.
We can easily utilize the same strategy proposed in Section IV-
C4 to prove that there exists a unique optimal assignment for
the weights β1, . . . ,βm to maximize the clustering objective
function in Eq. (25).

4) Entropy-Based Weight Self-Adjustment: Our dynamic
weight tuning method iteratively refines the initial weights
β0

1 , . . . β0
m and continuously improves the temporal cycle clus-

tering objective at each iteration. Let β t
l (l = 1, . . . , m) be the

attribute weights for each individual temporal similarity in the
t th iteration. All β0

l s are first initialized as 1/m. We then
iteratively adjust β t+1

l with an increment △β t
l . An information-

theoretic measure entropy is defined to reflect the homogeneity
of individual cycle clusters in different semantic environments,
i.e., measure how the various attributes with individual seman-
tics are distributed within each cluster.

entropy(al) = βl∑m
p=1 βp

k∑

i=1

n∑

j=1

−
nl∑

q=1

ρli jq log ρli jq (26)

where nl specifies the number of values of attribute al . For
example, there are four values of 354, 175, 365 and 78 on RR
in three cycles in Figure 8. ρli jq is the percentage of extent v j
in cycle cluster Ci which have the qth value on attribute al .
A small entropy indicates the generated clusters have higher
attribute homogeneity. Namely, if each extent has similar counts
for some access pattern in different cycles within cycle clusters,
then the entropy for this access pattern is very small. The weight
learning mechanism is designed as follows: if entropy(al) is
small, i.e., each extent has the similar counts on al within each
cycle cluster, which means it has a good clustering tendency,
then the weight βl should be increased; on the other hand, if

Algorithm 2. Temporal Cycle Clustering

Input: a cycle set T = {ti |i = 1, . . . , m}, a cluster number k,
the initial weights β0

p = 1.0.
Output: k cycle clusters C1, . . . , Ck .

1: Calculate s(ti , t j ) for ∀ti , t j ∈ T according to Eqs. (6)–(7);
2: Select k initial centroids with a local maximum of #neigh-

bors;
3: Repeat until O({Ci }k

i=1,β1, . . . , βm) converges:
4: Assign each cycle ti ∈ T to a cluster C∗ with a centroid c∗

where c∗ = argmaxc j s(ti , c j );
5: Update the centroids with the most centrally located cycle

in each cluster according to Eqs. (22)–(23);
6: Update each weight β t

p according to Eqs. (26)–(28);
7: Re-calculate s(ti , t j ) for ∀ti , t j ∈ T ;
8: Return C1, . . . , Ck .

entropy(al) is large, then βl should be decreased. The weight
increments △β t

l are calculated as

△β t
l =

1
entropy(al )

1
m

∑m
p=1

1
entropy(ap)

(27)

Similarly, the denominator in Eq. (27) ensures that the con-
straint

∑m
l=1 βl = m in Definition 12 is still satisfied after

weight adjustment. Then the adjusted weight is calculated as

β t+1
l = 1

2
(β t

l + △β t
l ) = 1

2

⎛

⎝β t
l +

1
entropy(al )

1
m

∑m
p=1

1
entropy(ap)

⎞

⎠

(28)

By assembling different parts, our temporal cycle clustering
algorithm TC-Cluster is presented in Algorithm 2.

V. EFFICIENT COMPUTATION OF RANDOM WALK

SIMILARITY

A. Reducing the Number of Matrix Multiplication

One issue with SE-Cluster is the computational complexity.
We need to compute (n + m)2 pairs of random walk similar-
ity scores among n structure (extent) vertices and m attribute
vertices through matrix multiplication. As αi1, . . . , αim are
updated, the random walk similarity scores need to be recal-
culated, as shown in lines 7-8 in Algorithm 1. The cost analysis
of SE-Cluster can be expressed as follow.

t · (Trandom_walk + Tcentroid_update + Tassignment

+ Tweight_update) (29)

where t is the number of iterations in the clustering process,
Trandom_walk is the cost of computing the random walk sim-
ilarity matrix R(i), Tcentroid_update is the cost of updating
cluster centroids, Tassignment is the cost of assigning all points
to cluster centroids, and Tweight_update is the cost of updating
weights.

The time complexity of Tcentroid_update or Tassignment is
O(n), since each of these two operations performs a linear scan
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of the graph vertices. The time complexity of Tweight_update
is O(n ∗ m) since we need to check the value of each extent
vertex on each attribute. On the other hand, the time com-
plexity of Trandom_walk is O(n3) because the random walk
similarity calculation consists of a series of matrix multiplica-
tion and addition. According to Eq. (5), R(i) = ∑l

γ=1 c(1 −
c)γ P(i)γ where l is the length limit of a random walk. To com-
pute R(i), we have to compute P(i)2, P(i)3, . . . , P(i)l , i.e.,
(l − 1) matrix multiplication operations in total. It is clear that
Trandom_walk is the dominant factor in the clustering process.

In this section, we aim to improve the efficiency of SE-
Cluster with a fast matrix computation technique. In other
words, we are studying how to compute the random walk sim-
ilarity matrix R(i) more efficiently. The core idea is to use the
Matrix Neumann Series [9] to reduce the number of matrix
multiplication operations.

We first introduce some preliminary concepts before dis-
cussing the fast random walk computation. Given a square
matrix A,

∑∞
i=0 ci Ai is called the Power Series of A (assume

A0 = I ). In particular, when all coefficients ci (i = 0, 1, . . .)
are equal to 1, the Power series of A is reduced to

∑∞
i=0 Ai . We

call it the Neumann Series of A. In related literature, we can find
the following theorems on Neumann series. (Theorems 5–9 and
the detailed proofs can be found in [9] and [56].)

Theorem 5: The Neumann series of A converges in the
normed space X if and only if A is a convergent matrix, i.e.,
limi→∞ Ai = 0.

Theorem 6: An arbitrary square matrix A is convergent if
and only if the module of each eigenvalue of A is smaller than
1.

Theorem 7: If the infinite Neumann series of a square matrix
A converges in the normed space X , then I − A is invertible
and its inverse is the sum of the series.

(I − A)−1 =
∞∑

i=0

Ai (30)

where I is the identity matrix in X .
The Neumann series provides approximations of (I − A)−1

when A has entries of small magnitude. For example, a first-
order approximation is (I − A)−1 ≈ I + A.

We know that a square matrix is invertible if and only if its
determinant is not equal to 0 or it has a full rank. A matrix that
is invertible is called nonsingular matrix. Singular matrices are
rare in the sense that if we pick a random square matrix, it is
almost surely not singular.

Theorem 8: If I − A is invertible, then the sum of the finite
Neumann series of a square matrix A is as follow.

l∑

i=0

Ai = (I − A)−1 · (I − Al+1) (31)

or

l∑

i=1

Ai = (I − A)−1 · (I − Al+1) − I (32)

where I is the identity matrix in X .

If we compare the right hand side of Eq. (5), i.e.,
∑l

γ=1 c(1 −
c)γ P(i)γ with the left hand side of Eq. (32), i.e.,

∑l
i=1 Ai , we

find that they are very much alike. Eq. (5) is actually the sum
of the finite Power series of the transition matrix P(i). If we
denote (1 − c)P(i) as a new square matrix P ′ and move the fac-
tor c outside of

∑
, then R(i) is the sum of the finite Neumann

series of P ′. Based on Eq. (32), we can rewrite the random walk
similarity matrix as follow.

R(i) =
l∑

γ=1

c(1 − c)γ P(i)γ

= c(I − (1 − c)P(i))−1 · (I − ((1 − c)P(i))l+1) − cI
(33)

To compute ((1 − c)P(i))l+1 in Eq. (33), we
need to compute ((1 − c)P(i))2, ((1 − c)P(i))4, . . . ,

((1 − c)P(i))2⌊log(l+1)⌋
. Thus the number of matrix mul-

tiplication operations can be reduced from (l − 1) to
(⌈log(l + 1)⌉ + 1). The additional “1” here refers to the
computation for (I − (1 − c)P(i))−1.

We call our clustering algorithm which uses Eq. (33) for
random walk similarity computation SE-Cluster-Opt, and call
the original version which uses Eq. (5) SE-Cluster. These two
algorithms only differ in the number of matrix multiplication
operations, but achieve the same clustering results. We will
compare their efficiency in Section VI.

B. Addressing The Non-invertible Matrix

In the above computation defined in Eq. (33), we assume that
the matrix I − (1 − c)P(i) is invertible. We denote the matrix
C = I − (1 − c)P(i). If it is not invertible, the Neumann series
formula can not be directly applied to solve the problem. In this
subsection, we will propose techniques to address this prob-
lem. The core idea is to attempt to find an invertible matrix Cn
to approximate the non-invertible matrix C = I − (1 − c)P(i)
while minimizing the difference between the two matrices.

The first step is to construct the Singular Value
Decomposition (SVD) form of the matrix C =
I − (1 − c)P(i). There is a theorem on SVD in [56].

Theorem 9: Suppose r is the rank of an m-by-n matrix C
whose entries come from the field K , which is either the field
of real numbers or the field of complex numbers. Then there
exists a singular value decomposition of the form below.

C = U(V T (34)

where U is an m-by-m unitary matrix over K and the columns
of U are the orthogonal eigenvectors of CT C ; ( is an m-by-n
diagonal matrix with nonnegative real numbers on the diagonal;
and V is an n-by-n unitary matrix over K and the columns of V
are the orthogonal eigenvectors of CCT .

Suppose λ1, . . ., λr are the eigenvalues of CT C or CCT , with
λi ≥ λi+1. Let σi = √

λi for 1 ≤ i ≤ r . Then we have (i i = σi
in the matrix ( for 1 ≤ i ≤ r , and zero otherwise. The diagonal
entries (i i are ordered in the descending order. In this case,
the diagonal matrix ( is uniquely determined by C but not the
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matrices U or V . The diagonal entries (i i are known as the
singular values of C .

With singular value decomposition, we can generate the
eigenvalues and eigenvectors of CT C or CCT . Given an
arbitrary matrix C , we have rank(CCT ) = rank(CT C) =
rank(C). Therefore, a full-rank approximation of C is equiv-
alent to that of CT C or CCT .

Next, we will use singular value decomposition to create an
invertible matrix Cn to approximate the non-invertible matrix
C . Since Cn has a full rank, we call this problem the full-
rank matrix approximation problem. It is actually a reverse
operation of the commonly used low-rank approximation oper-
ation. Given an n-by-n square matrix C with a rank r and an
n-by-n square matrix Cn with a full rank n, the matrix differ-
ence between C and Cn is measured by the Frobenius norm of
X = Cn − C . The Frobenius norm can be defined as follow.

∥X∥F =
√√√√

n∑

i=1

n∑

j=1

x2
i j (35)

Our goal is to find a new matrix Cn that minimizes the
Frobenius norm, while constraining Cn with the full rank n.
The following three steps are adopted to solve this full-rank
approximation problem:

1) Construct the SVD form of an n-by-n square matrix C =
U(V T .

2) A new matrix (′ is derived by substituting the n − r
zero diagonal entries of ( with different and very small
nonzero values.

3) Calculate the full-rank approximation of Cn = U(′V T .
Theoretical analysis of this full-rank approximation solution

is given in the following theorem.
Theorem 10: Cn is the full-rank approximation of C to min-

imize the Frobenius norm of X = Cn − C . See Proof in the
Appendix.

Therefore, we can substitute a singular matrix C = I − (1 −
c)PA with a full-rank matrix Cn in the finite Neumann series in
Eq. (33).

C. Handling Massive Attributes and Continuous Attributes

When the number of attributes is large, the computational
overhead for computing the random walk similarity on the
heterogeneous trace graph is nontrivial. In this case, we can
perform correlation analysis to detect correlation between
attributes and then perform dimensionality reduction to retain a
smaller set of orthogonal dimensions. Widely used dimension-
ality reduction techniques such as principal component analysis
(PCA) and multifactor dimensionality reduction (MDR) can be
used to create a mapping from the original space to a new space
with fewer dimensions. According to the mapping, we can com-
pute the new attribute values of an extent vertex based on the
values of its original attributes. Then we can construct a more
compact heterogeneous trace graph in the new feature space and
perform graph clustering.

To handle continuous attributes, discretization can be applied
to convert them to nominal features. Typically the continuous

TABLE II
TRACE DATASET SUMMARY

values are discretized into K partitions of an equal interval
(equal width) or K partitions each with the same number of
extents (equal frequency). In our experiment, there are four
attributes: RR, RW, SR and SR for each extent in the trace
datasets indicating whether the extent has frequent or rare
access on a certain access pattern. The access account achieved
by an extent on an access pattern is a continuous attribute.
According to the distribution of the access accounts in the trace
datasets, we discretized the access accounts into 12 partitions:
[0, 0], [1, 100], [101, 200], [201, 300], [301, 400], [401, 500],
[501, 600], [601, 700], [701, 800], [801, 900], [901, 1000],
[1001, +∞).

VI. EXPERIMENTAL EVALUATION

In this section we discuss insights obtained by employing
GraphLens on three different real world traces from three per-
spectives: spatial extent correlation analysis, temporal cycle
correlation analysis and hotspot characterization. For ease of
presentation, we divide similarity scores between 0 and 1 into
three groups: “More Similar” (red, [0.9, 1]), “Similar” (green,
(0.5, 0.9) ) and “Less Similar” (blue, [0, 0.5]). In addition, the
white area represents the extents without any activities in the
given cycle.

We use the three storage trace datasets described in
Section II. The trace characteristics are summarized in Table II.
All three storage trace datasets are collected every fifteen min-
utes. A cycle represents an interval of five minutes and thus
they will be three-cycle apart. We build a heterogeneous trace
graph for the workloads in each cycle where structure ver-
tices represent the combinations of Lun and Extent, attribute
vertices specify four access patterns of RR, RW, SR and SW.
Attribute edges denote the relationships between structure ver-
tices and attribute vertices, weighted with the corresponding
access count to each data unit within the cycle. We totally con-
struct 2,013, 2,008 and 2,011 trace graphs for three storage
traces respectively.

A. Spatial Correlation Analysis

Figures 10(a), (b), (c) and (d) show the individual spatial sim-
ilarity comparison based on each access pattern in the bank
trace. Both the x-axis and y-axis represent 8,097 extents in a
cycle. The similarity score is on a scale of 0-1 with 1 indicating
highest similarity. Figure 10(a) presents the spatial similar-
ity between any pair of extents based on random read access
pattern. We observe that a large number of extents across dif-
ferent volumes are very similar in behavior with respect to
random reads. The similarity matrices in Figure 10(b) (random
write) and Figure 10(d) (sequential write) are very similar to
each other but different from random read patterns. The same
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Fig. 10. Extent Similarity on Bank Trace.

Fig. 11. Extent Similarity on Email Trace.

Fig. 12. Unified Extent Similarity on Different Traces.

extents that exhibit strong similarity for random read accesses,
exhibit weak similarity for random write and sequential write
accesses.

Figures 11(a), (b), (c) and (d) represent the spatial similar-
ity matrix based on each access pattern for the email trace.
Figure 11(a) shows that most of spatial similarity between
extents based on random reads shows several regions of strong
similarity. Next observe that 11(b) and (c) which represents
the random write and sequential read patterns are dominated
by weak similarity. It is highly likely that most people usu-
ally access their emails at least once each day and mainly read
the emails without any reply. Thus, most of extents are very
similar based on random reads due to frequent as well as ran-
dom accesses. Figure 11(d) is dominated by average similarity.
Sequential writes typically represent backup and replication
activity in these environments and extents would be expected
to be similar in behavior for this access pattern. However, since
such activities are infrequent, the number of accesses are very

low, leading to a decision of “Less Similar”. This leads us to the
first set of observations.

• Observation 1: Similar behaviors are exhibited both
within and across volumes.

• Observation 2: Spatial similarity varies by the dimension
under consideration.

• Observation 3: Data expresses stronger similarity under
the random read access pattern.

Figures 12(a), (b) and (c) exhibit the unified random walk
similarity matrix on different trace datsets. We use our dynamic
vote-based weight tuning method in Section IV-C to learn an
optimal weight assignment for four types of attribute links: RR,
RW, SR and SW, to achieve high intra-cluster similarity and low
inter-cluster similarity, i.e., extents within clusters have simi-
lar access patterns, while the extents in different clusters have
diverse access patterns. The similarity matrix in Figure 12(a)
is similar to the similarity matrix in Figure 10(a). This demon-
strates that the unified random walk similarity on Bank Trace is



ZHOU et al.: ANALYZING ENTERPRISE STORAGE WORKLOADS 567

Fig. 13. Cycle Similarity on Bank Trace.

Fig. 14. Cycle Similarity on Email Trace.

dominated by the access pattern of random read. In comparison
with Figures 11(b) and (d), the similarity matrix in Figure 12(b)
mainly depends on the access patterns of random write and
sequential write. Since most of extents do not have these two
kinds (random write and sequential write) of access activities
extents that exhibit these activities are more alike each other
and more different from extents that do not exhibit the activity.
Figure 12(c) shows the unified random walk similarity matrix
on Store Trace, which is a relatively random distribution for
each of three kinds of similarities due to the lack of clear dis-
tinctions between extent access patterns. This leads us to the
following observations.

• Observation 4: When all data exhibits all types of
access pattern, the strongest access pattern (which is
most often random read) dominates the similarity met-
ric. This implies that data placement taking only random
read patterns into consideration is likely to provide good
results.

• Observation 5: When access type distributions are not
uniform across all extents, extents that exhibit more rare
access patterns exhibit stronger similarity under a uni-
fied metric. This implies that under such circumstances,
data placement must first consider the unified metric to
identify broader distinctions between extents and then
consider random reads as a secondary metric.

• Observation 6: When unified extent similarity weighted
on all access patterns exhibit a relatively random distribu-
tion as shown in Figure 12(c), this indicates that there is
no need to further explore attribute-specific spatial access
patterns.

B. Temporal Correlation Analysis

Figures 13(a), (b), (c) and (d) show the cycle similarity
matrix based on each individual access pattern on Bank Trace.
Both the x-axis and y-axis represent a period of one week
with 2,013 cycles in the trace dataset. Although the distribu-
tion of cycle similarity scores in each figure is quite different,
the following observations hold true for all figures.

• Observation 7: The red areas of “More Similar” are usu-
ally symmetric rectangle blocks, i.e., most of cycles are
more similar to its immediate neighboring cycles.

• Observation 8: There is clear periodicity exhibited by
the workloads. The red blocks occur periodically row-
wise and column-wise, i.e., the cycles similar to a cer-
tain cycle occur periodically. The length of each block
and the length of the region in between gives us the
repeating period of the workload for that specific access
pattern.

Figures 14(a), (b), (c) and (d) present the cycle similarity
comparison based on each access pattern on Email Trace. The
distributions of cycle similarity scores in Figure 14 are quite
different from the distributions in Figure 13: The distribution
of “More similar” cycles in Figure 14 are very dense in some
cycles but are relatively sparse in some cycles. By checking the
original trace dataset, we first divide 2,011 cycles into parts: the
first 30% of cycles correspond to the workloads of Saturday and
Sunday, the next 14% corresponds to workload on Monday and
the next 14% corresponds to the workloads of a holiday; the
remain cycles correspond to the rest of the week (workdays).
We observe the following phenomena.
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Fig. 15. Unified Cycle Similarity on Different Traces.

Fig. 16. Cycle Comparison by Extent Similarity on Email Trace.

• Observation 9: There are very few or no access activi-
ties during weekends and holidays. As a result the extents
within each cycle become relatively cold.

• Observation 10: Some extents have heavy workloads but
some extents have light workloads in workday cycles such
that the corresponding extents in different cycles have
quite different access patterns and the cycle similarity
scores among the workday cycles are relatively random.

Figures 15(a), (b) and (c) exhibit the unified cycle similar-
ity matrix on different trace datsets. We exploit our dynamic
entropy-based weight adjustment approach in Section IV-D
to learn an optimal weight assignment for cycle similarities
based on four kinds of attributes: RR, RW, SR and SW, to
achieve high intra-cluster similarity and low inter-cluster simi-
larity, i.e., the corresponding extents and their neighbors within
each cycle cluster have similar access patterns on all attributes,
while the corresponding extents and their neighbors in different
cycle clusters may have diverse access patterns. The similarity
matrix in Figure 15(a) is different from any similarity matrix
in Figure 13(a), (b), (c) and (d), i.e., decided by all four simi-
larity matrices in Figure 13. We check the original bank trace
dataset and observe that the workloads on each access pat-
tern are evenly distributed to different extents or diverse cycles
such that the workloads on any access pattern does not dom-
inate the unified cycle similarity matrix. In comparison with
Figures 14(c), the similarity matrix in Figure 15(b) is mainly
dominated by the access pattern of sequential read since the
workloads on sequential read are much more than each of other
three kinds of workloads. Figure 15(c) shows the unified cycle
similarity matrix on Store Trace, which depends on all similar-
ity matrices on four access patterns since customers’ purchasing

behaviors are relatively random during daytime. This leads us
to the next observation.

• Observation 11: when the similarity scores based on
each access pattern have the similar weighting factors.
This implies that we should first resort to the unified met-
ric to identify cycles with heavy workloads to guide us
to discover extents with frequent access activities in those
cycles.

Figures 16(a), (b) and (c) present the unified cycle similarity
comparison on Email Trace by using the unified extent similar-
ity matrix in each cycle. According to the distribution of extent
similarity scores, Cycle 12,605 are very similar to its succes-
sor, Cycle 12,608 but it is less similar to Cycle 13,541. This
demonstrates that our unified cycle similarity definition is a
good metric to measure the similar extent of two cycles. We
check the original email trace dataset and make the following
observations about Cycle 12,605 and Cycle 12,608: (1) most of
corresponding extents in two cycles have similar access patterns
with similar access counts; and (2) the corresponding prede-
cessors and successors for each extent in two cycles also have
similar access patterns with similar access counts. On the other
hand, we observe that most of same extents in Cycle 12,608
and Cycle 13,541 also have similar access patterns with sim-
ilar access counts. however, the corresponding predecessors
and successors for each extent in these two cycles have quite
different access patterns or relatively diverse access counts.

Figures 16(a), (b) and (c) present the unified cycle similarity
comparison on Email Trace by using the unified extent similar-
ity matrix in each cycle. According to the distribution of extent
similarity scores, Cycle 12,605 are very similar to its succes-
sor, Cycle 12,608 but it is less similar to Cycle 13,541. This
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demonstrates that our unified cycle similarity definition is a
good metric to measure the similar extent of two cycles. We
check the original email trace dataset and make the following
observation about Cycle 12,605 and Cycle 12,608.

• Observation 12: Most of corresponding extents in two
cycles have similar access patterns with similar access
counts; and the corresponding predecessors and succes-
sors for each extent in two cycles also have similar access
patterns with similar access counts.

• Observation 13: Most of same extents in Cycle 12,608
and Cycle 13,541 also have similar access patterns with
similar access counts. however, the corresponding prede-
cessors and successors for each extent in these two cycles
have quite different access patterns or relatively diverse
access counts.

C. Clustering Quality Evaluation

We compare our SE-Cluster and TC-Cluster with two rep-
resentative non-graph clustering algorithms, K-Medoids [54]
and K-Means [53]. For the last two clustering methods, we
combine the attribute-based similarity scores on each of mul-
tiple access patterns into a unified similarity matrix with the
equal weighting factors. The optimized version SE-Cluster-Opt
based on Neumann series is also tested for efficiency evaluation.

We use two measures to evaluate the quality of extent clus-
tering by different methods. We report the average metric value
for each measure based on N trace graphs, i.e., N cycles. The
Dunn index [57] is defined as the ratio between the minimal
intra-cluster similarity and the maximal inter-cluster similarity.

Dunn({Cl}ki
l=1) =

min
1≤p≤ki

∑
u,v∈C p

si (u, v)

max
1≤p<q≤ki

∑
u∈C p,v∈Cq

si (u, v)
(36)

where Dunn({Cl}ki
l=1) is bounded in the range [0,+∞). A

larger value of Dunn({Cl}ki
l=1) indicates a better clustering.

The Davies-Bouldin Index (DBI) [57] measures the unique-
ness of clusters with respect to the unified similarity measure.
It tends to identify set of clusters that are compact and well
separated in terms of the unified similarity.

DB I ({Cl}ki
l=1) = 1

ki

ki∑

p=1

maxq ̸=p
si (cp, cq)

σp + σq
(37)

where cx is the centroid of cluster Cx , si (cp, cq) is the unified
similarity between two centroids cp and cq , σx is the average
similarity of extents in Cx to cx . The smaller the value, the
better the quality.

Similarly, we use the same two measures to evaluate the
quality of cycle clustering by different clustering algorithms.

Figures 17 and 18 exhibit the extent clustering quality on
Store Trace and Email Trace by varying the number of clusters.
First, among all three clustering methods, SE-Cluster achieves
the best clustering performance for both evaluation measures
in most cases. Compared to other algorithms, SE-Cluster aver-
agely achieves 36.1% Dunn increase and 157.2% DBI improve-
ment on Store Trace, 28.6% Dunn growth and 395.7% DBI

Fig. 17. Extent Clustering Quality on Store Trace.

Fig. 18. Extent Clustering Quality on Email Trace.

decrease on Email Trace, respectively. Concretely, there are two
critical reasons for high accuracy of SE-Cluster: (1) the uni-
fied random walk similarity based on graph model provides a
natural way to capture both direct and indirect dependencies
between extents within each trace graph; and (2) the iterative
learning algorithm help the clustering model learn the opti-
mal weight assignment for different types of access patterns
to achieve a good balance between different types of attribute
edges in the heterogeneous trace graph. Second, it is observed
that K-Medoids usually outperforms K-Means on two datasets.
This is because K-Medoids improves the clustering quality
by restricting the centroids to real extents of the dataset. In
addition, in contrast to K-Means, K-Medoids is more robust
to noise and outliers because it minimizes a sum of pairwise
dissimilarities instead of a sum of squared Euclidean distances.

Figures 19 and 20 present the cycle clustering quality by
three algorithms on two datasets with different k respectively.
Similar trends are observed for the cycle clustering qual-
ity comparison: TC-Cluster achieves the largest Dunn values
(> 0.92) and the lowest DBI around 0.00006-0.00062, which
are obviously better than other two methods. As k increases,
the measure scores achieved by TC-Cluster remain relatively
stable, while the measure scores of other two methods oscillate
in a fairly large range.

D. Clustering Efficiency Evaluation

In this experiment, we compare the efficiency of different
clustering algorithms in Figure 21 on Store Trace and Email
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Fig. 19. Cycle Clustering Quality on Store Trace.

Fig. 20. Cycle Clustering Quality on Email Trace.

Fig. 21. Clustering Efficiency.

Trace respectively. Figure 21 shows that all methods have a
short clustering runtime on two datasets except SE-Cluster.
From two figures, we can observe that K-Medoids and K-
Means are the most efficient. SE-Cluster is usually 3 to 8
times slower than these two non-graph clustering methods, as
it iteratively updates the weights, computes the unified ran-
dom walk similarity and performs clustering, while K-Medoids
and K-Means calculate the unified attribute-based similarity
scores only once. In addition, we observe that SE-Cluster-
Opt significantly reduces the runtime cost of SE-Cluster to
around 1

4 − 1
2 , while achieving the same clustering quality.

This result shows that, with the Neumann series technique, SE-
Cluster only causes a relatively small overhead compared with
SE-Cluster.

Fig. 22. Bank Trace.

E. Hotspot Characterization

Hotspots can be defined as regions that have relatively higher
activity (hence “temperature” or “heat”) in comparison to its
surroundings. Understanding hotspot characteristics is essential
to data placement strategies, such as caching at host or stor-
age server by utilizing the “recency” [3], [58], and tiering by
exploring the “frequency” aspect [4], [59].

By using GraphLens, extents are classified into “Hot”,
“Warm” and “Cold” clusters for each cycle. An extent that
appears in the hot cluster at time t is referred to as a hotspot
at time t . A single extent can exhibit hotspot behavior in multi-
ple cycles and multiple extents can exhibit hotspot behavior in
the same cycle. Our dynamic weight assignment and update at
each clustering iteration reduce the possible bias introduced by
a single attribute dominating the clustering outcome. We use the
following two measures to classify hotspots from the temporal
and spatial clustering analysis results.

• Population Size: A summarization measure which
describes the number of unique extents that exhibit
hotspot behavior within a window (24 hours in this study)
of observation i.e. size of the hotspot.

• Intra-window Stability or Burstiness: The frequency
distribution of number of hotspot occurrences for each
unique extent within a window of observation. This mea-
sure is indicative of the burstiness and durability of
hotspot behavior within each time window.

Banking Transactions Workload. Figure 22(a) shows the
variation in hotspot population size over 7 days for four dif-
ferent access patterns. The x-axis and the y-axis represent the
day and the percentage of total dataset population that exhib-
ited hotspot behavior at any time during the day for a specific
access pattern. We see that the hotspot population size remains
fairly stable from day to day for all workloads. Random Read
(3%) and Random write (10%) are most stable. Sequential Read
(30%) and Sequential Write (17%) activities span relatively
larger population sizes but remain small compared to the total
dataset size.

Figure 22(b) shows the frequency distribution during a
24-hour period for which an extent exhibits hotspot behavior.
Random write workload exhibits the least burstiness with nearly
63% of the hotspots lasting longer than 75 minutes. Random
read and sequential read hotspots are relatively more bursty
with only 10% of the sequential read and random read hotspots
lasting longer than 75 minutes. On the other hand, sequential
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Fig. 23. Store Trace.

write is the most bursty with 90% of hotspots lasting less than
15 minutes in a day and nearly all hotspots lasting less than
30 minutes. We conjecture that random write workloads for
this application are probably best serviced by a tiering strategy.
On the other hand, random read and sequential read contain
a mix of bursty and stable hotspot behavior, a combination of
caching (to catch bursty hotspots) and tiering (to catch more
long term behavior) could be used. Sequential write exhibits
highly bursty behavior, which could be addressed with prefetch
caching.

Store Backend Workload. In the Store trace Figure 23(a)),
almost all data exhibits hotspot behavior at some point dur-
ing the day. Sequential write and random write hotspots
are limited to a smaller fraction of the dataset (3% and
35% respectively). However, sequential write and random
write hotspots show large variations in population size over
the week.

In Figure 23(b), sequential read and random read show
very identical behavior with 80% of the extents exhibit hot
spot behavior for nearly 4 to 5 hours a day. In comparison,
Sequential write and random write are relatively bursty with
nearly 60% and 70% respectively of the hotspots exhibiting
hotspot behavior for less than 30 minutes in a day. Given
the large population size and the low burstiness, these access
patterns may be effectively addressed by provisioning a high
performance tier (assuming that 8TB of cache may not be viable
option at every host and population such a large cache may itself
take several hours).

Email Server Workload. In this trace, unlike the other
workloads where the behavior was uniform across days, we see
a clear distinction between workload characteristics on regular
working days and holidays. Based on public holidays at the cus-
tomer location, Saturday (half-day), Sunday and Tuesday (not
confirmed) may have been holidays.

Figure 24(a) shows the population size of hotspots for the
four different access patterns. First, we observe that the average
population sizes are very high for sequential read (96%) and
random read (80%), moderate for Sequential write (62%) and
low for random write (22%). Also, note that random read and
sequential write patterns are impacted on holidays.

Next, Figure 24(b) shows the burstiness of various access
patterns in the workload. Note that sequential read and ran-
dom write are the least bursty (75% of hotspots lasting
longer than 7.5 hours in a day) followed by sequential write
(30% of the hotspots lasting for longer than 7.5 hours).

Fig. 24. Email Trace.

Random read is relatively burstier, without hotspots lasting
longer than 7.5 hours and yet, 70% of the hotspots last
between 1-5 hours. Although bursty compared to the other
access patterns, it may still be considered as a long-duration
hotspot.

The observations above lead us to the following conclusions.
Sequential read exhibits large population size (almost span-
ning the entire data), low burstiness and good stability across
days but should be treated as a secondary optimization crite-
ria since the skew is poor and population size is large. As a
result, one may be able to address this workload by proac-
tive data placement or prefetch algorithms based on temporal
analysis. Random write with small population size, low bursti-
ness and high overlap can be addressed by tiering. Random
read and sequential write demonstrate large population size,
mixed burstiness and significant overlap between days. These
two types of workloads may be addressed with a combination
of high performance tiers and caching.

VII. CONCLUSIONS

We have presented a novel graph analytics framework,
GraphLens, for mining and analyzing real storage traces. By
modeling storage traces as heterogeneous trace graphs to incor-
porate multiple complex and heterogeneous interactions among
storage entities into a unified network analytic framework,
we show that we can develop an innovative two-level graph
clustering method to identify and discover spatial/temporal
correlations and hotspot characterization. To combine multi-
ple correlations from different spatial and temporal interaction
networks, we design a dynamic weight tuning method and
a unified similarity measure with optimal weight assignment
scheme to integrate multiple trace graphs into a unified net-
work analytic framework by employing a heterogeneous graph
clustering method. We propose the optimization technique of
full-rank approximation to further improve the efficiency of our
clustering algorithm on large trace datasets. Extensive evalu-
ation shows the effectiveness of GraphLens for deriving deep
insights from graph based trace analysis. This intelligent tool
can be applied to both a single PC with multiple disks and a
distributed network across a cluster of compute nodes to offer a
few opportunities for optimization of storage performance such
as better storage strategy planning and efficient data placement
guidance.
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APPENDIX: PROOFS OF THEOREMS

Theorem 1: The NFPP in Definition 8 is equivalent to the
NPPP in Definition 9, i.e., γ = max

αi1,...,αim

f (αi1,...,αim )
g(αi1,...,αim ) if and only

if !(γ ) = max
αi1,...,αim

f (αi1, . . . ,αim) − γ g(αi1, . . . ,αim) = 0.

Proof: If (αi1, . . . ,αim) is a feasible solution of !(γ ) =
0, then f (αi1, . . . ,αim) − γ g(αi1, . . . ,αim) = 0. Thus
f (αi1, . . . ,αim) − γ g(αi1, . . . ,αim) ≤ f (αi1, . . . ,αim) −
γ g(αi1, . . . ,αim) = 0. We have γ = f (αi1, . . . ,αim)/

g(αi1, . . . ,αim) ≥ f (αi1, . . . ,αim)/g(αi1, . . . ,αim). Thus γ

is a maximum value of NFPP and (αi1, . . . ,αim) is an optimal
solution of NFPP.

Conversely, if (αi1, . . . ,αim) solves NFPP, then we have
γ = f (αi1, . . . ,αim)/g(αi1, . . . ,αim) ≥ f (αi1, . . . , αim)/

g(αi1, . . . ,αim). Thus f (αi1, . . . , αim) − γ g(αi1, . . . ,αim) ≤
f (αi1, . . . ,αim) − γ g(αi1, . . . ,αim) = 0. We have !(γ ) = 0
and the maximum is taken at (αi1, . . . ,αim).

Theorem 2: !(γ ) is convex.
Proof: Suppose that (αi1, . . . ,αim) is an optimum

of !((1 − λ)γ1 + λγ2) with γ1 ̸= γ2 and 0 ≤ λ ≤ 1.
!((1 − λ)γ1 + λγ2) = f (αi1, . . . ,αim) − ((1 − λ)γ1 + λγ2)

g(αi1, . . . ,αim) = λ( f (αi1, . . . ,αim) − γ2g(αi1, . . . ,αim))+
(1 − λ)( f (αi1, . . . ,αim) − γ1g(αi1, . . . ,αim)) ≤ λ max

αi1,...,αim

f (αi1, . . . ,αim) − γ2g(αi1, . . . ,αim) + (1 − λ) max
αi1,...,αim

f (αi1,

. . . ,αim) − γ1g(αi1, . . . ,αim) = λ!(γ2) + (1 − λ)!(γ1).
Thus, !(γ ) is convex.

Theorem 3: !(γ ) is monotonically decreasing.
Proof: Suppose that γ1 > γ2 and (αi1, . . . ,αim) is an

optimal solution of !(γ1). Thus, !(γ1) = f (αi1, . . . ,αim) −
γ1g(αi1, . . . ,αim) < f (αi1, . . . ,αim) − γ2g(αi1, . . . ,αim) ≤

max
αi1,...,αim

f (αi1, . . . ,αim) − γ2g(αi1,

· · · ,αim) = !(γ2).
Theorem 4: !(γ ) = 0 has a unique solution.

Proof: Based on the above-mentioned theorems, we
know !(γ ) is continuous as well as decreasing. In addition,
limγ→+∞!(γ ) = −∞ and limγ→−∞!(γ ) = +∞.

Theorem 5: Cn is the full-rank approximation of C to mini-
mize the Frobenius norm of X = Cn − C .

Proof: Since the Frobenius norm is unitarily invariant and
the SVD form of C is C = U(V T , an equivalent statement can
be generated as follow.

minCn ∥U T Cn V − (∥F (38)

as U T U = V T V = I . According to step (3) listed above, we
compute Cn by U(′V T . Thus we have

U T Cn V = U T (U(′V T )V = (′ (39)

Thus,

minCn ∥U T Cn V − (∥F = minCn ∥(′ − (∥F

= minσ ′
i

√√√√
n∑

i=1

(σ ′
i − σi )2 (40)

where ( has r non-zero diagonal entries and (′ has n non-
zero diagonal entries. When σi = σ ′

i for 1 ≤ i ≤ r , the above

equation is equivalent to

minσ ′
i

√√√√
r∑

i=1

(σ ′
i − σi )2 +

n∑

i=r+1

σ ′2
i = minσ ′

i

√√√√
n∑

i=r+1

σ ′2
i (41)

Here σ ′
i for 1 ≤ i ≤ n are different from each other since

both CT
n Cn and CnCT

n are full rank matrices. To minimize
Eq. (40), σ ′

i for r + 1 ≤ i ≤ n should be very small positive
numbers. Thus, the above equation is close to zero.

minσ ′
i

√√√√
n∑

i=r+1

σ ′ 2
i ≈ 0 (42)

Thus, Cn is the full-rank approximation of C to minimize
the Frobenius norm when σ ′

i = σi for 1 ≤ i ≤ r and σ ′
i ≈ 0 for

r + 1 ≤ i ≤ n.
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