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Abstract—Green cloud computing has become a major perfor-
mance measure for many infrastructure as a service (IaaS) cloud
data centers. A popular way to reduce energy consumption for
virtualized clouds is to dynamically consolidate virtual machines
(VMs) and turning off as many idle hosts as possible. Upon the
increase of the system’s workloads, the closed hosts will be re-
started to meet the scale-up demand of resources. However, the
time overhead of starting hosts and deploying VMs can delay the
start time of real-time tasks, and may cause deadline violation of
some real-time tasks. This problem can be further aggravated for
heterogeneous physical hosts. In this paper, we propose a novel
scheduling architecture that allocates an idle lash-up VM on each
active host. Besides, we develop a startup-time-aware scheduling
strategy to scale up the resource provisioning for these lash-up
VMs to mitigate the performance impact of host machine startup
time on real-time tasks. Furthermore, we propose a startup-time-
aware scheduling algorithm, named STARS, striving to guarantee
deadlines of real-time tasks, while exploiting the optimal operat-
ing frequencies and energy efficiencies of heterogeneous hosts to
achieve energy conservation. We conduct extensive experiments
to validate the efficiency of STARS using Googles workload
traces. The experimental results show that STARS outperforms
the existing scheduling algorithms in terms of guarantee ratio (up
to 19.10%), energy saving (up to 29.40%) and resource utilization
(up to 46.69%).

Index Terms—cloud computing, virtualization, scheduling,
real-time tasks, energy saving, startup time

I. INTRODUCTION

Cloud computing has become a popular distributed comput-
ing paradigm for delivering on-demand services to customers
in a “pay-as-you-go” cost model [1]. In order to satisfy
the soaring demand of cloud computing services, many IT
companies (e.g., Amazon, Google and IBM) are deploying ge-
ographically distributed data centers across different adminis-
trative domains around the world. Inevitably, the massive host
(servers) in cloud data centers consume enormous amount of
energy for computing and equipment cooling operations. It is
reported that the energy consumed by data centers worldwide
is about 1.5% of the global electricity use in 2010, and with the
current growth trend, the percentage will double by 2020 [2].
Since the high energy consumption incurs tremendous energy-
related costs, low reliability of physical hosts, and a large
amount of CO2 emissions [3], reducing energy consumption
have become a major demand in virtualized cloud data centers.

One effective way for energy saving is to dynamically
consolidate virtual machines (VMs) to a minimal number of

physical hosts, and enable more idle hosts to be turned off
[4], [5], [6]. There are two main reasons for energy saving
by VM consolidation. First, with the development of virtu-
alization technology, multiple VMs running on a single host
can support multiple applications simultaneously [5], [7] with
desired performance isolation, and this capability can also be
utilized for reducing the total number of active physical hosts
maintained in a cloud data center. It is reported that physical
hosts in a completely idle state still dissipate over 50% as
much power as when they are fully utilized [6], [8]. Thus,
reducing active host count becomes an attractive solution for
significant energy saving. Second, VMs can be migrated from
one host to another without stopping applications running on
them. When the overall workload on a server host decreases,
and some of the VMs are in idle state, one can consolidate the
active VMs to a small number of hosts by VM migration. This
allows further energy saving by turning off larger number of
under-utilized or idle hosts [6], [8].

However, VM consolidation requires careful planning for
real-time applications with execution timing constraints. To-
day, many applications in the clouds are running real-time
tasks with deadlines [4], [7]. These real-time tasks have
two distinguishing features: they are submitted dynamically,
and they demand both logical and temporal correctness of
computations [5]. Although consolidating resources can ef-
fectively reduce the energy consumption for virtualized data
centers, cloud platforms that support real-time applications
are confronted with another challenging issue, i.e., when a
large number of tasks arrives within very short time, the
systems workload increases suddenly, the cloud platform usu-
ally responds to such workload burst by adding more hosts
and deploying more VMs to meet the demand for more
computing resources. However, the time overhead of starting
new hosts and deploying VMs (about one minute) is non-
negligible, which will further delay the start time of real-time
tasks running on these host machines, and cause violation of
deadlines of some tasks.

When multiple VMs simultaneously run on the same host,
VMs access CPU resource in proportion to the weights that
VMs have been assigned. For instance, a VM with a weight
of 200 will get twice as much CPU as a VM with a weight of
100 on the same host. Furthermore, the weights of VMs can



be recalculated and re-allocated at runtime [9]. Thus, virtual-
ization technology has enabled resizing the CPU capacity of
VMs dynamically [9], [10], [11]. In this paper, we leverage
this technology to develop a real-time task scheduling scheme
that offers startup-time-aware resource provisioning for clouds.
First, we study how to mitigate the impact of host machine
startup time on the timing constraints and deadline require-
ments of real-time tasks. Second, we investigate the optimal
operation frequencies and energy efficiencies of heterogeneous
hosts to achieve energy saving in data centers.

This paper makes three contributions: (1) We propose a
startup-time-aware architecture for scheduling real-time tasks
in virtualized clouds. (2) We develop a startup-time-aware
strategy to mitigate the impact of host machine startup time
on timing requirements of real-time tasks with respect to
execution sequence and deadlines. (3) We design and imple-
ment a start-time aware real-time task scheduling algorithm
STARS, to guarantee timing requirements of real-time tasks,
while exploiting the optimal operating frequencies and energy
efficiencies of heterogeneous VM hosts to save energy.

The rest of this paper is organized as follows. Section II
briefly reviews the related work. Section III gives an overview
of scheduling architecture and problem formulation, followed
by the scheduling algorithm for real-time tasks in Section
IV. In section V, we conduct experiments to evaluate the
performance of our algorithm. Section VI concludes this paper.

II. RELATED WORK

In recent years, the issue of high energy consumption in
cloud data centers has attracted a great deal of attention. In
response to that, a large amount of energy-efficient scheduling
algorithms have been developed. Among them, there are three
typical categories: (1) virtualization based, (2) DVFS (dynamic
voltage and frequency scaling) based, and (3) combination of
the two approaches above.

Virtualization-based energy-aware scheduling approaches
appear in large numbers over the past several years. For
instance, Beloglazov et al. proposed three heuristics to con-
solidate VMs dynamically, and then turn off idle hosts to
reduce energy consumption [6]. Zhu et al. combined the
rolling-horizon optimization technique and two resource scale
strategies to form a novel scheduling algorithm EARH to
trade-off tasks’ schedulability and energy saving [4]. Quan
et al. developed a reconfiguration algorithm, based on request
prediction, to allocate hosts and VMs dynamically according
to system’s varied workload [12]. Wu proposed an algorithm
to calculate optimal speed for task executions according to
blocking conditions so as to minimize energy consumption
[13]. Hsu et al. developed an energy-aware approach for
virtual clusters by consolidating tasks [14]. Unfortunately,
these approaches do not consider the impact of startup time
of closed hosts on the timing requirements of real-time tasks,
inevitably violating deadlines of some real-time tasks.

Another branch is DVFS-based methods. For example,
Garg et al. developed near-optimal energy-efficient scheduling
policies that leverage DVFS technique to minimize energy

consumption and carbon emission and maximize the profit of
the cloud providers [15]. Kim et al. provided several schemes
for energy-aware provisioning of VMs for real-time services
[7]. Ren et al. proposed an algorithm AGENT to make trade-
offs among response time, resource utilization and energy
consumption by leveraging DVFS technique [16]. Zhang et
al. suggested an energy-aware algorithm called CloudFreq to
schedule bag-of-tasks in DVFS-enabled clouds, making bal-
ance between makespan and energy saving [17]. Kamga et al.
reported some experiments on dynamically scaling processor
frequency according to VM CPU load to save energy [18].
However, only the dynamic power (less than 50% of host
power [8]) can be controlled by DFVS technique, which has
limited efficiency on energy saving of cloud data centers.

There also exist some work investigating the combination
of VM consolidation and DVFS technique to save energy.
For instance, Ding et al. developed a new VM scheduling
algorithm, leveraging DVFS, to improve energy efficiency
while executing tasks with deadlines in cloud data centers
[19]. Lago et al. presented a scheduling algorithm to minimize
the energy consumption in a cloud computing environment
by using DVFS, load migration, and shutdown of under-
utilized hosts [20]. Hanumaiah et al. combined DVFS, task
migration and fan speed scaling techniques to make trade-off
between system performance and energy conservation [21].
However, the aforementioned approaches have no capability to
avoid the impact of machine startup overheads on the timing
requirements of real-time tasks.

III. MODELING AND PROBLEM FORMULATION

In this section, we introduce the models, notation, and
terminology used in this paper.
A. Scheduling architecture

In this paper, we design a startup-time-aware scheduling
architecture for virtualized clouds, as shown in Fig. 1. The
architecture consists of three layers: user layer, scheduling
layer and resource layer. In addition, the resource layer can
be further divided into two layers: VM layer and host layer.

Fig. 1. The startup-time-aware scheduling architecture

In cloud environment, users dynamically submit their appli-
cations to cloud providers. For the applications, we focus on
real-time, independent tasks denoted as T = {t1, t2, · · · , tm}.
For a given task ti, it can be modeled by ti = {ai, qi, di},
where ai, qi and di represent the arrival time, computation
length (in MHz), and deadline of task ti, respectively.



We target a virtualized cloud that consists of n phys-
ical hosts H = {h1, h2, · · · , hn}. Each host is charac-
terized by hj = {(fd

j , v
d
j ),mj , V Mj} where (fd

j , v
d
j ) =
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j , v

1
j ), (f

2
j , v
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j ), · · · , (fmax

j , vmax
j )} is a discrete set of

frequency-voltage pairs of host hj , mj is the memory size;
and VMj = {lvmj}

⋃
{vmj,1, vmj,2, . . . , vmj,|VMj |−1} is

the VM set on the host hj in which lvmj denotes the only one
lash-up VM on host hj ; vmj,k ∈ VMj , 1 ≤ k ≤ |VMj | − 1
represents the k-th VM on host hj ; and |VMj | is the count
of VMs on host hj . A lash-up VM can be modeled as
lvmj = {c(lvmj),m(lvmj)} where c(lvmj) and m(lvmj)
represent the CPU performance (in Hz) and memory required
for VM lvmj . Similarly, a non-lash-up VM is modeled as
vmj,k = {fj,k,mj,k} where fj,k and mj,k are respectively the
CPU performance (in Hz) and memory required for vmjk.

As illustrated in Fig. 1, the scheduling layer consists of
a rolling horizon (RH in short), a schedulability analyzer, a
resource adjuster and a resource monitor. The RH holds both
new tasks and waiting tasks, while the local queues of VMs
only contain the executing tasks (ETs). The schedulability
analyzer is responsible for generating task-to-VM mappings
and plan of scaling the resources according to certain objec-
tives and the resource information from resource monitor. The
resource adjuster conducts the plan of scaling resources.

The advantages of this scheduling architecture are: (1) It
can significantly improve the schedulability of real-time tasks.
Since all the waiting tasks are on RH rather than on VMs
directly, when new tasks with tight deadlines arrive, both
the waiting tasks and new tasks will be rescheduled, which
enables more tasks to be finished before their deadlines. (2)
The lash-up VMs on active hosts are helpful for mitigating the
impact of time overheads of starting hosts and deploying VMs
on deadlines of real-time tasks, without starting more hosts
and wasting unnecessary static energy consumption. When the
system’s workload increases, the lash-up VMs can be scaled
up immediately to execute some tasks with tight deadlines to
avoid the impact of time overhead of scaling resources on the
start of tasks. In addition, these lash-up VMs are deployed on
active hosts without starting more closed hosts, which is good
for reducing hosts’ idle energy consumption.

B. Energy model of hosts

In this paper, we consider the energy consumption of a phys-
ical host based on the CPU power. The power consumption of
a CPU can be categorized into the power when it is idle and
the power when it is active. For a CPU of host hj , its active
power consumption, pactivej , can be described as:.

pactivej ∝ vj
2 · fj . (1)

where (fj , vj) ∈ (fd
j , v

d
j ) is a frequency-voltage pair of hj .

The dynamic power (pactivej ) of hj can be approximated as:

pactivej ∝ fj
3. (2)

Let sj be the section of power consumption by the idle
host (e.g., 50% and 60%) and pmax

j be the maximum power

consumption when host hj is fully utilized. The power of host
hj can be written as follows [15]:

pj = pidlej + pactivej

= sj · pmax
j · ctj +

(1− sj) · pmax
j

(fmax
j )3

· (fj)3,
(3)

where ctj ∈ {1, 0} indicates whether hj is active at time instant
t, it is 1 when hj is active, and is 0, otherwise.

The total energy consumption (tecj) by host hj from time
st to time et can be approximated as:

tecj =

∫ et

st
(sj · pmax

j · ctj +
(1− sj) · pmax

j

(fmax
j )3

· (fj)3)dt. (4)

C. Problem formulations

Due to the heterogeneous processing capabilities of VMs,
the parameters eti,j,k, sti,j,k and fti,j,k are used to represent
the execution time, start time and finish time of task ti on
non-lash-up VM vmj,k respectively, and eti,j,k = qi/fj,k [4].
Obviously, the relation of the three parameters above is:

fti,j,k = sti,j,k + eti,j,k. (5)

Similarly, the parameters eti,j , sti,j and fti,j denote the
execution time, start time and finish time of task ti on lash-up
VM vmj , and eti,j = qi/c(lvmj).

The status variable xi,j,k is used to record whether the
deadline of task ti on non-lash-up VM vmj,k is guaranteed
or not. xi,j,k is 1 if task ti is mapped to vmj,k and fti,j,k is
not larger than di, otherwise, xi,j,k equals 0, i.e.,

xi,j,k =

{
1, if ti is mapped to vmj,k ∩ fti,j,k ≤ di,
0, otherwise.

(6)
Similarly, the status variable xi,j is used to record whether

the deadline of task ti on lash-up VM lvmj is guaranteed or
not.

In this paper, the primary objective is to maximize the ratio
of tasks finished before their deadlines, i.e.,

Max
m∑

i=1

n∑

j=1

|VMj |−1∑

k=1

xi,j,k

|T | +
m∑

i=1

n∑

j=1

xi,j

|T | . (7)

The amount of resources required for VMs on a host must
not be larger than the capacity of the host. This requirement
forms the scheduling constraint as:

fmax
j −

|VMj |−1∑

k=1

fj,k − c(lvmj) ≥ 0, ∀hk ∈ H;

mj −
|VMj |−1∑

k=1

mj,k −m(lvmj) ≥ 0, ∀hk ∈ H.

(8)

Subject to constraints in (8), the secondary optimization
objective is to reduce the total energy consumption (TEC)



for executing a set of tasks T from time instant st to et, i.e.,

Min
n∑

j=1

tecj =
n∑

j=1

∫ et

st
(sj · pmax

j · ctj

+
(1− sj) · pmax

j

(fmax
j )3

· (fj)3)dt.
(9)

We also focus on maximizing the average resource utiliza-
tion of hosts, so we have:

Max
m∑

i=1

n∑

j=1

(

|VMj |−1∑

k=1

xi,j,k+xi,j) ·qi/(
n∑

j=1

fmax
j ·wtj), (10)

where wtj represents the active time of host hj .
IV. ALGORITHM DESIGN

In this section, we design the algorithm STARS for resource
provisioning and real-time task scheduling.
A. The strategy for scaling up lash-up VMs

We firstly define the urgent tasks as those real-time tasks,
whose timing constraints cannot be guaranteed by initiated
VMs and will be violated by the time overhead of adding new
resources. In order to mitigate the impact of resources’ startup
time on the timing requirements of urgent tasks, we leverage
the mechanism of resizing CPU dynamically to develop a
three-step strategy to scale up lash-up VMs to execute these
urgent tasks as follows.

Step 1. If the remaining CPU resource of an active host can
satisfy the requirement of a lash-up VM, scale up the lash-up
VM’s CPU frequency directly.
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Fig. 2. An example of Step 1
We illustrate how the Step 1 works using an example in

Fig. 2 where the horizontal axis and vertical axis respectively
represent the memory and CPU resource of a host, and the
red dashed lines indicate the host’s maximal memory size and
CPU frequency. Each rectangular represents a VM, and the
length and height of a rectangular respectively refer to memory
size and CPU frequency of a VM. In addition, we use c(lvmj)
and rfj to denote the CPU frequency of lash-up VM lvmj

and the remaining CPU frequency of host hj . When the lash-
up VM lvmj on host hj is idle, its CPU resource provision
c(lvmj) will be compressed to a minimum value, and the
CPU operating frequency of host hj can be decreased to save
energy, as shown in Fig. 2(a). If the remaining CPU resource
rfj on host hj is larger than VM lvmj’s CPU resource
requirement, the CPU resource provision c(lvmj) of lash-up
VM lvmj will be immediately scaled up to execute the urgent
task, as shown in Fig. 2(b). After the urgent task is finished, the
VM lvmj’s CPU frequency and the host’s operating frequency
will be compressed, as shown in Fig. 2(c).

Step 2. If Step 1 is infeasible and the executing and waiting
tasks on some VMs can tolerate the delay of executing the
urgent task, transfer these VMs’ CPU resource to the lash-
up VM for executing the urgent task. After the urgent task is
finished, the lash-up VM’s CPU resource will be given back.
An example in Fig. 3 illustrates this step.
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Fig. 3. An example of Step 2

As shown in Fig. 3(a), before allocating the urgent task,
the lash-up VM lvmj , VM1 and VM2 are running on the
same physical host, and the lash-up VM occupies negligible
CPU resource of this host, while VM1 and VM2 can utilize
all the host’s CPU resource to run non-urgent tasks that have
been scheduled to them. When an urgent task arrives, we here
assume that the execution time of the urgent task is very short
and all the tasks on VM2 can tolerate the delay caused by
executing this urgent task. Step 2 will shift the CPU resource
of VM2 to the lash-up VM lvmj for the urgent task, as shown
in Fig. 3(b). After the urgent task is finished, the lash-up VM
will return all the CPU resource to VM2, as shown in Fig. 3(c).

Step 3. If the aforementioned two steps are infeasible, select
some VMs that all the executing and waiting tasks on them
can tolerate the delay of migrating them to other host, then
transfer these VMs’ CPU resource to the lash-up VM, and
migrate these VMs to other host after starting a host.

Fig. 4. An example of Step 3

The procedure in Fig. 4 is an example of Step 3. As Fig. 4(a)
shows, the lash-up VM lvm1 with negligible CPU resource
collocates with VM1 and VM2 on the host1 before an urgent
task arrives. We here assume that the executing and waiting



tasks on VM2 cannot tolerate the delay caused by executing
the urgent task, but can tolerate the delay of starting host2
and migrating VM2 to host2. As shown in Fig. 4(b), after the
urgent task is allocated to VM lvm1, the CPU resource of
VM2 is transferred to the lash-up VM lvm1, and an closed
host (i.e., host2) will be turned on at the same time. When
host2 is turned on, it comes to Fig. 4(c), VM2 will be migrated
from host1 to host2. After VM2 is migrated to host2, as shown
in Fig. 4(d), the CPU resource of VM2 will be increased to
satisfy the timing requirements of the executing and waiting
tasks on it. Then a new lash-up VM lvm2 will be created on
host2 for the subsequent urgent tasks.
B. Energy efficiencies of hosts

Due to the hosts’ heterogeneity, to finish the same workload,
different operating frequencies of hosts or using the different
hosts will generate different energy consumptions. In order to
reduce the energy consumption for cloud data centers, we first-
ly derive the optimal operating frequencies for heterogenous
hosts, and then define the energy efficiencies of these hosts.

Similar to [15], we derive the optimal operating frequen-
cies as follows. Suppose host hj needs to execute workload
Q without deadline. The relationship among execution time
(etj), host operating frequency (fj) and workload (Q) can
be approximated as etj = Q/fj [4]. Then, the total energy
consumption (tecj) of host hj for executing workload Q can
be translated as follows:

tecj =

∫ st+etj

st
(sj · pmax

j · ctj +
(1− sj) · pmax

j

(fmax
j )3

· (fj)3)dt

= sj · pmax · Q

(fj)
+

(1− sj) · pmax

(fmax
j )3

· (fj)2 ·Q.

(11)

The condition of host hj’s optimal frequency is

∂(tecj)

∂(fj)
= 0, i.e.,

− sj · pmax
j · Q

(fj)2
+ 2 ·

(1− sj) · pmax
j

(fmax
j )3

· fj ·Q = 0.
(12)

Thus, we have:

f∗
j = 3

√
sj

2 · (1− sj)
(fmax

j )3. (13)

Furthermore, since the CPU frequency of host can only
operate in a discrete set, i.e., fj ∈ fd

j = {f1
j , f

2
j , · · · , fmax

j },
we define the optimal frequency fopt

j of host hj as below.
Definition 1. The optimal frequency (fopt

j ) of host hj is
defined as: (a) fopt

j = f1
j , if f∗

j ≤ f1
j ; (b) fopt

j = ⌈f∗
j ⌉, if f1

j ≤
f∗
j ≤ fmax

j , where ⌈f∗
j ⌉ is the smallest discrete frequency not

less than f∗
j ; (c) fopt

j = fmax
j , if f∗

j ≥ fmax
j , i.e.,

fopt
j =

⎧
⎨

⎩

f1
j if f∗

j ≤ f1
j ,

⌈f∗
j ⌉ if f1

j ≤ f∗
j ≤ fmax

j ,
fmax
j if f∗

j ≥ fmax
j .

(14)

Since different hosts with optimal operating frequencies will
consume very different energy to finish the same workload.

Thus, when scaling up and down the hosts, selecting an
effective host is an effective way to reduce energy consumption
of the cloud platforms, and we define the energy efficiencies
of hosts as follows.

Definition 2. Energy-efficiency EEj of host hj is defined
as the ratio of the host’s optimal frequency (fopt

j ) to its energy
power when the host operates with the optimal frequency,
which can be written as:

EEj =
fopt
j

sj · pmax
j +

(1−sj)·pmax
j

(fmax
j )3 · (fopt

j )3
. (15)

From Definition 2, a host with larger EEj means the
system is more energy efficient, and the hosts with larger EEj

should be preferentially selected to execute the real-time tasks
when the system’s workload decreases. Oppositely, when the
system’s workload decreases, the hosts with less EEj should
be turned off first.
C. Scheduling algorithm

Similar to [5], the laxity time of tasks is used to determine
tasks’ urgency, which is defined as:

Definition 3. The laxity time li of task ti is

li = di − qi/min{fj,k}− ct, (16)

where min{fj,k} is the VMs’ minimal CPU capacity and ct
is the current time.

Based on the scheduling architecture in Fig. 1 and the
startup-time-aware strategy, we develop the algorithm STARS
as shown in Algorithm 1.

Algorithm 1: STARS: Startup-Times-Aware Scheduling
1 RH ← ∅;
2 while each new task ti arrives do
3 Delete the mapping of tasks in RH to VMs, and update

VMs’ ready time;
4 Add task ti to RH;
5 Sort all the tasks in RH by their laxity time in a

non-descending order;
6 foreach tw ∈ RH do
7 selV M ← select a VM that can finish task tw before

its deadline with the minimum finish time;
8 if selV M ==NULL then
9 selV M ← AddNewVM();

10 if selV M ==NULL then
11 selV M ← ScaleUpLashUpVM();
12 if selV M ! = NULL then
13 Map task tw to selected VM selV M ;
14 else
15 Reject task tw;

In order to save energy for virtualized data centers, when
deploying new VMs, function AddNewVM() given in Al-
gorithm 2 tries to maintain the operating frequency of each
active host as close to its optimal value as possible.

The function ScaleUpLashUpVM(), as shown in Algo-
rithm 3, is used to quickly scale up a lash-up VM for an



Algorithm 2: Function AddNewVM()
1 Select a kind of VM vmk with the minimum CPU frequency

requirement that can finish task tw before its deadline;
2 selHost ← NULL; minFit ← +∞;
3 foreach active host hj in the system do
4 if rfj ≥ c(lvmj) & (pfj − fopt

j )2 < minFit then
5 selHost ← hj ; minFit ← (pfj − fopt

j )2;

6 if selHost == NULL then
7 selHost ← select an off host with the largest EEj that

can contain vmk;
8 if selHost ! = NULL then
9 Turn on the host selHost;

10 if selHost ! = NULL then
11 Create VM vmk on the selected host selHost, denoted as

vmj,k;
12 Return VM vmj,k;
13 else
14 Return NULL;

Algorithm 3: Function ScaleUpLashUpVM()
1 Calculate the CPU frequency requirement c(lvmj) of lash-up

VM by Eq. (7);
2 foreach active host hj with idle lash-up VM lvmj in the

system do
3 if rfj ≥ c(lvmj) then
4 Increase the CPU frequency for lash-up VM lvmj ;
5 Return lash-up VM lvmj ;

6 foreach active host hj with idle lash-up VM lvmj in the
system do

7 if some VMs on host hj can tolerate the delay of finishing
task tw then

8 Transfer these VMs’ frequency to lash-up VM lvmj ;
9 Return lash-up VM lvmj ;

10 foreach active host hj with idle lash-up VM lvmj in the
system do

11 if some VMs on host hj can tolerate the delay of migration
then

12 Transfer these VMs’ frequency to lash-up VM lvmj ;
13 Start an off host and then migrate these non-lash-up

VMs;
14 Return lash-up VM lvmj ;

urgent task, and the function ConsolidateV M(), as shown in
Algorithm 4, will be called to dynamically consolidate VMs
and turn off idle physical hosts.

V. PERFORMANCE EVALUATION

To demonstrate the performance improvements gained by
STARS, we quantitatively compare it with two existing algo-
rithms - EARH [4] and Lowest-DVFS [7].

The metrics used to evaluate the system performance are
guarantee ratio (GR) as (7), total energy consumption (TEC)
as (9), resource utilization (RU) as (10) and the change of
active hosts’ count over time.

Algorithm 4: Function ConsolidateVM()
1 activeHosts ← all the active hosts in the cloud platform;
2 Sort activeHosts by hosts’ EEj in a non-descending order;
3 foreach each hj ∈ activeHosts do
4 candidateHosts ← activeHosts− hj ; migP lan ← φ;
5 foreach each VM vmj,k on host hj do
6 selHost ← NULL; minV alue ← +∞;
7 foreach each host hc ∈ candidateHosts do
8 if host hc can contain VM

vmj,k & (pfj − fopt
j )2 < minV alue then

9 selHost ← hc;
minV alue ← (pfj − fopt

j )2;

10 if selHost ! = NULL then
11 migP lan ← migP lan

⋃
(vmj,k, selHost);

12 else
13 migP lan ← φ; break;

14 if migP lan ! = φ then
15 Migrate all the VMs on host hj according to

migP lan;
16 Shut down host hj , and remove it from activeHosts;

A. Experimental setup
We compare the three algorithms in the context of Google

cloud traces [22]. Based on the analysis in [23], a rep-
resentative task set, including 955,626 tasks starting from
timestamp=1,468,890 to timestamp=1,559,030, is selected
as the testing sample. Fig. 5 (a) and (b) depict the distribution
of task count over the time, and the Cumulative Distribution
Function (CDF) of the execution times for tasks. From Fig. 5
(a), we can observe that the task count varies remarkably over
the time, which means that scaling up and down computing
resources according to system’s workload is necessary to
achieve energy saving. In addition, Fig. 5 (b) shows that the
execution time of more than 10% tasks is less than 10s. So,
the startup-time-aware polices are necessary to guarantee the
deadlines of these tasks with very short execution time.
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Fig. 5. The characteristics of Google traces.

Since the traces do not contain the information about
computation length and deadlines of tasks, we set these two
parameters of tasks similar to [23]. The computation length qi
of task ti is calculated based on the execution duration and
the average CPU utilization.

qi = (tsf − tss)× Uavg × Ccpu, (17)

where tsf and tss represent the timestamp of finish and
schedule event for task ti; Uavg denotes the average CPU



TABLE I
HOST CONFIGURATION PARAMETERS

Host Types Mem. Max Fre. Idle Power Max Power
(GB) (GHz) (W) (W)

Power. R630 64 2.3 51.2 287
RH2288H V2 48 2.4 68.7 137
Altos R380 24 2.2 71.5 316

GT350 12 3.0 79.5 264
Acer F1 16 2.4 88.1 197

Pro. DL160 16 2.5 148 233

usage of this task. The Ccpu represents the CPU processing
capacity, and we assume Ccpu=3000MHz.

We use deadlineBase to control a task’s deadline:

di = ai + (qi/2000)× deadlineBase, (18)

where ai represents the arrival time of ti.
To simulate the heterogeneous nature of hosts, we choose

the configuration parameters of six types of real hosts from
2008 to 20151, and set the number of each host type to 600.
The relevant parameters of these hosts are shown in Table I.
The parameters Max Fre., Idle Power, and Max Power in
Table I are respectively corresponding to the variables fmax

j ,
sj · pmax

j , and pmax
j in (9) and (11). We assume the cloud

platform offers four types of VMs, and their CPU resource
requirements (in MHz) range from 500 to 2000 with an
increment of 500. The startup time of a host is 60s and the
creation time of a VM is 30s.
B. Performance impact of task deadlines

Fig. 6 shows the impacts of deadlines on the performance
of the three algorithms. We vary the deadlineBase from 1.1
to 3.6 with an increment of 0.5, and select the first 550,000
tasks in the test set for this experiment.
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Fig. 6. Performance impact of task deadlines.

We observe from Fig. 6(a) that the guarantee ratios (GR) of
the three algorithms increase correspondingly with the increase
of deadlineBase (i.e., task deadline becomes looser). This
can be explained that as the deadlines of tasks are prolonged,
the time overhead of scaling up computing resources has

1http://www.spec.org/power ssj2008/results/

weaker impact on tasks’ deadlines. In addition, we can see
that STARS outperforms EARH and Lowest-DVFS on average
by 13.48% and 19.10% in terms of the guarantee ratio.

Fig. 6(b) shows that, with the increases of deadlineBase,
the total energy consumptions (TEC) of STARS and EARH
keep stable around at 8805 KW·h and 9461 KW·h, while
that of Lowest-DVFS decreases significantly from 13727 to
12389 KW·h. With respect to energy consumption, STARS
outperforms EARH on all the instances. This can be attributed
to the following two reasons. Firstly, STARS gives higher
priority to use the hosts with higher efficiencies when scaling
up and down hosts. Then, when deploying VMs to hosts,
STARS strives to make the operating frequency of each active
host as close to its optimal frequency as possible.

Fig. 6(c) shows that the resource utilization (RU) of the
three algorithms increase correspondingly with the increases
of deadlineBase, and this trend is especially outstanding with
Lowest-DVFS. As tasks’ deadlines become looser, more VMs
with less CPU requirement will be utilized, which is helpful
for increasing the resource utilization of active hosts. With
respect to resource utilization, STARS on average outperforms
EARH and Lowest-DVFS by 4.71% and 46.69%, respectively.

Fig. 6(d) depicts the fluctuation of active host count over
time for STARS, EARH and Lowest-DVFS. We can observe
from Fig. 6(d) that the active host counts of STARS and EARH
are dynamically varied according to the system’s workload,
while that of Lowest-DVFS experiences big rise and fall
because both STARS and EARH utilize the resources consol-
idation strategies to reduce active hosts when the system’s
workload decreases, but Lowest-DVFS has no the ability.
C. Performance impact of task count

We conduct a group of experiments to analyze the impact of
task count on the performance of the three algorithms. Fig. 7
illustrates the experimental results when the count of tasks
varies from 450,000 to 950,000 with an increment of 100,000,
and the deadlineBase is set to be 2.1.
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Fig. 7. Performance impact of task count.

In Fig. 7(a), we can see that the GRs for STARS, EARH and
Lowest-DVFS are respectively stable at 98.43%, 86.10% and



82.03%. Since there are infinite resources in clouds, when task
count increases, more hosts will be started up to execute more
tasks. However, not all the tasks’ deadlines can be guaranteed
although there are enough resources because starting a new
host or creating a new VM needs additional time overhead,
which may violate some urgent tasks’ timing constraints. In
addition, STARS improves the GRs of EARH and Lowest-
DVFS by an average of 12.53% and 16.66%, respectively.

Fig. 7(b) reveals that the TEC of the three tested algorithms
linearly increases with the count of tasks. This is because the
guarantee ratios of these three algorithms vary slightly around
different constants; the total tasks’ computation lengths are
linear to the number of tasks and the TEC of the system
is almost linear to the total computation length. On average,
STARS consumes less energy than EARH and Lowest-DVFS
by 5.56% and 29.40%, respectively.

The experimental results in Fig. 7(c) are consistent with that
in Fig. 6(c), so does the explanation.

The fluctuation trend of the three algorithms in Fig. 7(d)
is similar to that in Fig. 6(d), so does the explanation. From
Fig. 7(d), we can also find that the active host count of the
three algorithms is much lower than that in Fig. 6(d). The
reason is that the deadlines of real-time tasks become longer,
which allows less hosts to work longer to finish the total
workload while guaranteeing tasks’ timing requirements.

VI. CONCLUSIONS

In this paper, we focus on the time overheads of scaling
up resources delay the start and even violate the deadlines
of real-time tasks. We have presented a startup-time-aware
scheduling architecture and the EARH scheduling algorithm
that can make good trade-offs between the guaranteeing ratio
of real-time tasks and the energy consumption of the over-
all system. We evaluate the effectiveness of STARS through
simulation experiments on Google workload traces, showing
the effectiveness of the STARS approach, compared with two
existing known energy-saving scheduling algorithms.
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