

ESI-Cloud: Extending Virtual Machine Introspection for

Integrating Multiple Security Services

(+) Jiangchun Ren, (*) Ling Liu, (+) Da Zhang, (+) Huaizhe Zhou, (*) Qi Zhang
(+) School of Computer, National University of Defense Technology, Changsha, China

(*) School of Computer Science, College of Computing, Georgia Institute of Technology, Atlanta, USA

wwwrjc@163.com, lingliu@cc.gatech.edu, dadabop2003@163.com, zhz_alvin@foxmail.com, qzhang90@gatech.edu

Abstract—The cloud computing has become the most popular

service model with a proven ability to reduce costs and improve

resource efficiency. However cloud platform also suffer from

potent attacks from internal and external environment. The

cooperation with Managed Security Service Providers (MSSPs)

has becoming a compelling solution to the security and privacy

risks in the cloud platform. But it is difficult to deploy and

manage a variety of security service efficiently and effectively. In

this paper, we propose a novel framework, ESI-Cloud (Easy

Security services Integration Cloud), to facilitate the integration

of multiple managed security services into a cloud computing

platform. ESI-Cloud utilizes virtual machine introspection to

monitor and analyze the guest VMs execution information. It

also provides a client library with rich APIs and a management

console to the managed security service providers (MSSPs), with

which multiple security services can be easily integrated into the

basic cloud platform. We have implemented ESI-Cloud in the

Xen hypervisor platform and evaluated the system functionality

and performance.

Keywords—Cloud services; security services; VM introspection

I. INTRODUCTION

The cloud computing and services enhance flexibility,
scaling and availability, and provide the potential for reducing
ownership cost through utility-based computing. Although
more and more businesses are moving into the clouds, the fast
growth of cloud computing and cloud data centers has also
raised increased concerns about the growing potential of
security and privacy risks and vulnerabilities. Unfortunately,
the security prevention in clouds is still in its infancy. On one
hand, Infrastructure-as-a-Service (IaaS) is one of the
dominating cloud service provisioning models. The guest VMs
are considered the main source of security threats on the IaaS
platform because the cloud provider is hosting VMs without
being aware of their actual contents, and has no control over
the execution of those VMs. Most of IaaS cloud providers
offer the rental service for VMs and storage space without
offering special security protection for guest VMs. Tenants
must purchase and install different types of security software
(such as anti-virus, IDS, etc.) by themselves to protect their
VM executions and application services. Even those cloud
providers who offer recovery service are not equipped with
professional security measure, which could lead to inability to
find malware prevent advanced attacks by malicious hackers.

Referring to the solutions in traditional servers, which have
detached functions of business and security, some cloud
providers begin to cooperate with the Managed Security
Service Provider (MSSP). In this way could It is helpful to
introduce professional security services into the cloud
platforms. However, many problems remain open challenges:

1) The guest VMs in cloud platform are managed by
tenants. The security solutions provided by MSSPs may
become outdated when the VMs are in an offline state, which
may create a window of opportunity for malicious intent
before its updating. 2) It is difficult to integrate multiple types
of security services for legacy design and systems for different
architecture, data structure, access control policies, and so
forth. The implementation of some new functions, interfaces
and protocols may demand a lot of modifications and cause
unrealistic performance overhead for the basic cloud platforms.

In this paper, we present ESI-Cloud (Easy Security services
Integration Cloud), a novel framework to integrate multiple
managed security services by extending VMI techniques [1].
The ESI-Cloud service hosted on a special security VM, which
acts as the trusted back-end of VMI service. It can monitor and
track execution states of hosted VMs effectively, and renew or
modify the security and access control policies on the guest
VMs. We also offer a client library as the front-end with rich
APIs for the MSSPs; and implement a management console to
allow tenants to configure security policies and manage their
security services on their guest VMs. With ESI-Cloud service,
multiple security services can be easily integrated into the
cloud platform. MSSPs can share the current and historical
information about executions of VMs, and perform different
measurements and detection in parallel.

This paper makes three main contributions: (1) The
proposed ESI-cloud service solution can facilitate both cloud
service providers and cloud tenants to incorporate multiple
security services offered by different MSSPs. (2) The proposed
approach enables sharing of VM execution monitoring
information among different MSSPs, which can further ease
the management of structured metadata and different access
rights, as well as the implementation of various security
requirements. (3) The proposed approach employs parallel
processing for further improving the efficiency of VM security
protection in the cloud.

The rest of this paper is organized as follows: Section II
describes the architecture and design of the system. Section III
presents the implementation detail. Section IV shows the
evaluation results. We describe relative work in Section V, and
concludes the paper in Section VI.

II. SYSTEM ARCHITECTURE

The extended VMI framework has a special security VM
(Sec-VM), a manage console in Dom0 and a client library to
support integrating with all kinds of security services. The
system architecture is shown in Figure 1.

The Sec-VM acts as an effective back-end of VMI. It can
crawl and monitor various VM execution and resource
consumption information in guest VMs. The design of Sec-

mailto:wwwrjc@163.com
mailto:lingliu@cc.gatech.edu
mailto:dadabop2003@163.com
mailto:zhz_alvin@foxmail.com
mailto:qzhang90@gatech.edu

VM adopts the solution of running a “Just enough Operating
System (JeOS)”, which supports only the functions of the
installed software [13]. We use the LibVMI to introspect the
guest VMs. LibVMI[3] is an open-source implementation of
VMI supporting hypervisors such as Xen and KVM and it has
been used in many fields, such as integrity measurement[5],
monitor[6], IDS[7], and forensic[2]. In Sec-VM, the Crawl
module uses the VM’s raw information to create the live VM
state; the Pool module has some caches to buffer information
of guest VMs from VMI. The Policy module maintains a
unified security policy and the server-lib respond request from
client-lib and return various data required by services.

The client library act as front-end of VMI with variety of
APIs to support analysis and detection of guest VMs. The
security service could get information of guest VMs they need
to protect VMs. The front-end may be deployed in some
special VMs or physical servers.

The management console helps administrators in CSP to
manage Sec-VM, configure policy and approve access for third
independent security services.

Dm0 Sec-VM

VMM

Crawl

Policy

Guest VM

Apps

LibVMI

Server_Lib

Client Lib Client Lib Client Lib

...Monitor IDS Frensic

POOL

Console

Fig.1. System Architecture of ESI-Cloud Service

III. IMPLEMENTATION

We implement a prototype of ESI-Cloud based on Xen and
LibVMI. The current version is running on Xen 4.2. The Sec-
VM is a virtual appliance running Cent OS 6.4 JeOS. Sec-VM
is also isolated from other server network in a separate virtual
network. Our overall implementation is comprised of four
parts: (i) exposing VM runtime view; (ii) developing a client
library to support high level analysis and detection; (iii)
implementing a console to configure security policy and
authorize/revoke access permissions; (iv) optimizing
performance by leveraging data caching and parallel
processing.

A. Exposing VM State

The ESI-Cloud reconstructs an entire view in guest VM,
including hardware events, network flow, disk files and
memory state. Figure 2(a) illustrates the VMI information
collection process.

The memory view is the most important component for
ESI-Cloud, because it records many kernel data structures. We
install memory access triggers on the pages that contain the
kernel data structures of interest and bridge semantic gap just
as existing solution of CloudSec [9] and Virtuoso [11]. We

focus on how to read disk files, capture network packets and
get hardware events.

Ubuntu 12.04 has embedded blktap2 for Xen.Working in
conjunction with the kernel blktap driver, all disk I/O requests
from VMs are passed to the user space daemon (using a shared
memory interface) through a character device. The blkback
disks are also mountable in Dom0/Sec-VM without requiring
an active VM to be attached. So we can easily read, write files
in virtual disks and manage the read/write behavior.

The most common way to achieve network auditing inside
a guest VM (DomU) is to assign the physical interfaces from
the bare metal to the guest (pci mapping) such that the guest
sees the physical hardware. However it will only capture
traffic from sources to destinations external to the host. In
order to capture all traffic among the guest VMs on the Host,
we use Sec-VM to route all traffic between the host and guest
VMs and between guest VMs via host.

Event channels are the basic primitive provided by Xen for
event notifications. They essentially store one bit of
information, the event of interest is signaled by transitioning
this bit from 0 to 1. Guest VM receives notifications via an
upcall from Xen, indicating when an event arrives (setting the
bit). The LibVMI offers useful functions such as
‘vmi_register_event’, ‘vmi_clear_event’, ‘vmi_get_reg_event’,
‘vmi_events_listen’.

(a) (b)

Fig.2. Information collected and client library

B. Developing Client Library

In our current implementation, the interface of client
library is developed using the Linux RPC. Figure 2(b) gives an
overview. The client library makes RPC calls to the Sec-VM
for the target VM to be monitored and it returns results of the
LibVMI. We implement four types of APIs, including (i)
MemAPI to read/write memory buffer, symbols, system call
tables, process/module/dll list; (ii) DiskFileAPI to read or wirte
files in guest VMs, (iii) NetAPI, which get basic information
and capture packets of network; and (iv) Event-Hander, to
report or handle events from kernel of VM. These APIs utilize
a redirect module to translate the above calls from client-lib to
server-lib by secure network communication. Then, the server-
lib continues to call LibVMI or to get cache data in Pool.
Finally, the results are return to the respective security services.

C. Implementing Console

The console is provided for the administrators of cloud
provider to manage Sec-VM. It can start or stop the Sec-VM
by a special control interface, configure access rights for
different security services. We adapt the Access Control Lists
(ACLs) to define the list of access rights that each user has

with respect to a particular system object, such as a process list
or individual directory. Figure 5 shows an example ACL node
and its data structure. Each object has a security attribute that
identifies its access control list. The list has an entry for each
Sec-VM user with access privileges. The most common
privileges include the ability to read or write a list (register,
table, directory/file, buffer). We compact all access rights in
bits of one byte, and use a mask to retrieval these access
control policies.

D. Optimizing Performance

VM1 VM2

vNet

vOS

...

vDisk

vMem

vEvents

Type & version

Base addr

IP addr

Mac addr

Image path

Disk size

vCPU Registers

Kernel Tables

Base Addr

Lists

GDT addr

LDT addr

IDT addr

PSList

ModList

DllList

addr

handler
handler

handler
...

Pages

cache

…

addr

...

Fig.3. Data recorded for VMs

In ESI-Cloud implementation, we expand the caches for
system calls table, process list, modules/drivers list, dynamic
link library list, and so forth. Figure 6 shows some data
structures that we use to record all the objects in VMs. Each
object has sub links to physical address or buffer pages. Each
VM assigns a crawl thread to renew data periodically. Some
events are put into a FIFO, and evoke relative handler process.
At the same time, the system can trap in some critical events
and send them to the client-libs. This enables the security
services to make detection in time.

IV. EVALUATION

We evaluate our prototype through extensive experiments
by measuring the compliance with functions and the
performance overhead of enabling ESI-cloud services.

A. Experimental Platform

We construct an experimental platform on Xen with
LibVMI. The host server is a DELL server, with Intel Xeon E3
CPU with VT-x support. Xen 4.2 and Ubuntu 12.04 are
installed and the Sec-VM is installed with a kernel cutting
CentOS 6.4. We deployed another two guest VMs to run real
applications. We use a laptop as attack terminal, which uses
Nmap to launch some port scanning attacks. We modify the
open source tools of snort [12] and Volatility [4], to make
them act as the security services. We evaluate the performance
of our system with several micro-bench tools.

B. Testing Functionality

(1) Guest VM Monitoring. We monitor process running
in the guest VMs in ESI-Cloud and we can get basic
information of the process. We selected csrss.exe as example
and we compare the external view of mapping the introspected

VM’s physical memory to Windows OS kernel data structures
using ESI-Cloud, with the internal view of the VM using
Windbg and the results are shown in Figure 4(a) and Figure
4(b) respectively. By this way could we validate that ESICloud
service can bridge the semantic gap successfully.

(a) Internal view of process virtual address

(b) External view of process virtual address

Fig.4. Basic information of csrss.exe

 (2) Intrusion detection. We perform a test for intrusion
detection by using tool of Nmap to see if the modified snort
would be able to detect port scanning attack. After the Nmap
started to scan for a while, we did see that the modified snort
was able to detect and log it as an alert (shown in Figure 5).

Fig.5. Testing of port scanning detection with nmap

(3) Malware analysis. We select KBeast [14], to test
function of supporting forensic in our system. KBeast gains its
control over a computer by hooking the system call table and
by hooking the operations structures used to implement the
netstat interface to userland. Volatility detects all of these
hooks by enumerating and verifying each entry in the system
call table. This is implemented in the linux_check_syscall
plugin, which, for every member of the system call table,
either prints out the symbol name or, if it is hooked, prints out
the hook address. The result show as table 1.

TABLE I. HOOKS ADDRESS IN KBEAST

Kernel hook Original addr Detected addr

[S] read 0x0206c90 Oxf80d49f0

[S] write 0x0206c20 0xf80d51f0

[S] getdents/getdents64 0x02153a0 0xf80d5940

[S] unlink 0xc02121c0 0xf80d5340

[S] rmdir 0xc0212310 0xf80d5420

[S] unlinkat 0xc02122d0 0df80d5500

[S] rename 0xc0212010 0xf80d55f0

[S] open 0xc0d044a0 0xf80d5780

[S] kill 0xc015d6a0 0xf80d46a0

[S] sys_delete_module 0xc017e870 0xf80d5870

[FP] tcp4_seq_show 0xc0501980 0xf80d47d0

C. performance Analysis

To evaluate the overall performance of the ESI-Cloud
service, we run two existing LibVMI examples on ESI-Cloud

and on the original (unmodified) LibVMI. We perform
experiments in three different scenarios: (i) using the original-
LibVMI in Sec-VM, (ii) using ESI-Cloud in Sec-VM, and (iii)
using ESI-Cloud in a cross physical machine (Other-PM, e.g.
Monitor). We compute the average first cost time and second
cost time. For the system can use data in cache since second
time, we can see that ESI-Cloud has some overhead in the first
time, but is faster in the second time. This is because LibVMI,
Sec-VM and Client-Lib all have caches for process list and
module list. While in the first time, Sec-VM will do more work
than LibVMI, such as write lists into pool.

To check how much our solution can improve performance
by parallel execution, we repeat our experimental in the
decentralized platform and centralized 100 times in loop and
we can see that ESI-Cloud service gets higher performance of
12% by parallel processing.

TABLE II. BENCHMARK TIME

Time(ms)

Test
LibVMI Sec-VM Other-PM

1st 2nd 1st 2nd 1st 2nd

Process-list 21.23 17.37 23.58 15.54 25.12 17.43

Module-list 20.45 16.29 22.48 14.87 24.62 16.87

TABLE III. BENCHMARK TIME

Test Centralized Decentralized

Process-list 21.221ms 19.732ms

Module-list 19.325ms 18.975ms

V. RELATIVE WORK

A number of research projects have developed solutions to
employ VMI in a wide range of security protection areas, such
as intrusion detection [8], malware detection [7], digital
forensics [2] and so forth. Garfinkel et al. [8] proposed the idea
of virtual machine introspection, an approach to intrusion
detection which co-locates an IDS on the same machine as the
host of which it is monitoring, and it leverages a virtual
machine monitor to isolate the IDS from the monitored host.
Ahmed, et al. CloudSec [9] is a new virtualization-aware
monitoring appliance that provides active, transparent and real-
time security monitoring for hosted VMs in the IaaS model.
The research of CloudSec is similar with our work in terms of
extending VMI for security analysis, but ESI-Cloud
development is focused on integration of multiple security
services instead of only on security analysis. CloudVMI [10]
allows virtual machine introspection to be offered as-a-service
by cloud providers. It enables cloud centric introspection by
allowing VMI actions to be performed across different
physical machines.

VI. CONCLUSION AND FUTURE WORK

We have presented an extended VMI solution, called the
ESI-Cloud (Easy Security services Integration Cloud) service,
to facilitate the integration of multiple managed security
services into a cloud platform effectively and flexibly. A
dedicated security VM monitor and analyze the VM execution
of guest VMs and renew or modify security policies effectively.
A client library with rich APIs to the managed security service
providers (MSSPs) and a management console to configure
security policies, approve access for security services and so

forth. In ESI-Cloud, multiple security services can be easily
integrated into the basic cloud platform by sharing the real-
time monitoring data and historical information in VMs, and
performing various measurements and detections in parallel.
We are working on making the open source of ESI-Cloud
framework and library available. In addition, we plan on
further improving performance of caches and event hander, to
expand the capability of adapting more security services.

ACKNOWLEDGMENT

This work is carried out when Dr. Jiangchun Ren is a
visiting scholar in Georgia Institute of Technology. Authors
from NUDT are partially supported by the 863 project of
China under Grant Nos. 61433019. Authors from Georgia
Tech are partially supported by the National Science
Foundation under Grants IIS-0905493, CNS-1115375, NSF-
1547102, SaTC 1564097, and Intel ISTC on Cloud Computing.

REFERENCES

[1] Yulong Wang, Xianqiang Yang.Survey of the Virtual Machine
Introspection in Cloud Computing. Advances in information Sciences
and Service Sciences(AISS).Volume5(10), 2013

[2] A. L. Shaw, B. Bordbar, J. T. Saxon, K. Harrison and C. I. Dalton ,
Forensic virtual machines: dynamic defence in the cloud via
introspection , IEEE International Conference on Cloud Engineering

[3] Haiquan Xiong, Zhiyong Liu, Weizhi Xu, Shuai Jiao. Libvmi: A
Library for Bridging the Semantic Gap between Guest OS and VMM.
Proc. of the 2012 IEEE 12th International Conference on Computer and
Information Technology.

[4] Volatility Usage. https://github.com/volatilityfoundation/volatility/wiki/
Volatility-Usage. [Accessed on 10 Dec. 2015].

[5] Quynh NA, Takefuji Y. A novel approach for a file-system integrity
monitor tool of Xen virtual machine. Proceedings of the 2nd ACM
Sumposium on Information, Computer and Communications Security
(ASIACCS), 2007.

[6] Li N, Li B, Li J, et al. vMON: An Efficient Out-of-VM Process Monitor
for Virtual Machines. The IEEE 10th International Conference on High
Performance Computing and Communications (HPCC), 2013.

[7] Harrison, C., et al. Constructing a Cloud-based IDS by Merging VMI
with FMA. The 2012 IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).

[8] T. Garfinkel and M. Rosenblum, A Virtual Machine Introspection-
Based Architecture for Intrusion Detection, Proc. Network and
Distributed Systems Security Symp., The Internet Society, 2003, pp.
191-206.

[9] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy, Cloudsec:
A security monitoring appliance for virtual machines in the iaas cloud
model, Proceedings of 5th International Conference on Network and
System Security (NSS 2011).

[10] WOOK BAEK, H., SRIVASTAVA, A., AND DER MERWE, J. K. V.
Cloudvmi: Virtual machine introspection as a cloud service. IEEE
International Conference on Cloud Engineering (IC2E) (2014).

[11] T. Leek , M. Zhivich , J. Giffin and W. Lee , Virtuoso: Narrowing the
Semantic Gap in Virtual Machine Introspection, Proc. 32nd IEEE
Symp. Security and Privacy , 2011..

[12] The Open source Network intrusion Detection System. [online]
Available:http://www.snort.org/

[13] VMware, Virtual Appliances: A New Paradigm for Software Delivery,
2009, Available: http://www.vmware.com/files/pdf/vam/ VMware_
Virtual_Appliance_Solutions_White_Paper_08Q3.pdf.

[14] Carbone R. Memory analysis of the KBeast Linux rootkit[J]. 2015.

