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Abstract—With the proliferation of mobile devices and the im-
provement of wireless communication technology, an increasing
number of mobile devices are utilized for emergency management
and healthcare monitoring. Redundant data upload to the cloud
datacenters is gaining growing interest and attraction. One of the
main challenges for redundant data upload in the cooperative
mobile cloud is the optimization problem of how to provide high
utility and high energy efficiency for data upload in the presence
of intermittent connectivity and unpredictable bandwidth of
wireless and mobile network. In this paper, we formulate the
problem of redundant data upload in the cooperative mobile
cloud as an energy-constrained utility maximization problem
that aims at maximizing the amount of effective data uploaded
under the energy consumption constraints. We propose an online
distributed approach to enabling mobile devices to optimally
make upload decisions without depending on the current state
information of other devices and the prior knowledge of its own
future context. We provide a rigorous theoretical analysis and
an extensive suite of simulation experiments to demonstrate the
effectiveness and superiority of our approach.
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I. INTRODUCTION
Recent years have witnessed a drastic increase of mobile

devices. Cisco predicts that mobile users will surpass 4.5 bil-
lion in 2016 [1]. With the proliferation of mobile devices and
the improvement of information technology, mobile devices
are revolutionizing many aspects of our lives. To compensate
the limited battery capacity and computation power of mobile
devices, mobile cloud computing leverages the unlimited re-
source in the cloud backend for supporting resource-intensive
applications running on mobile devices. The capacities of
mobile devices, such as the storage capacity, are augmented by
offloading applications and data to remote cloud datacenters.

Challenges of Offloading Mobile Data. A noteworthy
phenomenon is that more and more mobile devices are applied
to the emergency managements [2], e.g., disaster response [3],
[4] and military operation [5]. Equipped with built-in sensors
like cameras and microphones, mobile devices are able to
collect and process a rich set of images and videos that record
the scene of disaster areas. However, the network in emergent
environments is highly dynamic where the intermittent connec-
tivity and unpredictable traffic congestion make the frequent
connection and offloading to remote datacenters infeasible. In
such scenarios, cooperative mobile cloud [6] consisting of a

group of adjacent mobile devices that share partial amounts
of computation capacities with other mobile peers paves an
effective avenue towards augmenting the computation capacity
of mobile device.

State of Art in Cooperative Mobile Cloud. Most of
the research projects on the cooperative mobile cloud have
been concentrated on the problem of augmenting mobile
devices’ storage capacity [7], [8]. The large volume of data
such as images and videos generated by one device can be
offloaded to nearby devices to alleviate the storage burden of
mobile devices in the presence of intermittent connectivity to
the remote cloud datacenters. Thanks to the high bandwidth
short-range communication and location proximity, leveraging
nearby peer mobile devices can significantly reduce the cost
and improve the performance compared with offloading data
to remote datacenters directly. To handle the unstable wireless
connection and the unpredictable mobility of mobile devices,
redundant data storage becomes a popular mechanism for the
cooperative mobile cloud [9], [10] where multiple duplicates
of data are stored in several devices to guarantee the reliability
of data, especially in emergency management applications.

However, little work to date has studied the problem of
uploading data with redundancy in the cooperative mobile
cloud. For the applications that require reliable distributed data
storage and upload in a dynamic network, such as in the sce-
narios of disaster response and exploration in mountains and
deserts, on one hand, the cooperative mobile leverages peer
mobile devices to store large volume of data such as images
and videos; and on the other hand, the cooperative mobile
needs to upload data to remote cloud backend for further data
mining and backup. When the dynamic upload channel is in
a poor connectivity state, the data are usually duplicated with
several copies stored in the peer mobile devices. After some
interval of time, each mobile device in the cooperative mobile
cloud decides whether or not to upload its data. How to make
an efficient upload decision is a critical and open problem
for the cooperative mobile cloud. There are several obstacles
to addressing this problem. First, in the adverse environment
of disaster response and military operation, using a centralized
solution to making the upload decision for each mobile device
may incur unacceptable communication and computation cost.
Also, the centralized approach can incur single-point failure



problem. Second, with the unpredictable mobility and the
dynamic multi-hop network between mobile devices, it is hard
for one mobile device to know the state and decision of other
mobile devices in a timely fashion. Two or more devices may
upload the duplicates of the same data, which brings no benefit
to the cooperative mobile cloud while wastes the energy of
mobile devices in performing redundant data upload. Finally,
the unstable network makes the device context highly dynamic
and unpredictable. It is impossible to solve the upload problem
precisely with an offline optimization approach in reality.

In this paper, we focus on the problem of uploading
data with redundant duplicates in the cooperative mobile
cloud with the objective of maximizing upload utility. The
cooperative mobile cloud is formed by a group of mobile
devices sharing their storage capacity to store data generated
by others cooperatively. In order to guarantee the reliable
storage, the same data may have multiple duplicates stored
among these mobile devices. Facing the upload challenges
discussed above, we design an online distributed scheduling
algorithm based on the idea of distributed correlated optimiza-
tion approach [11], which enables each mobile device to make
an independent upload decision without the prior knowledge
of mobile devices’ future context. The main contributions of
this work are summarized as follows: First, to the best of our
literature knowledge, this is the first work towards the efficient
decision of uploading data with redundant duplicates in the
cooperative mobile cloud by formulating the problem as an
energy-constrained utility maximization problem. Second, an
online distributed optimization framework is proposed in this
paper to help each mobile device make an upload decision
independently. The rigorous theoretical analysis argues that
the proposed algorithm is arbitrary close to the optimum over
the long run. Finally, extensive simulation experiments are
conducted to demonstrate the effectiveness of our proposed
optimization framework.

The rest of the paper is organized as follows. Section II
gives a brief discussion on the related work and Section III
describes the problem formulation. We describe the design of
our online distributed optimization framework in Section IV.
Section V verifies our algorithm through a series of simulation
experiments. We conclude the paper in Section VI.

II. RELATED WORK
The storage augmentation in cooperative mobile cloud is

a hot topic of both industry and academia. Moon et al. [12]
proposed an energy efficient storage augmentation approach
in mobile ad hoc network. A service-oriented framework is
designed by Abolfazli et al. [7] to alleviate storage limitations
by sharing resources of nearby mobile devices. In order to
guarantee the reliability of data, the redundant data storage
is widely used. Phoenix [8], a distributed storage protocol,
ensures data reliability by maintaining at least two copies
of data in the mobile cloud for one-hop network. Chen et
al. [10] presented a k-out-of-n framework that is able to
retrieve and process data successfully as long as k out of n
mobile devices are available. The previous work enables the
storage augmentation by the usage of adjacent mobile devices.

Nonetheless, the problem concerning how to upload these data
in the cooperative mobile cloud is still unsolved.

Uploading data to remote cloud datacenters incurs a heavy
energy burden on mobile devices, especially in a poor upload
channel. Many researches strive to address the issue of energy-
efficient data upload in a dynamic network. Lombardo et al.
[13] exploited the Markov model to design an energy-efficient
transmission protocol that is adaptive to the uplink channel
state. Xiang et al. [14] formulated the data transmission
problem as a discrete-time stochastic dynamic program. By
solving this problem, both the data throughput and the energy
consumption can be optimized. Fang et al. [15] presented an
online algorithm based on the Lyapunov optimization theory
for optimally controlling the data transmission. The algorithm
is able to minimize the energy cost and the dropping penalty
without any prior knowledge of channel state. These existing
researches focus on the energy-saving problem for one single
mobile device. In this paper, we attempt to optimize the
correlated upload procedure for multiple mobile devices in
a dynamic network.

Some existing researches in the field of mobile sensing try
to solve the problem of distributed data collection [16], [17].
Unfortunately, most of these researches ignore the effect of re-
dundant data which bring no utility while still incur cost [16].
Besides, the upload channel state is not considered in these
researches [17]. Differing from the mobile sensing problem,
our work focuses on the energy-efficient data transmission of
mobile devices. The channel state has a considerable effect on
the system performance. We attempt to optimize the redundant
data upload in a dynamic network, and hence enable mobile
devices to upload data in a highly efficient manner.

III. PROBLEM FORMULATION
A cooperative mobile cloud consisting of N mobile devices

is considered in our work. The cooperative mobile cloud
conducts upload procedures repeatedly. We use t to denote
the t-th upload procedure of the cooperative mobile cloud.
During the period between two upload procedures, some
mobile devices generate large volume of data such as images
and videos that record the scene of disaster area. To augment
the storage capacity of one single mobile device and improve
the reliability of data, these data are divided into several data
segments with the same size which are then duplicated to
several copies stored among the distributed mobile devices.
di(t) = (di1(t), di2(t), ..., diK(t)) represents whether a dupli-
cate of data segment is stored in the i-th mobile device at
the time of t-th upload procedure, where K is the type of
different data segments. dik(t) = 1 means that the duplicate
of k-th data segment is stored in the i-th mobile device, and
dik(t) = 0 otherwise. Let d(t) be a vector of these di(t),
d(t) = (d1(t), d2(t), ..., dN (t)).

When the upload channel is available, the cooperative
mobile cloud conducts a upload procedure. Considering the
different location of mobile devices, the channel states of
different devices may vary. Let ωi(t) denote the channel state
of i-th mobile device in the t-th upload procedure, where
ωi(t) ∈ Ω = {0, 1, ..., |Ω| − 1}. A large value of ωi(t)



means that the i-th mobile device is in a good channel state.
Hence, ωi(t) = |Ω|− 1 indicates the best channel state while
ωi(t) = 0 is the poorest. Let ω(t) be a vector of these ωi(t),
ω(t) = (ω1(t),ω2(t), ...,ωN (t)).

In the t-th upload procedure, mobile devices make decisions
on whether or not to upload the stored data segments based
on their own observed states. A binary variable αi(t) ∈ {0, 1}
is used to denote the decision of i-th mobile device. αi(t) =
1 indicates that the i-th mobile device decides to upload its
stored data segments in the t-th upload procedure, and αi(t) =
0 otherwise. Let α(t) be a vector of these αi(t), α(t) =
(α1(t),α2(t), ...,αN (t)). Then, the amount of effective data
segments (i.e., utility) collected in the t-th upload procedure
can be calculated as follows:

u(t) = û(α(t),d(t)) =
K∑

j=1

min{
N∑

i=1

dij(t)αi(t), 1} (1)

The above utility function is derived from the fact that each
data segment has multiple duplicates stored in several mobile
devices. When two or more devices upload the duplicates
of the same data segment, only one duplicate is effective
while the others are redundant. We assume that a mobile
device uploads all the data in every upload procedure if it
decides to upload data. Therefore, the energy consumption can
be determined by the channel state. Let pi(t) be the energy
consumption of i-th device in the t-th upload procedure. We
have the following equation:

pi(t) = p̂(αi(t),ωi(t)) (2)

The energy consumption function p̂(αi(t),ωi(t)) is studied
sufficiently in the empirical transmission energy models of the
previous researches [18]. Hence, we do not give the details in
this section. However, no matter what the detailed form of
energy consumption function is, it is obvious that a poorer
channel state incurs higher energy consumption of mobile
devices if they decide to upload data. Recalling the definition
of ωi(t), it can be concluded that p̂(αi(t),ωi(t)) is non-
increasing with the variable ωi(t).

The main objective of cooperative mobile cloud is to maxi-
mize the average amount of effective data segments collected
over the repeated upload procedures. Nonetheless, the energy
consumed by the uploads should be constrained by certain
values when taking the limited battery capacity of mobile
devices into consideration. Hence, we give the following
energy-constrained utility maximization problem:

max : u = lim
T→∞

1

T

t−1∑

t=0

E[u(t)] (3)

s.t. : pi = lim
T→∞

1

T

t−1∑

t=0

E[pi(t)] ≤ ci, ∀i (4)

Decisions are distributed. (5)

where ci is the average energy cost of i-th mobile device.

IV. ONLINE DISTRIBUTED OPTIMIZATION FRAMEWORK
It is a challenging work to solve the given energy-

constrained utility maximization problem in practice. Due to
the mobility of devices and the unstable upload channel, the
device context is highly dynamic and unpredictable, which
makes it impossible to solve the problem precisely with an
offline optimization approach in reality. What makes matters
worse is that a mobiles device does not know the device
context and the decision of others when it decides whether
or not to upload its data. In such a distributed environment, a
mobile device may upload redundant data segments that bring
no increment of utility while still consume energy. In order
to overcome these difficulties, we exploit the advantage of
distributed correlated optimization approach [11] to design
an online distributed scheduling algorithm that enables each
mobile device to make an optimal decision independently.
A. Complexity Pruning

In a upload procedure, each mobile device observes its
channel state and decides whether or not to upload its data.
We define αi = α̂i(ωi) where the i-th mobile device makes a
decision αi as a deterministic function of ωi. The distributed
decision of mobile devices is defined as a vector of α̂i(ωi):

α̂(ω) = (α̂1(ω1), α̂2(ω2), ..., α̂N (ωN ))

For each mobile device, it has two possible decisions,
α̂i(ωi) = 0, 1, in a channel state ωi. Consequently, the total
number M of possible strategies α̂(ω) is M =

∏N
i=1 2

|Ω|.
α̂(m)(ω) for m ∈ {1, ...,M} represents a specified distribut-
ed strategy among the M possible strategies. In the given
problem, we strive to choose a strategy α̂(opt)(ω) among the
possible strategies to maximize the amount of effective data
segments collected. Nonetheless, in reality, the exponential
value of M can be extremely large, which makes it infeasible
to enumerate possible strategies. Fortunately, based on our
analysis, most possible strategies are noneffective. It is able
to prune the value of M to a polynomial size. The detailed
complexity pruning is shown in the following part.

Theorem 1: For the problem given by (3)-(5), the optimal
strategy α̂i(ωi) is non-decreasing with the variable ωi, for all
i ∈ {1, ..., N}.

Proof: Fix two channel state ω, γ ∈ Ω, and ω < γ.
Suppose the optimal strategy satisfies α̂i(ω) > α̂i(γ). We
proof the theorem by finding new strategies that are able to
satisfy the non-decreasing property without loss of optimality.

Because α̂i(ω) > α̂i(γ), we have α̂i(ω) = 1, α̂i(γ) = 0.
Give two new strategies as below:

α̂i
low(ωi) =

{
α̂i(ωi) if ωi /∈ {ω, γ}
0 if ωi ∈ {ω, γ}

α̂i
high(ωi) =

{
α̂i(ωi) if ωi /∈ {ω, γ}
1 if ωi ∈ {ω, γ}

The above two strategies both satisfy the non-decreasing
property. Suppose the i-th mobile device is in the channel state
ω, γ with the probability pri(ω) and pri(γ), respectively. Then
we define a new stochastic strategy α̂i

′(ωi) as:



• α̂i
low(ωi) with probability pri(γ)/(pri(ω) + pri(γ));

• α̂i
high(ωi) with probability pri(ω)/(pri(ω) + pri(γ)).

We use [αi,α
−
i ] to denote the N -dimensional vector α,

where α−
i represents the (N − 1)-dimensional vector of αj ,

∀j ̸= i. Then, the utility function and the energy consumptions
of i-th device can be calculated as below:

• If ωi(t) = ω, and α̂i
low(ωi) is chosen as the new

strategy, then u(t) = û([1,α−
i (t)],d(t)), u′(t) =

û([0,α−
i (t)],d(t)); pi(t) = p̂(1,ω), pi′(t) = p̂(0,ω);

• If ωi(t) = γ, and α̂i
high(ωi) is chosen as the new

strategy, then u(t) = û([0,α−
i (t)],d(t)), u′(t) =

û([1,α−
i (t)],d(t)); pi(t) = p̂(0, γ), pi′(t) = p̂(1, γ);

• If neither of the above two conditions are held, then
u(t) = u′(t), pi(t) = pi′(t).

Then, we have:

E[u(t)− u′(t)] = pri(ω)
pri(γ)

pri(ω) + pri(γ)
·

(û([1,α−
i (t)],d(t))− û([0,α−

i (t)],d(t)))

+ pri(γ)
pri(ω)

pri(ω) + pri(γ)
·

(û([0,α−
i (t)],d(t))− û([1,α−

i (t)],d(t)))

= 0

E[pi(t)− pi
′(t)] = pri(ω)

pri(γ)

pri(ω) + pri(γ)
· (p̂(1,ω)− p̂(0,ω))

+ pri(γ)
pri(ω)

pri(ω) + pri(γ)
· (p̂(0, γ)− p̂(1, γ))

When αi(t) = 0, the energy consumed by uploading data is
zero. Hence, p̂(0,ω) = p̂(0, γ) = 0. In addition, considering
p̂(·) is non-increasing with ωi(t), we have p̂(1,ω) ≥ p̂(1, γ).
Therefore, E[pi(t)− pi′(t)] ≥ 0.

Consequently, the new strategy not only satisfies the non-
decreasing property but also reduces the averaged energy
consumption E[pi(t)] without loss of E[u(t)]. Because the
other energy consumptions pj(t), ∀j ̸= i are not determined
by αi(t), their values remain the same. Therefore, we are able
to conclude that the new strategy satisfies the non-decreasing
property without loss of optimality.

Theorem 1 argues that the optimal strategy α̂i(ωi) tends to
be large when ωi is large. Hence, the optimal strategy has the
following form:

α̂i(ωi(t)) =

{
0 if ωi(t) < ω∗

i (t)
1 if ωi(t) ≥ ω∗

i (t)

Consequently, the problem is transformed into finding the
threshold ω∗

i for each mobile device. As a mobile device has
|Ω| possible thresholds, the number of effective strategies is
pruned to M̃ =

∏N
1 |Ω|, which is acceptable because the

number of mobile devices participating the cooperative mobile
cloud in one region is usually not quite large.

B. Online Distributed Scheduling Algorithm
The key idea of distributed correlated optimization ap-

proach is that each mobile device chooses a strategy among
{α̂(1)(ω), α̂(2)(ω), ..., α̂(M̃)(ω)} in each upload procedure. It
is assumed that all mobile devices receive feedback concerning
the channel states ω(t) and the decisions α(t) at the end of
(t + D)-th upload procedure, where D ≥ 0 represents the
feedback delay of the system. This assumption is feasible in
reality, and can be easily implemented by piggybacking.

To begin with, we first transform the energy cost constraints
(4) into a queue stability problem. For each mobile device,
define a virtual queue Qi(t), and Q(t) = (Q1(t), ..., QN (t)).
Qi(t) is updated by the following equation at the end of t-th
upload procedure:

Qi(t+ 1) = max{Qi(t) + pi(t−D)− ci, 0} (6)

where Qi(0) = 0, pi(−1) = ... = pi(−D) = 0. Each
mobile device maintains the queues Q(t) and updates the
queues based on the feedback at the end of upload procedure
repeatedly. According to the proof in [19], if the virtual queues
are stable (i.e., limt→∞E[Qi(t)/t] = 0, ∀i), then the energy
cost constraints (4) are satisfied. We define the Lyapunov
function as below:

L(t) =
1

2

N∑

i=1

Qi(t)
2 (7)

The Lyapunov function represents a scalar metric of queue
congestion of Q(t). A small value of L(t) indicates that
the virtual queues of mobile devices have strong stability. In
another word, the energy cost constraints are satisfied. To push
the Lyapunov function away from a congestion state, we then
define the D-slot Lyapunov drift:

∆(t+D) = L(t+D + 1)− L(t+D) (8)

Intuitionally, minimizing the above D-slot conditional Lya-
punov drift is able to keep queue stability. To maximize the
utility function (1), the drift-plus-penalty technique [19] is
introduced, which transforms the energy-constrained utility
maximization problem into the minimization of the upper
bound for the following expression in each upload procedure:

E[∆(t+D)− V u(t)|Q(t)] (9)

The parameter V (≥ 0) is designed to control the tradeoff
between the queue stability and the utility. A lower value of
V implies that the cooperative mobile cloud tends to maintain
the queue stable (i.e., lower energy consumption) rather than
collect more effective data segments. The following lemma
provides the upper bound of expression (9).

Lemma 1: For a given V > 0. One has for each upload



procedure:

E[∆(t+D)− V u(t)|Q(t)] ≤ A(1 + 2D)−
N∑

i=1

ciQi(t)

+ E[
N∑

i=1

pi(t)Qi(t)− V u(t)|Q(t)]

(10)

where A =
∑N

i=1 c2i
2 .

Instead of minimizing the drift-plus-penalty expression di-
rectly, our approach strives to minimize the right-hand-side
(RHS) of inequation (10), and thus to maximize the lower
bound of the utility function while guaranteeing the stability of
Q(t); that is to say, the constraint (4) is satisfied. As a result,
by introducing the drift-plus-penalty technique, the energy-
constrained utility maximization problem can be solved by the
approach that each mobile device chooses a strategy among
{α̂(1)(ω), α̂(2)(ω), ..., α̂(M̃)(ω)} to minimize the RHS of
inequation (10) in each upload procedure.

Because the mobile devices do not know the channel states
and decisions of other devices in the current upload procedure,
the mobile device is unable to calculate pi(t) and u(t) in the
RHS of inequation (10). However, the feedback mechanism
makes the information concerning the channel states ω(t −
D) and the decisions α(t − D) available at the end of t-
th upload procedure. Motivated by the method proposed in
[20], p(m)

i (t) and u(m)(t) when using strategy α̂(m)(ω) can
be approximated by:

p̃(m)
i (t) =

1

S

S∑

s=1

p̂i(α̂
(m)
i (ωi(t−D − s)),ωi(t−D − s))

ũ(m)(t) =
1

S

S∑

s=1

û(α̂(m)(ω(t−D − s)),d(t−D − s))

where S is a positive integer representing a sample size.
The pseudocode of the online distributed scheduling algo-

rithm of each mobile device is presented in Algorithm 1.

Algorithm 1: Algorithm in t-th Upload Prodecure
1 foreach mobile device i ∈ {1, ..., N} do
2 Observe the channel state ωi(t) and the queue Q(t);
3 Choose a strategy among {α̂(1)(ω), ..., α̂(M̃)(ω)} that

minimizes
N∑
i=1

p̃(m)
i (t)Qi(t)− V ũ(m)(t);

4 Conduct the action αi(t) = α̂(m)
i (ωi(t));

5 Receive the feedback concerning ω(t−D) and α(t−D),
and update the queue Q(t) based on (6);

C. Performance Analysis
The following Theorem 2 gives the performance gap be-

tween the optimal solution and the solution achieved by our
algorithm.

Theorem 2: For arbitrary channel states of mobile devices,
for any V ≥ 0 and any S ≥ 0, we have:

• The gap between the optimal utility and the utility
achieved by our algorithm is:

uopt − 1

T

T−1∑

t=0

E[u(t)] ≤ A(1 + 2D)

V
+

E[L(D)]

V T

+O(1/
√
S),

(11)

where uopt is the maximum averaged utility under the
constraints of energy cost.

• Our proposed algorithm guarantees that the averaged
energy cost of each mobile device satisfy:

1

T

T−1∑

t=0

E[pi(t)] ≤ ci +O(

√
V

T
), ∀i (12)

Proof: In each upload procedure, the drift-plus-penalty
technique makes a decision to minimize the RHS of inequation
(10). Using the optimal solution to the problem (3)-(5) that can
be achieved by the exact correlated scheduling [11], we have:

E[∆(t+D)− V u(t)|Q(t)] ≤ A(1 + 2D)− V uopt

Taking expectations of the above inequation, we have:

E[∆(t+D)− V E[u(t)]] ≤ A(1 + 2D)− V uopt

Summing over t ∈ {0, ..., T − 1}, we can get:

E[L(T +D)]− E[L(D)]− V
T−1∑
t=0

E[u(t)]

≤ AT (1 + 2D)− V Tuopt
(13)

Because E[L(T + D)] ≥ 0, rearranging the above inequa-
tion, we have:

uopt − 1

T

T−1∑

t=0

E[u(t)] ≤ A(1 + 2D)

V
+

E[L(D)]

V T

Our algorithm uses the delayed feedback to approximate the
exact value. According to the analysis in [20], the performance
gap between the approximate method and the exact correlated
scheduling is O(1/

√
S). Therefore, the inequation (11) holds.

Rearranging inequation (13) again, we have:

E[L(T +D)] ≤ (B + CV )T

where B = E[L(D)] + A(1 + 2D), and C is defined as a
constant satisfying C ≥ E[u(t)]− uopt

Recalling the definition of L(t), we have:

E[
N∑

i=1

Qi(T +D)2] ≤ 2(B + CV )T

By the Jensen’s inequation:

E[
N∑
i=1

Qi(T +D)]

T
≤

√
2(B + CV )

T
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According to the proof in [19]:

1

T

T−1∑

t=0

E[pi(t)] ≤ ci +
E[Qi(T +D)]

T

Combining the above two inequations, we can conclude that
the inequation (12) holds.

Theorem 2 provides the gap between the averaged utility
achieved by our algorithm and the optimal utility as well as
the upper bounds on the averaged energy cost. Inequation (11)
indicates that by choosing a sufficient large value of V , the
averaged utility can be pushed arbitrarily close to the optimal
value. While a too large value of V , as shown in inequality
(12), will incur a higher energy cost. The cooperative mobile
cloud is able to make a flexible tradeoff between the utility and
the energy cost by adjusting the parameter V . Besides, a larger
sample size S also can push the solution to the optimal value.
However, it, at the same time, causes a longer scheduling time
and larger space to store the states.

V. PERFORMANCE EVALUATION
In order to evaluate the performance of our proposed

framework, we conduct a series of simulation experiments
in this section. A cooperative mobile cloud consisting of 8
mobile devices is simulated in our experiments. There are at
most 20 types of different data segments generated between
two upload procedures. To guarantee the data reliability, each
data segment is duplicated into 3 copies stored in these mobile
devices. There are 4 types of upload channel states denoted
by Ω = {0, 1, 2, 3}. In each upload procedure, the channel
state of a mobile device is randomly chosen from Ω with
the same probability. According to the empirical transmission
energy models [18], the transmission energy is inversely
proportional to the channel state ωi. Hence, the upload energy
consumption for a mobile device in different channel states
is set as {60,30,12,6} (J), respectively. The average energy
cost constraint of each mobile device is set as 8J. The default
feedback delay is D = 2, and the sample size is S = 20.
A. Verification of Cost-Utility Tradeoffs

We first verify the effectiveness of parameter V in our
algorithm as a control parameter to make a tradeoff between
the utility and the energy cost. Fig. 1(a) demonstrates that
the utility improves and converges to the optimal value with
the increase of V . However, the increase diminishes as the

utility approaches the optimal value gradually. This experi-
mental result verifies Theorem 2 which argues that the average
utility can be pushed to the optimal value with a gap of
O(1/V ). Nonetheless, the improvement of utility adversely
aggravates the energy burden of mobile devices as shown
in Fig. 1(b). Fortunately, our algorithm effectively avoids an
excessive energy cost of mobile devices. When V < 600,
the average energy cost is fewer than the constraint c = 8J.
Even when V = 1200, the average energy cost is merely
1.67% larger than the constraint. Together, the results show
the [O(1/V ), O(

√
V )] tradeoff between the utility and the

energy cost, which coincides with Theorem 2. To achieve a
large utility under the given energy cost constraint, we set
V = 600 in the following experiments.

We then further verify whether the energy cost constraint
is satisfied with different values of V . It can be seen from
Fig. 2 that the average energy cost with different values of
V descends significantly and converges quickly to the energy
cost constraint. For a smaller value of V , the decent speed
is higher. The average energy cost with V = 1, 100 rapidly
descends below the constraint after several upload procedures.
Meanwhile, the cost with V = 600, 1200 also converges to the
constraint when t > 100. These results argue that larger values
of V achieve a higher utility while suffer from prolonged time
for average energy cost to converge to the constraint.
B. Impact of Feedback Delay

Fig. 3 shows the performance impact of parameter D. It
can be found from Fig. 3(a) that the value of parameter D
has a significant impact on the utility. When the feedback
delay D is prolonged, the average utility descends obvious-
ly. It is intuitive to conclude that shortening the feedback
delay of the cooperative mobile cloud can notably improve
its performance. Thanks to the piggybacking technique, the
feedback information usually can be delivered in a relatively
short time. Although Fig. 3(b) shows the decrease of energy
cost, the curve of energy efficiency (Cost/Utility) indicates that
the system suffers a deteriorated energy efficiency when the
value of D becomes large, which means that the cooperative
mobile cloud consumes more energy to upload data.
C. Impact of Channel State

To illustrate the impact of channel state and the adaption of
our algorithm, we conduct a series of experiments where the
probability distribution of channel states change. The upload
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TABLE I: Distribution of Channel State
Pr[ωi(t)] ωi(t) = 0 ωi(t) = 1 ωi(t) = 2 ωi(t) = 3

Type 1 0.45 0.45 0.05 0.05
Type 2 0.05 0.05 0.45 0.45

procedure is increased to 900 times that is divided into three
phases. In the phase 1 (t < 300), the channel states for all
mobile devices have the same probabilities as given in the
previous experiments. In the phase 2 (300 ≤ t < 600), the
probability distributions abruptly changes to Type 1 distribu-
tion (a poor channel state) as shown in Table I. In the phase 3
(t ≥ 600), the channel states are randomly chosen with Type
2 distribution (a good channel state).

Fig. 4 demonstrates the average utility and the average ener-
gy cost over the 900 upload procedures. Values at each upload
procedure are averaged over 100 independent simulation runs.
The two vertical lines in Fig. 4(a) indicate that the cooperative
mobile cloud can adjust to the new optimal value once the
channel states change. This result argues that our algorithm is
adaptive to the unpredictable environment change. In addition,
the average utility achieved in the phase 2 is much lower than
that in the phase 1, based on which we can conclude that
the channel state is a bottleneck for improving the system
utility. Fig. 4(b) plots the average energy cost versus upload
procedures. Two noticeable disturbances can be observed at
the changes of channel states distribution. Nonetheless, the
energy cost quickly re-converges to the constraint after a few
upload procedures.

Considering the differences of channel states among mobile
devices, we further verify the adaption of our algorithm to the
abrupt changes of one mobile device. 600 upload procedures
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Fig. 4: Impact of Channel State

are divided into two phases. In the phase 1 (t < 300), the
channel states for all mobile devices are uniformly distributed
over Ω. In the phase 2 (t ≥ 300), the probability distribution
of mobile device 1 changes to Type 1 distribution, and that of
mobile device 8 changes to Type 2 distribution. Other mobile
devices keep the same probability distribution.
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Fig. 5: Impact of Independent Changes

From Fig. 5(a) and (b), it can be observed that neither the
average utility nor the average energy cost shows an obvious
disturbance at the change of channel state distribution. In order
to investigate the reason for this phenomenon, we plot the
average decisions of the mobile device 1 and 8. The decisions
α1(t) and α8(t) at each upload procedure are averaged over
100 independent runs. Recalling the definition of αi(t), a
large value of average decision means that the mobile device
tends to upload data at this upload procedure. In the phase 1,
the average decision of device 1 is similar to that of mobile
device 8. However, in the phase 2, as the channel state of
mobile device 1 becomes poor, its average decision fluctuates
significantly, and drops below 0.5 at many upload procedures.
On the contrary, the average decision of device 8 keeps above
0.95 in the phase 2, which indicates that the device 8 almost
decides to upload data at each upload procedure over the 100
runs. To show the trend clearly, we plot the cumulated average
decision

∑τ=t
τ=0 αi(τ) versus upload procedures in Fig. 5(d).

The curve of device 1 shows an obvious descending trend
after t = 300, while the curve of device 8 ascends. These
experimental results demonstrate the excellent adaption of our
algorithm. Although the mobile devices have no knowledge
about the current states of other devices when they make
decisions, relying on the advantages of distributed correlated
optimization, our algorithm still enables the distributed devices
to work collaboratively.

D. Performance Comparison
In order to show the performance improvement of our algo-

rithm (called distributed correlated upload decision, DCUD),



we compare it with three benchmark algorithms. GREEDY
is a distributed algorithm where a mobile device decides
to upload data once the average energy cost is below the
constraint. OPERA proposed in [15] is an online algorithm
aiming at minimizing the energy consumption and the data
dropping rate. Differing from these algorithms, CENTRAL is
a centralized algorithm that derives from GREEDY based on
the knowledge about the states of all mobile devices.
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Fig. 6: Performance Comparison

Fig. 6 shows the performance comparison of the four algo-
rithms with different energy constraints. The results demon-
strate a noticeable improvement of our algorithm, especially
when the energy constraint is tight, a common scenario in
emergency managements. When ci = 1, the utility improve-
ment comparing with GREEDY is up to 77.5%. When the
energy constraint is loose, our algorithm still outperforms
the benchmark algorithms except for CENTRAL. However,
CENTRAL, a centralized solution, is assumed to have the states
information of all mobile devices, which is infeasible in the
adverse environment as discussed in Section I.

VI. CONCLUSION
The cooperative mobile cloud is gaining a popularity as

an effective mechanism for augmenting the storage capacity
of mobile devices reliably through nearby mobile devices.
One of the main challenges in such cooperative mobile cloud
is how to upload the data with redundant copies to the
remote cloud backend. This paper formulates this problem as
an energy-constrained utility maximization problem. Inspired
by the idea of distributed correlated optimization approach,
an online distributed scheduling algorithm is developed to
enable each mobile device to make an independent decision
without the prior knowledge of future context. We provide
a rigorous theoretical analysis on reducing the complexity of
the algorithm. It is proved that our algorithm can approach
an average utility that is arbitrarily close to optimum, while
satisfying the energy consumption constraints. We conduct a
series of experiments to demonstrate the effectiveness of our
online distributed optimization approach.
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