
General Framework for Task Scheduling and
Resource Provisioning in Cloud Computing Systems

Xiaomin Zhu∗, Yabing Zha∗, Ling Liu†, and Peng Jiao∗
∗College of Information Systems and Management, National University of Defense Technology

Changsha, China 410073
Email: xmzhu@nudt.edu.cn, zhayabing@139.com, crocus201@163.com

†College of Computing, Georgia Institute of Technology
266 Ferst Drive, Atlanta, GA 30332-0765, USA

E-mail: lingliu@cc.gatech.edu

Abstract—Clouds have become an important platform to
deliver services for various applications. Task scheduling and
resource provisioning are key components to improve system
performance under provisioned resources and satisfy users’
demands for quality of service (QoS). To address the diversity
of cloud services and applications, much of recent research and
development efforts have been engaged in designing and imple-
menting scheduling strategies and algorithms for specific tasks,
such as dependent or independent tasks, fault-tolerant tasks with
real-time deadlines or energy-efficient tasks. However, these task
scheduling and resource provisioning schemes, though optimized
with specific objectives, suffer from several inherent problems in
cloud execution environments. In this paper, we propose a general
framework for task scheduling and resource provisioning in cloud
computing systems with dynamic customizability. By utilizing
software engineering framework as the design guideline, we
incorporate multiple scheduling objectives and multiple types of
tasks to be processed under varied resource constraints to enable
cloud applications to dynamically select and assemble scheduling
strategies and algorithms according to different runtime QoS
requirements. We illustrate the flexibility and customizability
of our framework through two example scheduling algorithms:
EASU and RAS. We validate the effectiveness of our proposed
framework through experimental evaluation of the effectiveness
of our proposed algorithms using both simulation and in real
cloud platforms.

I. INTRODUCTION

Cloud computing has become an enabling paradigm for
on-demand provisioning of computing resources. It achieves
scalability, cost-efficiency, and high resource utilization by
meeting dynamic and diverse workload requirements of ap-
plications through server consolidation by virtual machines
(VMs), and application consolidation by multi-tenancy and
pay-as-you-go utility computing model [1].

Cloud providers are motivated to improve resource utiliza-
tion for high throughput and high profit. However, mechanisms
for achieving high resource utilization may result in unaccept-
able response time for some users’ requests, inevitably hurting
the quality of service in terms of request latency. Thus, cloud
providers should make great effort to use possibly minimal
resources to accommodate as many requests as possible, and
at the same time, guarantee the quality of service for all users.
Hence, task scheduling and resource provisioning become
critical for clouds to achieve high efficiency in both resource

utilization and quality of service.
As the number of applications being deployed in the clouds

increases, the diversity of these applications grows rapidly,
ranging from business, government to various science and
engineering fields. These applications not only vary in task
types but also have distinct performance objectives. For ex-
ample, an application of genome mapping in bioinformatics
includes many events inferred from genetic sequence, which
can be formulated into multiple tasks with logical sequences
[2]. We call this type of tasks dependent tasks. In contrast, the
tasks such as Web requests are typically independent tasks. In
addition, many weather forecasting and medical simulations
applications have real-time deadlines, which, once broken,
make the result useless. Furthermore, most of the long running
tasks such as Web crawling systems typically require to be
fault tolerant to avoid high cost of roll back operations in
the presence of failure, although this type of tasks is less
sensitive to latency (the completion time) compared with those
with real-time deadlines. By guaranteeing fault-tolerance, the
tasks are allocated in a manner such that the impact of
a failure on system performance is minimized. Similarity,
one can also select energy conservation as the objective of
performance optimization, where the resources are used in a
manner to ensure that the total energy required to execute a
given workload is minimized.

To address the diversity of cloud services and applications,
much of recent research and development efforts have been
engaged in designing and implementing scheduling strategies
and algorithms for specific tasks, such as dependent or in-
dependent tasks, fault-tolerant tasks with real-time deadlines
or energy efficient tasks. However, these task scheduling and
resource provisioning schemes, though optimized with specific
objectives, suffer from several inherent problems. First, the
optimization goals, once set at the design time, will be stati-
cally built into the task scheduling and resource provisioning
algorithm and implementation as monolithic system compo-
nent, thus lacking flexibility and adaptability in the presence
of changing workload characterization, changing resource pro-
visioning and changing cloud execution environment. Second,
many task scheduling and resource provisioning strategies and
algorithms, though designed with varied different optimiza-



tion objectives, often share some common functional compo-
nents and employ similar software engineering framework for
implementation. However, adding new scheduling capability
needs to be done for each scheduling algorithm one at a
time, which is not only tedious but also expensive and error
prone. In this paper, we propose a general framework for
task scheduling and resource provisioning in cloud computing
systems with dynamic customizability. By utilizing software
engineering framework as the design guideline, we incorporate
multiple scheduling objectives and multiple types of tasks to
be processed under varied resource constraints to enable cloud
applications to dynamically select and assemble scheduling
strategies and algorithms according to different runtime QoS
requirements. We illustrate the flexibility and customizability
of our framework through two example scheduling algorithms:
EASU and RAS. We validate the effectiveness of our proposed
framework through experimental evaluation of the effective-
ness of our proposed algorithms using both simulation and in
real cloud platforms.

To the best of our knowledge, this work is the first one to-
wards the design and development of a general framework for
task scheduling and resource provisioning in cloud computing
environments.

This paper makes the following contributions. First, we
propose a general framework for task scheduling and resource
provisioning in the clouds to enable scheduling algorithms
to flexibly select objectives. Second, we construct a novel
scheduling structure to support flexible and adaptive resource
provisioning and task scheduling framework. Third but not the
least, we provide two example task scheduling schemes, each
with different objective and different task type, to showcase
the efficiency and effectiveness of our framework in terms of
software reuse and maintenance.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents the design overview
of our framework. System models for two examples are given
in Section IV. Section V introduces some relevant algorithms.
Section VI discusses the framework implementation in detail,
and presents experimental results and performance analysis.
Section VII concludes this paper.

II. RELATED WORK

Many task scheduling and resource provisioning methods
have been proposed in the context of cloud computing. In this
section, we review a selection of related work in the context
of different scheduling objectives and different task types.

In the context of energy-efficient scheduling, Cardosa et al.
investigated the problem of energy conservation in clouds,
and proposed an incremental time balancing algorithm that
explicitly made trade-off between energy consumption and job
run-time [3]. Deng et al. proposed an online control algorithm
SmartDPSS for power supply system in a cloud data center
based on the two-timescale Lyapunov optimization techniques
to deliver reliable energy with arbitrary demand over time
[4]. Singh et al. studied a cluster-based heuristic FastCEED,
to optimize the energy consumption using mixed integer

programming and duplication for communication intensive
applications [5]. Taking reliability as objective, many inves-
tigations employ different techniques. Wang et al. extended
the conventional PB model to incorporate the features of
clouds and comprehensively analyzed the constraints while
scheduling and considered the resource elastic provisioning
[6]. Plankensteiner and Prodan studied the fault-tolerant prob-
lem in clouds and proposed a heuristic that combines the task
replication and task resubmission to increase the percentage
of workflows that finish within soft deadlines [7]. Zhou et
al. studied the problem on enhancing the reliability of cloud
service using checkpoint technique where the identical parts
of all virtual machines that provide the same service are
checkpointed once as the service checkpoint image to reduce
the resource consumption [8]. Some work concentrates on
multiple objectives. For example, Chen et al., considered both
the energy-conservation and system uncertainty as scheduling
objectives and proposed a scheduling algorithm PRS using
proactive and reactive scheduling methods to control uncer-
tainty. Duan et al. focused on the execution time and economic
cost as two objectives and formulated the scheduling problem
as a sequential cooperative game [9].

From the task type point of view, there also exist a
lot of investigations for task scheduling and resource pro-
visioning. For instance, Rodriguez and Buyya suggested a
resource provisioning and scheduling strategy for scientific
workflows (dependent tasks) on IaaS cloud, in which the
particle swarm optimization technique was employed [10].
Mao and Humphrey designed, implemented and evaluated
two auto-scaling solutions to minimizing job turnaround time
within budget constraints for dependent tasks in clouds [11].
In contrast, Xiao et al. concentrated on independent tasks
and studied the dynamic request redirection and resource
provisioning for cloud-based video services [12]. Additionally,
some researchers pay attention to real-time task scheduling.
For example, Abrishami et al. studied a two-phase scheduling
algorithm named PCP for the cloud environment with the
goal of minimizing workflow execution cost and ensuring
predefined deadlines [13]. Hosseinimotlagh et al. proposed a
cooperative two-tier task scheduling approach to benefit both
cloud providers and their users in a real-time nature [14].
Non-real-time task scheduling are also studied in clouds. For
instance, Bittencourt studied the scheduling issue in hybrid
cloud to minimize the makespan of workflows without real-
time requirement [15].

Recent application consolidation efforts develop container
based technology for resource management, such as Cloud-
Stack 1, OpenStack 2, YARN [16], Apollo [17], etc. YARN is
one of the most representative pieces of work. It manages CPU
and memory resources as containers and allows application
task manager to dynamically request containers. However,
this container-based optimization is limited to the task level,
CPU and memory resource consolidation. These solutions lack

1https://cloudstack.apache.org/
2https://www.openstack.org/



of support for task scheduling and resource provisioning by
incorporating different performance optimization objectives,
such as fault-tolerance, energy efficiency, and different types of
tasks, such as dependent tasks, tasks with real-time deadlines.

III. DESIGN OVERVIEW

To design and provide scheduling management framework
for engineering implementation in IaaS Clouds, in this section,
we introduce three important aspects in cloud computing
resource management, i.e., scheduling management objective
(SMO), tasks type, and resource characterization.

A. Scheduling Management Objectives
In the context of cloud computing systems, the scheduling

resource management is to allocate tasks to a set of computing
resources and at the same time, provision suitable computing
resources to run these tasks. The following objectives are
becoming the focus for academic and industrial researchers.

1) Service Level Agreement: Service Level Agreement (S-
LA in short) is a service contract between cloud providers
(data centers) and users where a service is formally defined
[18]. Specifically, the service includes response time, process-
ing accuracy, cost and so on.

2) Energy Conservation: Cloud data centers consume
tremendous amount of energy which accounts for a significant
portion of worldwide energy usage [19]. High energy con-
sumption not only results in high expenses but also affects en-
vironment and system reliability. Thereby, much attention has
been drawn towards energy use minimization, whereby task
scheduling and resource provisioning are made by minimizing
the amount of energy needed to execute a given workload.

3) Reliability: Reliability is a basis to guarantee providing
high quality services for users in clouds. It is reported that
there will be one failure of servers per day for a system com-
posed of 10 thousand super reliable servers [20]. Therefore,
delivering fault-tolerant capability in clouds becomes a critical
issue to enhance the system’s reliability, especially for those
applications with high reliability requirements.

4) Uncertainty: Uncertainty control is an important issue in
clouds. Investigating how to measure and control uncertainty
is capable of efficiently improving the scheduling precision.
For example, the performances of virtual machines are varied
during running. If uncertainties are not effectively handled, the
scheduling decision maybe not work or even yield negative
impact for task running.

B. Task Types
There are a variety of tasks that are able to run on cloud

computing context. Especially, for a public cloud, many kinds
of tasks may be processed simultaneously. Generally, tasks can
be classified into four categories.

1) Independent and Dependent Tasks: Independent tasks
refer to the tasks among which there are no data and control
dependencies. In contrast, for dependent tasks, there is a partial
order between tasks or control dependencies. The tasks must
be executed in a certain order. Commonly, dependent tasks
can be modelled by a Directed Acyclic Graph (DAG).

2) Real-time and Non-real-time Tasks: Real-time tasks are
the tasks having deadlines, which means the tasks should be
finished within the a given timing constraint. On the contrary,
non-real-time tasks do not have deadlines, but it also pursues
to have quick response time.

3) Periodic and Aperiodic Tasks: For periodic tasks, the
interval time between two adjacent tasks’ arrival time is a
constant (i.e., periodic). So, once knowing the arrival time
of the first task, the arrival time of following tasks can be
calculated. However, the aperiodic tasks are the tasks whose
arrival times are not known a priori.

4) Priority and Non-priority Tasks: Priority tasks are the
tasks having priorities. The priorities can be given by 1) the
users when submitting their tasks; 2) the negotiation from both
users and resource providers; or 3) the calculation of systems
based on some task features such as the tightness of tasks
deadlines or the payment from users. As far as non-priority
tasks are concerned, they have no specified priorities.

For a task, it can belong to some or all the combinations
from the aforementioned four types. For example, a task can
be a real-time, independent, aperiodic task with priority.

C. Resource Characteristics
Clouds have two important features that should be addressed

in task scheduling and resource provisioning.
1) Virtualization: Virtualization is commonly used in cloud

environments to provide flexible and scalable system services
[21]. By employing virtualization technology, a single physical
host can run multiple virtual machines (VMs) simultaneously.
Consequently, VMs become basic computational instances
rather than physical hosts, thus tasks are allocated to VMs
instead of directly to physical hosts.

2) Dynamic Resource Provisioning: The distinct feature
from other computing environments is that the resource provi-
sioning of clouds is in a “pay-as-you-go” manner [22], which
means resource provided by clouds is elastic according to the
users’ demand. Specifically, a cloud can be scaled up to satisfy
the increased resource requests and scaled down to improve
the system’s resource utilization when the demand is reduced.

Fig. 1 illustrates the design overview in our scheduling
framework. Different assembles of scheduling management
objectives, tasks types and resource characteristics will em-
ploy specific algorithms, which from an algorithm library.
For example, in Fig.1, the scheduling management objectives
are SLA and reliability; task type is independent, real-time,
aperiodic and having priority, combining the cloud features -
virtualization and dynamic provisioning, Algorithm 1 should
be specifically designed and implemented. It is worth noting
that diverse task scheduling and resource provisioning algo-
rithms can be designed and added to the algorithm library to
deal with different tasks with given objectives.

IV. SYSTEM MODEL

To support any kinds of task scheduling and resource
provisioning, we design a general scheduling architecture that
enables to handel different scheduling management objectives
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Fig. 1. Design Overview of Scheduling Framework.

and task types. Based on our proposed scheduling architecture,
we present two scheduling models for some combinations in
terms of SMO, task type and resource feature.

A. Scheduling Architecture
Fig. 2 illustrates the scheduling architecture for task

scheduling and resource provisioning. It consists of Task
Analyzer, SMO Analyzer, Objective Pool, Task Scheduler,
Resource Monitor, Resource Allocator, Algorithm Library, and
Resource Pool. When a new task arrives, the steps of task
scheduling and resource provisioning are as follows:
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Fig. 2. Scheduling Architecture.

Step 1. The Task Analyzer firstly gets tasks’ attributes such
as arrival time, estimated execution time, deadlines and task
types. Then it sends these information to SMO Analyzer and
Task Scheduler.

Step 2. The SMO Analyzer decides which objectives should
be selected. The SMO decision can derive from three aspects,
i.e., task nature, resource state, and system providers. For
instance, if some tasks have high reliability requirements (e.g.,
patient monitoring), the reliability should be added into the

selected objectives; otherwise for some Web surfing request
tasks, the reliability may not be included due to having extra
cost. Another example, in emergency such as earthquake data
processing, energy conservation can be put into the second
position whereas quick response becomes dominated, so the
energy reduction may not be incorporated into SMOs.

Step 3. Based on the analysis from SMO Analyzer, the
selected objectives can be produced. Obviously, as shown in
Fig. 1, there are multiple combinations in terms of objectives.
Then these objectives will be sent to Task Scheduler.

Step 4. The Task Scheduler calls specific algorithm from
algorithm library based on the task nature, selected objectives
and current resource information from Resource Monitor, and
then allocates tasks to a VM for execution. At the same time,
the Resource Monitor constantly collects the allocated task
state information and reports them to Task Scheduler. If some
tasks cannot be finished as expected, correction mechanisms
will be used to handel them.

Step 5. The Resource Allocator works in two cases. 1)
When a task cannot be finished within expected time using
current active hosts, the Resource Allocator will create a VM
to accommodate this task. Creating VMs can be realized by
starting a host and then put a VM on it or consolidating VMs
and then add a new VM. 2) If the system is in light load,
Resource Allocator will make resource consolidation and then
shuts down some hosts or leaves them in sleep mode.

B. Scheduling Model
To support our flexible scheduling framework, in this sub-

section, we present two examples by combining different
scheduling management objectives and task types. 1) Example
1 considers energy conservation and uncertainty as objectives
for real-time, independent, aperiodic tasks without priorities,
whereas 2) Example 2 takes reliability as its objective for real-
time, dependent, aperiodic tasks without priorities.

1) General Scheduling Model: In our framework, some
general scheduling models can be obtained to make them reuse
in any case. For example, the virtualized cloud computing
resource can be modeled as a general one as follows:

We consider a virtualized cloud that consists of a set H =
{h1, h2, · · · } of physical computing hosts. The active host set
is modeled by Ha with n elements, Ha ⊆ H . For a given host
hk, its processing capability pk is characterized by its CPU
performance in Million Instructions Per Second (MIPS). For
each host hk ∈ H , it contains a set Vk = {v1k, v2k, · · · v|Vk|k}
of virtual machines (VMs) and each VM vjk ∈ Vk has the
processing capability pjk that is subject to

∑|Vk|
j=1 pjk ≤ pk.

The ready time of vjk is denoted by rjk.
In addition, some task attributes can be modeled as a general

one no matter what type of this task is. For example, each task
has arrival time regardless of its task type. Thereby, we have
the following main general task model.

We consider a set T = {t1, t2, · · · } of tasks. For a given
task ti, it can be denoted as ti = {ai, si, di, pi}, where ai, si,
di and pi are the arrival time, task size, deadline, and priority
of task ti, respectively. If ti is a non-real-time task, di is set



to be +∞ and if there is no priority for ti, pi is set to be 0.
Let sijk be the start time of task ti on VM vjk. Similarly, fijk
represents the finish time of task ti on vjk. We let eijk be the
execution time of task ti on VM vjk. Besides, xijk is used
to reflect task mapping on VMs in a virtualized cloud, where
xijk is “1” if task ti is allocated to VM vjk at host hk and is
“0”, otherwise. Furthermore, We use zijk to denote whether
task ti has been successfully finished.

2) Specific Scheduling Model: To realize given scheduling
objectives for a certain kind of tasks, some specific scheduling
models are required. For instance, Example 1 is for indepen-
dent tasks, whereas Example 2 is for dependent tasks, so the
task model regarding task dependency is surely different. It is
enough for Example 1 to use the general task model as shown
above. However, for Example 2, extra task models should be
added to represent tasks’ features. Fig. 3 shows the constitution
of general scheduling model and special scheduling model.
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Fig. 3. Constitution of Scheduling Models.

For the special task model in Example 2, a set of dependent
tasks can be modeled as G = {T,E}, where T = {t1, t2 · · · }
is the same to that in general task model. A set of directed
edges E represents dependencies among tasks. eij = (ti, tj)
indicates that task tj depends on the results generated from
task ti for its execution. Task ti is an immediate predecessor
of tj and tj is an immediate successor of ti. For a given task
ti, we use P (ti) and S(ti) to denote its immediate predecessor
set and immediate successor set, respectively. P (ti) = ∅ if ti
has no predecessors, and S(ti) = ∅ if ti has no successors.

Apart from task models, specific models for different ob-
jectives should be provided. Now, we present unique models
in Example 1 and Example 2 as follows:

Example 1: Regarding the uncertainty, we consider in our
study the CPU performance pjk of VM vmjk varies over
the time and the task size si cannot be accurately measured.
Hence, the start time, execution time, finish time of task ti
are uncertain too. p̃jk, s̃i, s̃tijk, ẽtijk, f̃ tijk, and c̃jk are used
to denote their uncertain parameters. We employ the interval
number [23] to describe parameters as follows: s̃i = [s−i , s

+
i ]

and p̃jk = [p−jk, p
+
jk], where s−i , s

+
i , p

−
jk, p

+
jk > 0. The

uncertain execution time ẽtijk can be calculated as [24]:

ẽtijk =s̃i ⊘ p̃jk = [s−i , s
+
i ]⊘ [p−jk, p

+
jk]

=[s−i , s
+
i ]⊗ [s/p−jk, s/p

+
jk]

=[s−i /p
+
jk, s

+
i /p

−
jk].

(1)

Then, the uncertain finish time f̃ tijk can be calculated as:

f̃ tijk = s̃tijk ⊕ ẽtijk. (2)

Since we consider real-time task scheduling, if a task ti’s
real finish time is less or equal to its deadline, which is
successful finish for this task. zijk can be determined as below:

zijk =

{
1, if ((ftijk ≤ di) and (xijk = 1)),
0, otherwise.

(3)

So the count of successful finish tasks should be maximized:

max

|T |∑

i=1

|Ha|∑

j=1

|Vk|∑

k=1

zijk
|T | |

|Ha|∑

j=1

|Vk|∑

k=1

zijk ≤ 1, ∀ti ∈ T. (4)

Since we also take the energy conservation as an objective
in this example, the total energy consumption should be
minimized while scheduling. Thus, we have:

min

|Ha|∑

j=1

∫ ft

st
(k · pj · ytj + (1− k) · pj · u(t))dt, (5)

where ytj ∈ {1, 0} represents whether host hj is active or
not at time instant t; k is the fraction of energy consumption
rate consumed by idle hosts; pj is the host overall power
consumption; u(t) is the CPU utilization of host hj at time t.

Example 2: The reliability is considered as scheduling
management objective in this example, we employ the pri-
mary/backup (PB in short) model [25] to guarantee system
reliability, which is fit to tolerate one host failure at one time
instant. With the PB model, each task ti has a backup tBi . If
a fault is occurred on the host on which ti has been assigned
before it finishes, tBi will be executed. Since the probability
that two hosts fail simultaneously is small, we assume the
backup copies can be successfully finished if their primary
copies are on the failed host like that in [26]. All the variables
or parameters with superscript “B” are relevant to tBi .

The backup tBi can have two execution modes, i.e., passive
and active. We use s(tBi ) to denote its execution mode that
can be determined by the following formula:

s(tBi ) =

{
passive if di − fi ≥ etBijk,

active otherwise.
(6)

where fi is the expected finish time of ti.
Thereby, the real execution time retBijk of tBi can be:

retBijk =

⎧
⎪⎨

⎪⎩

etBijk if zijk = 0,

(0, etBijk] if zijk = 1 and s(tBi ) = active,

0 if zijk = 1 and s(tBi ) = passive.
(7)

The total real execution time of backups should be mini-
mized to save more time slots. Hence, we have the objective
when making the reliability-aware scheduling.

min

|T |∑

i=1

|Ha|∑

j=1

|Vk|∑

k=1

retBijk · xB
ijk. (8)

Since the dependent tasks are considered in this example,
we use eXY

ij to denote the edge between tXi and tYj where tXi
and tYj can be either a primary or a backup. For each edge



eXY
ij , there is an associated data transfer time ttXY

ij that is the
amount of time needed by tYj from v(tXi ). If two dependent
tasks tXi and tYj are on the same host, ttXY

ij = 0. In addition,
let dvij be the transfer data volume between task ti and tj . Let
ts
(
h(tXi ), h(tYj )

)
denote the transfer speed between h(tXi )

and h(tYj ). Subsequently, if h(tXi ) ̸= h(tYj ), we have:

ttXY
ij =

dvij
ts
(
h(tXi ), h(tYj )

) . (9)

The actual start time sYj of task tYj is the time at which the
task is scheduled for execution. Task tYj is able to be placed
between estYj and lftYj if there exist slack time slots that can
accommodate tYj . One of the goals of our scheduling is to find
suitable start time of tasks to process as many tasks as possible
in case of guaranteeing fault-tolerance, so as to achieve high
overall throughput.

Also, the system reliability can be quantitatively measured
by reliability cost that can be defined as [26]:

rc =

|T |∑

i=1

|Ha|∑

j=1

|Vk|∑

k=1

λj · xijk · etijk. (10)

So by using PB model, the total reliability to execute
primaries and backups can be calculated as:

rc =rc(T ) + rc(TB)

=

|Ha|∑

k=1

|Vk|∑

j=1

|T |∑

i=1

λj · (xijk · ecijk + xB
ijk · zBijk · retBijk).

(11)

Consequently, reliability cost can be considered to enhance
the system reliability.

V. ALGORITHM DESIGN

In this section, we present two task scheduling algorithms
EASU (Energy-Aware Scheduling under Uncertainty) and RAS
(Reliability-Aware Scheduling) for Example 1 and Example 2,
respectively. They can be added to the Algorithm Library in
our framework.

A. EASU Algorithm
Before introducing EASU, we define two queues - waiting

queue WQ and urgent queue UQ to handel uncertainty. If a
task in WQ becomes urgent task, it will be put into UQ. In
this paper, we define an urgent task is a task whose laxity Li

[24] is less than or equal to a given threshold Li that is the
time for turning on a host and create a VM on it. Algorithm
1 is the pseudocode of EASU.

In our EASU, we employ the interval number to measure the
uncertainty. ft−ijk and ft+ijk are the estimated minimal finish
time and estimated maximal finish time, respectively. The
minimal ft−ijk, i.e., ftMIN and maximal f+

ijk, i.e., ftMAX

are recorded by checking all the VMs (See Lines 4-9). If
ftMAX is smaller than or equal to di, representing ti can be
successfully finished, then it will be allocated to a VM with
the minimal energy consumption (See Lines 10-11). If ftMAX

Algorithm 1: Pseudocode of EASU
1 WQ ← ∅;UQ ← ∅;
2 foreach new task ti do
3 ftMAX ← 0; ftMIN ← +∞;
4 foreach VM vjk do
5 Calculate its estimated minimal finish time ft−ijk and

maximal finish time ft+ijk and energy ecijk;
6 if ft−ijk < ftMIN then
7 ftMIN ← ft−ijk;

8 if ft+ijk > ftMAX then
9 ftMAX ← ft+ijk;

10 if ftMAX ≤ di then
11 Allocate ti to the VM vjk with minimal ecijk;
12 else if ftMAX > di & ftMIN ≤ di then
13 Allocate ti to the VM vjk with minimal ft+ijk;

14 else
15 if Li < Ld then
16 Reject task ti;
17 else
18 Call scaleUpResources() and Allocate ti on a new

VM;

Algorithm 2: Pseudocode of Primaries Scheduling in RAS
1 Hcandidate ← top α% hosts in Ha;
2 eft ← +∞; v ← NULL;
3 while !all hosts in Ha have been scanned do
4 foreach hk in Hcandidate do
5 if hk satisfies ti’s scheduling dependent constraints

then
6 foreach vkl in hk.V mList do
7 Calculate the earliest start time esti;
8 eftPi ← estPi + ePikl;
9 if eftPi < eft then

10 eft ← eftPi ;
11 v ← vkl;

12 if eft > di then
13 Hcandidate ←next top α% hosts in Ha;
14 else
15 break;

16 if eft > di then
17 if scaleUpResources(ti) then
18 return true;
19 else
20 Allocate ti to vkl;
21 else
22 Allocate tPi to vkl;

is larger than di and at the same time ftMIN is smaller than
or equal to di. EASU chooses the VM with minimal ft+ijk
to improve the schedulability (See Lines 12-13). If ftMIN is
larger than di, and Li < Ld, the task ti has to be rejected,
whereas if Li > Ld, which indicates that starting up a host
and then creating a new VM to run ti is feasible (see Lines



15-18). The function scaleUpResources() will be introduced
in resource provisioning algorithms.

B. RAS Algorithm
Example 2 is about the reliability-aware scheduling using

PB model, thus the primaries and backups should be sched-
uled, respectively. Algorithm 2 is the pseudocode of primaries
scheduling in RAS.

Algorithm 2 firstly selects the top α% hosts with fewer
primaries as candidate hosts (see Line 1). Then, the VM
that offers the earliest finish time for the primary copy is
selected (see Lines 4-11). If no VM on the candidate hosts
can finish the primary before its deadline, the next top α%
hosts are chosen for the next round search (see Lines 12-15).
By this method, the primaries can be evenly distributed. If
no existing VMs can accommodate the primary, the function
scaleUpResources() will be called (see Line 17).

Backup scheduling algorithm is similar to Algorithm 2, so
it is omitted in this paper. It should be noted that a backup
cannot be scheduled to the host on which its primary has
been allocated. Besides, some dependent constraints must be
incorporated in backup scheduling algorithm.

C. Resource Provisioning Algorithm
Resource provisioning algorithm include two functions,

i.e., scaleUpResources() and scaleDownResources(). Now, we
present them devised in our previous work.

Algorithm 3: Pseudocode of scaleUpResources()
1 Select a kind of VM vj with minimal MIPS on condition that
ti can be finished before its deadline;

2 Sort the hosts in Ha in the decreasing order of the CPU
utilization;

3 foreach host hk in Ha do
4 if VM vj can be added in host hk then
5 Create VM vjk; findTag ← TRUE; break;

6 if findTag == FALSE then
7 Search the host hs with minimal CPU utilization;
8 Find the VM vps with minimal MIPS in hs;
9 foreach host hk except hs in Ha do

10 if VM vps can be added in host hk then
11 Migrate VM vps to host hk; break;

12 if VM vj can be added in host hs then
13 Create VM vjs;
14 if ti can be finished in vjs before its deadline then
15 findTag ← TRUE;

16 if findTag == TRUE then
17 Start a host hn and put it in Ha;
18 Create VM vjn on hn;
19 if ti can be finished in vjn before its deadline then
20 findTag ←; TRUE;

Function scaleUpResources() selects a host with possibly
minimal capability to accommodate vj (See Lines 3-5). If no
such host can be found, it migrates the VM (See Lines 7-11).
After that, it checks if VM vj can be added to the host where

Algorithm 4: Pseudocode of scaleDownResources()
1 SH ← ∅; DH ← ∅;
2 foreach VM vjk in the system do
3 if vjk’s idle time itjk > THRESH then
4 Remove VM vjk from host hk and delete it;

5 foreach host hk in Ha do
6 if there is no VM on hk then
7 Shut down host hk and remove it from Ha;

8 Sort the hosts in Ha in an increasing order of the CPU
utilization;

9 SH ← Ha; DH ← Ha and sort DH inversely;
10 foreach host hk in SH do
11 shutDownTag ← TRUE; AH ← ∅;
12 foreach VM vjk in hk do
13 migTag ← FALSE;
14 foreach host hp in DH except hk do
15 if vjk can be added in hp then
16 migTag ← TRUE; AH ← hp; break;

17 if migTag == FALSE then
18 shutDownTag ← FALSE; break;

19 if shutDownTag ← TRUE then
20 Migrate VMs in hk to destination hosts;

SH ← SH −AH − hk; DH ← DH − hk;
21 Shut down host hk and remove it from Ha;

a VM has been migrated. If so, the vj will be created and
it checks whether the task can be finished on vj before the
task’s deadline (See Lines 12-15). If no migration is feasible
or the task cannot be successfully finished, then it starts
up a host hn and then creates vjn on it. Then it checks if
the task can be finished successfully on vjn (See Lines 16-20).

In scaleDownResources(), if there exists any VM whose
idle time is larger than a predefined threshold, then it deletes
this VM (See Lines 2-4). If no VMs run on a host, it shuts
down this host (See Lines 5-7). If all the VMs running on
a host in SH can be added to one or some hosts in DH ,
it migrates these VMs to destination hosts, and then shuts
down the host after migration. Otherwise, in the host if there
is one or some VMs that cannot be migrated, then it gives
up the migration of all the VMs on the host (See Lines 10-21).

VI. FRAMEWORK IMPLEMENTATION

We conducted multiple experiments under our framework.
In order to ensure the repeatability of the experiments, we
choose CloudSim toolkit [27] as a simulation platform. Also,
we deploy an experimental cloud environment on the basis of
Apache CloudStack 4.2.0. We set up a KVM cluster with five
Dell Optiplex 7010 MT, each of physical host has one CPU (i3
3.9GHz 4 cores), 3.7G memory and 500G disk storage, and
the peak power of a host is 200W. In addition, the CPU and
memory required for each VM are two CPU cores (i.e., 23.9
GHz) and 1.5G, respectively. In addition, the five machines
run on a 1Gbps Ethernet network [24].
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Fig. 4. Performance Impacts of Task Deadlines.
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Fig. 5. Performance Impacts of VM Uncertainty.

A. Parameter Setting and Experimental Results of Example 1
To embody the uncertainty, we use parameter

vmUncertainty to represent the uncertainty upper bounds
of VMs in the system, and the lower and upper bonds of a
VM’s performance are modeled as below:

p−jk = p+jk × (1− U [0, vmUncertainty]). (12)

where U [0, vmUncertainty] is an uniformly distributed ran-
dom variable between 0 and vmUncertainty, and p+jk is the
CPU performance capacity required for vmjk.

To reflect tasks’ real-time nature, we use parameter
deadlineBase to control a task’s deadline as follows:

di = ai + U [deadlineBase, a× deadlineBase]. (13)

where parameter deadlineBase decides whether the deadline
of a task is loose or tight. We set deadlineBase = 400s,
a = 4 in this study.

The arrival rate is in Poisson distribution, and we use pa-
rameter intervalT ime to determine the time interval between
two consecutive tasks. We set intervalT ime = 0.5s.

We compare EASU with two baseline algorithms - NMEASU
(no migration is considered in scaleDownResources()) and
EDF (Earliest Deadline First) from the following three met-
rics:

1) Guarantee Ratio (GR): the ratio of tasks finished before
their deadlines;

2) Resource Utilization (RU ): the average host utilization
that can be calculated as:

RU = (

|T |∑

i=1

|Ha|∑

j=1

|Vk|∑

k=1

etijk · zijk)/(
|Ha|∑

j=1

pj · wtj), (14)

where wtj is the active time for host hj during an experiment.

3) Total Energy Consumption (TEC): the total energy
consumed by hosts to execute task set T .

1) Performance Impact of Task Deadline: It can be ob-
served from Fig. 4(a) that the GRs of the three algorithms
increase with the increase of deadlineBase because more
tasks can be finished with their deadlines without using the
resource scale-up mechanism. Another observation is that
EASU and NMEASU have higher GRs than EDF. The reason
is three-fold: 1) EASU and NMEASU give urgent tasks high
priority so that more tasks can meet their deadline; 2) EASU
and NMEASU can dynamically add resources to accommodate
more tasks; 3) the uncertainties are considered in EASU and
NMEASU leading to better scheduling quality.

From Fig. 4(b), we can observe that when deadlineBase
increases, the RUs of the three algorithms increase, which can
be contributed to the fact that as the deadlines of tasks become
looser, more tasks can be finished in the current active hosts
without starting more hosts, thus the utilization of active hosts
is higher. In addition, EASU has higher RU than NMEASU
because VM migration can efficiently consolidate resources
and thus resource can be effectively utilized. There is no scale-
down function designed for EDF resulting in the lowest RU .

Fig. 4(c) shows that the TECs of EASU, NMEASU, and
EDF become larger with the increase of deadlineBase.
The reason is that as deadlineBase increases, more tasks
will be executed leading to more energy being consumed.
EASU consumes less energy than NMEASU because NMEASU
does not efficiently use resource. Without considering energy
conservation, EDF consumes more energy than EASU when
deadlineBase is larger than 200s.

2) Performance Impact of Uncertainty: From Fig. 5(a), we
can observe that when vmUncertainty increases, the GRs
of the three algorithms decrease, especially the trend of EDF
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is outstanding. The reason is that EDF does not employ
any strategies to control the uncertainties while scheduling
resulting in the worst scheduling quality.

Fig. 5(b) depicts that the RUs of the three algorithms
descend significantly with the increase of vmUncertainty.
The reason is that when vmUncertainty increases, the perfor-
mance degradation of VMs will become pronounced, resulting
in consuming more resources of physical hosts. Specifically,
EASU performs better than others because of employing the
uncertainty-aware scheduling and VM migration strategy.

Fig. 5(c) shows that with the increase of vmUncertainty,
the TECs of EASU, and NMEASU increase because they allo-
cate more urgent tasks that cannot be completed before their
deadlines to VMs as vmUncertainty becomes larger, thus
costing more resources. EASU has more energy consumption
than EDF when vmUncertainty is larger than 0.3, This can
be explained that EASU strives to control the uncertainty and
accept more tasks with the sacrifice of energy consumption.

B. Parameter Setting and Experimental Results of Example 2

Example 2 considers the dependent tasks. We assume each
task set T (or a DAG job) has random precedence constraints
that are generated by the steps in [26]. Given a number N of
dependent tasks, we set the message count M among them is
M = θ ×N . Other parameters are the same to Example 1.

We compare RAS with two baseline algorithms - NCRAS
(no consolidation is considered in RAS) and eFRD (As Early
as Possible Strategy for Primary and Backup Scheduling) [26]
from the following three metrics:

1) Guarantee Ratio (GR): the same to that in Example 1;
2) Host Active Time (HAT ): the total active time of all

hosts in cloud;

3) Ratio of Task time and Hosts time (RTH): the ratio of
total tasks’ execution time over total active time of hosts.

1) Performance Impact of DAG Count: It can be observed
from Fig. 6(a) that RAS and NCRAS basically maintain stable
GRs for different DAG counts, which can be attributed to the
fact that RAS and NCRAS consider the infinite resources in
the cloud, thus when DAG count increases, new hosts will
be dynamically available for more DAGs. While eFRD has no
ability to adjust resources, so with the increase of DAG count,
the GR of eFRD decreases.

In Fig. 6(b), RAS has lower HAT than NCRAS, which
indicates the policies in RAS can work well to improve the
resource utilization. In addition, because there is no consol-
idation mechanism employed in NCRAS, some resources are
in idle state, resulting in the highest resource consumption.

It can be seen from Fig. 6(c) that the RTHs of RAS and
NCRAS increase. For eFRD, its RTH increases first and then
decreases, which can be explained below. With eFRD, the
system resource is assumed fixed. The resource is sufficient
enough to accommodate most DAGs (in the range from 50
to 100). But the system becomes saturated when DAG count
is further increased (DAG count > 100), making the host
running longer and therefore lowing the resource utilization.
We can also find that due to incorporating the mechanism to
consolidate resources, RAS hence achieves the highest RTH .

2) Performance Impact of Task Dependence: From Fig.
7(a), we can observe that with the increase of θ, the GRs
of all the algorithms slightly decrease. This is because the
increased task dependency degrades the system schedulability.
It can also be found that similar to other experiments, RAS and
NCRAS offer the highest GRs.

Fig. 7(b) shows that NCRAS has higher HAT s than others.
With the small task dependence, more tasks in a DAG can



be executed in parallel and can be finished earlier; thus some
hosts can be freed and shut down earlier. However, such an
advantage is not exploited by NCRAS. Hence it consumes more
resources. When θ increases, the tasks that can be executed
in parallel decrease, thus the difference of HAT s between
NCRAS and other algorithms becomes smaller.

It can be observed from Fig. 7(c) that RAS maintains the
highest RTH . With the increase of θ, the RTHs of all the
algorithms decrease because high task dependence increases
execution constraints, making less tasks available to VMs even
if some of them are idle. When the value of θ becomes larger,
the tasks that can be executed in parallel decrease, hence less
resource is wasted leading to lower RTH .

VII. CONCLUSIONS

This paper investigates a general framework for task
scheduling and resource provisioning in virtualized clouds. In
this framework, different scheduling management objectives
can be flexibly assembled to process diverse tasks. Specif-
ically, we first propose a novel scheduling architecture that
significantly considers any kind of combination of objectives
and task features, thus it can be applied to more general
scheduling in clouds where a variety of distinct requests
must be handled. Besides, a scheduling process using our
framework is presented in detail. Under this framework, we
present two examples with different objective combinations for
different kinds of tasks. General models and specific models
are presented based on the two examples to support our
framework. Moreover, we propose two algorithms - EASU and
RAS for Example 1 and Example 2, respectively, which can be
dynamically added in the algorithm library of our framework.
Furthermore, we conduct several experiments to validate our
algorithms and implement the proposed framework.
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