Problem 1: Greedy Vertex Cover

Perhaps the first strategy one tries when designing an algorithm for an optimization problem is the greedy strategy. For the unweighted vertex cover problem, this would involve iteratively picking a maximum degree vertex and removing it, together with edges incident at it, until there are no edges left.

(a) Show that this algorithm achieves an approximation guarantee of $O(\log n)$.

(b) Give a tight example: Class of input instances where this algorithm performs as bad as $\Omega(\log n)$.

Problem 2: Set Coverage

Maximum set coverage is the following problem: Given a set U of n elements, a collection of subsets of U, S_1, \ldots, S_m, and an integer k, pick k sets so as to maximize the number of covered elements.

(a) Show that maximum set coverage is NP-hard.

(b) Show that the obvious algorithm, of greedily picking the best set in each iteration until k sets are picked, achieves an approximation factor of $1 - \left(1 - \frac{1}{k}\right)^k > 1 - \frac{1}{e}$.

Problem 3: MAX-SAT

Recall that MAX-SAT is the following problem: Given a conjunctive normal form formula f on Boolean variables x_1, \ldots, x_n, and non-negative weights, w_c, for each clause c of f, find a truth assignment to the Boolean variables that maximizes the total weight of satisfied clauses.

(a) Show that the following is a factor $1/2$ approximation algorithm for MAX-SAT. Let τ be an arbitrary truth assignment, and τ' be its complement, i.e., a variable is True in τ if and only if it is False in τ'. Compute the weight of clauses satisfied by τ and τ', then output the better assignment.

(b) Give a tight example: Class of input instances where this algorithm performs as bad as $1/2$.

Problem 4: Fractional MAX-CUT

Let $G(V, E)$ be an unweighted, undirected graph, $|V| = n$. Recall that MAX-CUT (which is well known to be NP-hard) can be formalized as:

$$\text{maximize} \quad \sum_{\{u,v\} \in E} |x_u - x_v|$$

subject to:

- $x_u \in \{0, 1\}$
- $0 \leq u \leq n$

Show that MAX-CUT remains NP-hard, even if we relax the integrality constraint. In particular, show that the following problem is NP-hard:

$$\text{maximize} \quad \sum_{\{u,v\} \in E} |x_u - x_v|$$

subject to:

- $0 \leq x_u \leq 1$
- $0 \leq u \leq n$