ORDER OF GROWTH BASICS

You should be able to identify the leading term of a function:

Examples:

\[f(x) = x^2 + 100 \log x + 3^x + \sqrt{x} \]

This is the leading term

\[f(x) = x^2 + 100 \log x + \sqrt{x} \]

This is the leading term

\[f(x) = \sqrt{x} \log^2 x + x \]

This is the leading term

\[f(x) = 3^x + 3^x \times 100 \]

This is the leading term
Very broadly speaking:

1. **Exponential Functions** (grow faster than all)
2. **Polynomial Functions**
3. **Logarithmic Functions** (grow faster than all)
4. **Constant**

Symbolic representation:
- $f(x)$
- $\log x$, $\log x$, $\log x$, $\log x$
- x, x^2, x^3, $x^{1/2}$
- $3x$, $2x$, x, $x^{1/100}$

Relationships:
- x (constant)
- $\log x$ (logarithmic)
- Exponential functions grow faster than all other functions.
Big O Notation

\[f(x) = \mathcal{O}(g(x)) \]

means

\(f(x) \) grows at most as fast as \(g(x) \)

up to multiplicative constants,

ie we put \(x, 10x, 100x, 1,000,000x \) in the same category
Definition Let \(f(x), g(x) \) be non-negative functions for \(x \geq 0 \).

Say \(f(x) = O(g(x)) \) if and only if

\[
\exists C > 0 \quad \exists x_0.
\]

- \(f(x) \leq C g(x) \)
- \(x \geq x_0 \)

After \(x_0 \), \(f(x) \) is never greater than \(C g(x) \).
Example:
Show that \(100x^4 + 10 = O(x^5) \)

Proof:
Let \(f(x) = 100x^4 + 10 \) and \(g(x) = x^5 \)

Using the definition of the previous page, we need to find a specific positive constant \(C \), and a specific \(x_0 \), such that \(f(x) \leq Cg(x) \), whenever \(x \geq x_0 \).

\[
\begin{align*}
\text{build up } f(x) & \quad \text{take multiples of } g(x) \\
100x^4 & \leq 100x^5, \text{ whenever } x \geq 1 \\
10 & \leq x^5, \text{ whenever } x \geq 2 \\
\hline
100x^4 + 10 & \leq 101x^5,
\end{align*}
\]
A VERY EASY WAY TO PROVE $f(x) = O(g(x))$

Theorem: If
\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = C,
\]
for some constant $C \geq 0$

then
\[
f(x) = O\left(g(x)\right)
\]

Proof:
\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = C \Rightarrow \lim_{x \to \infty} \frac{f(x) - C}{g(x)} = 0
\]

By basic calculus, this means:
\[
\forall \varepsilon > 0 \exists x_0 : \frac{f(x) - C}{g(x)} < \varepsilon, \quad \forall x \geq x_0.
\]

Pick any $\varepsilon > 0$ and fix it. We now have:
\[
\frac{f(x) - C}{g(x)} < \varepsilon, \quad \forall x \geq x_0 \Rightarrow
\]
\[
\frac{f(x)}{g(x)} < \varepsilon + C, \quad \forall x \geq x_0 \Rightarrow
\]
\[
f(x) < (\varepsilon + C)g(x), \quad \forall x \geq x_0.
\]
Now let $c^* = (\varepsilon_0 + c)$

We have shown that

$\exists c^* > 0 \exists x_0 : f(x) < c^* g(x),$

$\forall x \geq x_0,$

$c^*: = \varepsilon_0 + c$

Thus satisfying the definition in page A4,

therefore, $f(x) = O(g(x))$
Example Prove that \(\log_e x = O(x) \).

Proof: We will use the theorem saying
\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = c \implies f(x) = O(g(x)).
\]

Let \(f(x) = \log_e x \), \(g(x) = x \).

\[
\lim_{x \to \infty} \frac{\log_e x}{x} = \text{de l' Hospital}
\]

\[
\lim_{x \to \infty} \frac{(\log_e x)'}{(x)'} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x} = 0
\]

Therefore, \(\log_e x = O(x) \).
Example

Prove that \(\log_e^3 x = O\left(\sqrt{x}\right) \).

Proof:

We will use the theorem saying

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = c \Rightarrow f(x) = O\left(g(x)\right).
\]

Let \(f(x) = \log_e^3 x \) and let \(g(x) = \sqrt{x} = x^{\frac{1}{2}} \).

\[
\lim_{x \to \infty} \frac{\log_e^3 x}{x^{\frac{1}{2}}} = \text{ de l'Hospital }
\]

\[
\lim_{x \to \infty} \left(\frac{\log_e^3 x}{x^{\frac{1}{2}}}\right)' =
\]

\[
\lim_{x \to \infty} \frac{3\left(\log_e^2 x\right) \cdot \frac{1}{x}}{\frac{1}{2} x^{-\frac{1}{2}}}
\]

\[
\lim_{x \to \infty} \frac{2 \times 3 \left(\log_e^2 x\right)}{x^{\frac{1}{2}}} = \text{ de l' Hospital }
\]
\[
\lim_{x \to \infty} 6 \left(\frac{2 \log \varepsilon x}{x^{\frac{1}{2}}} \right) = \\
\lim_{x \to \infty} \frac{6 \times 2 \log \varepsilon x \cdot \frac{1}{x}}{\frac{1}{2} \cdot x^{-\frac{1}{2}}} = \\
\lim_{x \to \infty} \frac{24 \log \varepsilon x}{x^{\frac{1}{2}}} = \text{de l' Hospital} \\
\lim_{x \to \infty} 24 \left(\frac{\log \varepsilon x}{x^{\frac{1}{2}}} \right) = \\
\lim_{x \to \infty} \frac{24 \cdot \frac{1}{x}}{\frac{1}{2} \cdot x^{-\frac{1}{2}}} = \\
\lim_{x \to \infty} 40 \frac{1}{x^{\frac{1}{2}}} = 0. \quad \text{Therefore}, \quad \log_3 x = 0 (\sqrt{x})
Example

Prove that \(x^2 = O(e^x) \)

Proof: We will use the theorem saying

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = c \Rightarrow f(x) = O(g(x))
\]

Let \(f(x) = x^2 \) and \(g(x) = e^x \)

\[
\lim_{x \to \infty} \frac{x^2}{e^x} = \text{de l'Hospital}
\]

\[
\lim_{x \to \infty} \frac{2x}{e^x} = \text{de l'Hospital}
\]

\[
\lim_{x \to \infty} \frac{2}{e^x} = 0
\]

Therefore, \(x^2 = O(e^x) \)
Example: Prove that $100x^3 + \log x + x^{\frac{1}{2}} = O(x^3)$

Proof: We will use the theorem saying that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = C \quad \Rightarrow \quad f(x) = O(g(x))$$

Let $f(x) = 100x^3 + \log x + x^{\frac{1}{2}}$

and $g(x) = x^3$

$$\lim_{x \to \infty} \frac{100x^3 + \log x + x^{\frac{1}{2}}}{x^3} = \text{de l'Hospital}$$

$$\lim_{x \to \infty} \left(100x^3 + \log x + x^{\frac{1}{2}} \right)' = \frac{(x^3)'}{(x^3)}'$$

$$\lim_{x \to \infty} \frac{100 \times 3x^2 + \frac{1}{x} + \frac{1}{2} \times \frac{1}{x^{\frac{1}{2}}}}{3x^2}$$
\[\lim_{x \to \infty} \left(\frac{300}{3} \frac{x^2}{x^2} + \frac{1}{x} \frac{1}{3} + \frac{1}{2} \frac{1}{3x^2} \right) = \]

\[\lim_{x \to \infty} \left(100 + \frac{1}{3x^3} + \frac{1}{6x^{2.5}} \right) = \]

100, which is a constant.

Therefore, \(100x^3 + \log x + x^{\frac{1}{2}} = O(x^3)\)