A LINEAR TIME ALGORITHM TO DETECT A MAJORITY ELEMENT

Let \(A = a_0 \ldots a_{n-1} \) be a list of \(n \) elements.

Case 1: \(n \) is even
Let us pair the elements \((a_0, a_1), \ldots, (a_{2i}, a_{2i+1}), \ldots, (a_{n-2}, a_{n-1})\)
Define the list \(B = b_1 \ldots b_{\frac{n}{2}} \) as follows:
\[
b_i = \begin{cases} a_{2i} & \text{if } a_{2i} = a_{2i+1} \\ \text{nil} & \text{if } a_{2i} \neq a_{2i+1} \end{cases}
\]
Let \(K \leq \frac{n}{2} \) be the number of non-nil elements of \(B \).

Claim 1: If a non-nil element \(x \) appears \(K_0 \leq K \) times in \(B \), then \(x \) appears at most \(2K_0 + (\frac{n}{2} - K) \) times in \(A \).

Proof: There are exactly two appearances of \(x \) in \(A \) for each appearance of \(x \) in \(B \), plus at most one appearance of \(x \) in \(A \) for each nil element of \(B \) (meaning that one of the two elements that resulted in the nil pair was actually \(x \)).

Claim 2: If \(x \) is a majority element in \(A \), then \(x \) appears at least once in \(B \).

Proof: By the pigeonhole principle, if \(x \) appears more than \(\frac{n}{2} \) times in \(A \), then at least one of the pairs \((a_{2i}, a_{2i+1})\) has \(a_{2i} = a_{2i+1} = x \).
Claim 3. Let \(x \) be a majority element in \(A \) and suppose that \(x \) appears in \(B \) \(K_0 \geq 1 \) times (by Claim 2). Then \(x \) is a majority element among the \(K \) non-nil elements of \(B \), i.e. \(K_0 > K - K_0 \).

Proof: By contradiction. Assume \(K_0 \leq K - K_0 \).

Now combine this with Claim 1, indicating that \(K_0 \) appearances of \(x \) in \(B \) imply at most
\[
2K_0 + \left(\frac{n}{2} - K \right)
\]
appearances of \(x \) in \(A \).

And since \(K_0 \leq K - K_0 \Rightarrow -K \leq -2K_0 \),

This is a total of at most \(2K_0 + \frac{n}{2} - 2K_0 = \frac{n}{2} \)
appearances of \(x \) in \(A \), implying that \(x \) is not a majority element of \(A \) which is a contradiction.

Note 1. A majority among the non-nil elements of \(B \) is not necessarily a majority among the elements of \(A \).

Example \(A = \text{aaa aa bc de} \) but \(a \) is not a majority element of \(A \).

The above imply that majority elements "propagate", but not everything that "propagates" is necessarily majority in the first place.
Case 2 \(n \) is odd \(j \) we cannot do the "pairing" an\(-1\)

In this case we can just single out one element of \(A \) and do the following:
- Test if \(y \) is majority by examining \(a_0 \ldots a_{n-1} \)
- If the answer is YES then we are done
- If the answer is NO then we can ignore \(a_{n-1} = y \)
 and be left with the even length list
 \[A' = a_0 \ldots a_{n-2} \]

Claim 4 \(x \) is a majority element of \(A = a_0 \ldots a_{n-1} \), \(n \) is odd,
 and \(a_{n-1} = y \neq x \)
 then \(x \) is a majority element of \(A' = a_0 \ldots a_{n-2} \)
Majority * (a_0, \ldots, a_{n-1})

if $n=1$ then return (a_0)
if $n>1$ then

if n is odd then

$$k = \left\lfloor \sum_{i=0}^{n-1} a_i = \frac{n}{2}\right\rfloor$$
if $k > n-k$ then return (a_{n-1})
if $k \leq n-k$ then $\text{Majority}^* (a_0, \ldots, a_{n-2})$

if n is even then

$$k = 0$$
for $i = 0$ to $\frac{n}{2}-1$

if $a_{2i} = a_{2i+1}$ then

$$b_k = a_{2i}$$
k := k + 1

if $k > 0$ then $\text{Majority}^* (b_0, \ldots, b_k)$
if $k = 0$ then return (nil)

THEOREM

Majority^* runs in linear time:

$T(n) = T\left(\lceil \frac{n}{2} \rceil \right) + O(n)$

If a_0, \ldots, a_{n-1} have a majority element x then Majority^* will return x

THEOREM

Majority runs in linear time and returns $x \neq \text{nil}$ if and only if x is a majority element of a_0, \ldots, a_{n-1}

Majority (a_0, \ldots, a_{n-1})

$x := \text{Majority}^* (a_0, \ldots, a_{n-1})$

if $x \neq \text{nil}$ then

$$\left\lfloor \sum_{i=0}^{n-1} a_i = x \frac{n}{2}\right\rfloor > \left\lfloor \sum_{i=0}^{n-1} a_i = x \frac{n}{2}\right\rfloor$$
then

return (x)

else return (nil)

if $x = \text{nil}$ then return (nil)