Friday Aug 21 '09

Iterative implementation of Recursive Algorithms

Often addresses efficiency
see HW1 will revisit later in course

Tower of Hanoi Example

Hanoi (A, B, C, n)

if n=1 then (R=1, A \rightarrow B)

else \begin{cases}
Hanoi (A, C, B, n-1) \\
(R=n, A \rightarrow B) \\
Hanoi (C, B, A, n-1)
\end{cases}

\(T(n) = 2T(n-1) + 1 \)

T(1)=1

Solves to \(T(n) = 2^n - 1 \)
Pattern

Odd moves, in binary \(XXX1 \), \(R = 1 \) moves \textit{counterclockwise}.

Moves in binary \(XX10 \), \(R = 2 \) moves \textit{clockwise}.

Moves in binary \(X100 \), \(R = 3 \) moves \textit{counterclockwise}.

Moves in binary \(1000 \), \(R = 4 \) moves \textit{clockwise}.

Iterative Hanoi \((A,B,C, n)\)

Clockwise := \(A \rightarrow B \rightarrow C \rightarrow A \)

Counterclockwise := \(A \rightarrow C \rightarrow B \rightarrow A \)

for \(i := 1 \) to \(2^n - 1 \)

read \(i \), in binary, from right to left

\(R := \) position of first non-zero bit of \(i \)

\(\text{MOVE} (R, \text{ if } n-R = \text{even} \text{ then } \text{CLOCKWISE}) \).

\(\text{if } n-R = \text{odd} \text{ then } \text{COUNTERCLOCKWISE} \).