Outline

• Introduction
• Network Analysis
• Static Parallel Algorithms
• Dynamic Parallel Algorithms
 – Data Structures for Streaming Data
 – Clustering Coefficients
 – Connected Components
 – Anomaly Detection
• GraphCT + STINGER
Dynamic Graph Representation

- Dynamic network: augment static data representation with explicit **time-ordering** on vertices and edges.
- Temporal graph $G(V, E, \lambda)$, with each edge having a time label (time stamp) $\lambda(e)$, a non-negative integer value.
- The time label is application-dependent.
- Can define multiple time labels on edges/vertices.

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Time step</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b</td>
<td>1</td>
</tr>
<tr>
<td>b c</td>
<td>4</td>
</tr>
<tr>
<td>a c</td>
<td>5</td>
</tr>
<tr>
<td>b d</td>
<td>7</td>
</tr>
<tr>
<td>d e</td>
<td>9</td>
</tr>
</tbody>
</table>

![Diagram of graph with edges labeled with time steps]
Dynamic Graph Representation

- Dynamic network: augment static data representation with explicit time-ordering on vertices and edges.
- Temporal graph $G(V, E, \lambda)$, with each edge having a time label (time stamp) $\lambda(e)$, a non-negative integer value.
- The time label is application-dependent.
- Can define multiple time labels on edges/vertices.

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Time step</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b</td>
<td>1</td>
</tr>
<tr>
<td>b c</td>
<td>4</td>
</tr>
<tr>
<td>a c</td>
<td>5</td>
</tr>
<tr>
<td>b d</td>
<td>7</td>
</tr>
<tr>
<td>d e</td>
<td>9</td>
</tr>
</tbody>
</table>

Parallel Programming for Graph Analysis
Dynamic Graph Representation

- Dynamic network: augment static data representation with explicit time-ordering on vertices and edges.
- Temporal graph $G(V, E, \lambda)$, with each edge having a time label (time stamp) $\lambda(e)$, a non-negative integer value.
- The time label is application-dependent.
- Can define multiple time labels on edges/vertices.

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Time interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b</td>
<td>1-6</td>
</tr>
<tr>
<td>b c</td>
<td>4-9</td>
</tr>
<tr>
<td>a c</td>
<td>5-12</td>
</tr>
<tr>
<td>b d</td>
<td>7-9</td>
</tr>
<tr>
<td>d e</td>
<td>9-11</td>
</tr>
</tbody>
</table>
Adjacency data structures

• Static representation: adjacency arrays
 – space-efficient, cache-friendly [PPP02]

• In dynamic networks, we need to support fast, parallel edge (and vertex)
 – Membership queries
 – Insertions
 – Deletions

• Our contribution: several new data structures.
 – can choose appropriate representation based on the insertion/deletion ratio, and graph structural update rate.
#1. Resizable adjacency arrays

- Adjacencies compactly stored in contiguous memory blocks.
- Edge **Insertions**: Atomically increment size (resize if necessary), insert new adjacency at the end of the array => $O(1)$ work.
- Edge **Deletions**: Search corresponding adjacency array => $O(n)$ work.

Network snapshot

Insert edge $<1,k>$

Delete edge $<3,p>$
Parallel Performance of Dynamic Arrays vs Graph Size

Insertions-only updates on RMAT synthetic networks (graph generation), $m = 10n$.

Performance drop as the graph size increases.
Parallel Scaling on UltraSparcT2 of Insertion-only updates with dynamic arrays

Insertions-only updates on an RMAT synthetic network (graph generation), 33 million vertices, 268 million edges.

Parallel speedup of 28 on 64 threads.

nr : ‘no resize’ (malloc untimed)
Negligible performance drop on resizing.
#2. Treaps

- [SA96] Binary search trees with priorities associated with each node, and maintained in heap order.
- **Self-balancing** tree structure. $O(\log n)$ search, insertion, and deletion.
- Existing work-efficient parallel algorithms for set operations (union, intersection, difference) on treaps.
- Our contribution: parallelization of treap operations

Adjacencies of a vertex represented as a treap:
#3. Hybrid: Adjacency arrays + treaps

- Low-degree vertices (degree < \(O(\log n) \)): use dynamic arrays.
 - Constant-time insertions, deletions worst-case bounded by \(O(\log n) \).
- High-degree vertices: use treaps.
 - \(O(\log n) \) insertions and deletions.
- Batched Insertions and Deletions
 - Aggregate multiple updates to high-degree vertices
 - Reduce atomic increment overhead
- Vertex and Edge partitioning
 - Static partitioning of vertices/edges to processors
 - All threads stream through updates, but no atomic increment overhead
- Sorting
 - Maintain sorted resizable adjacency arrays, speeding up deletions to \(O(\log n) \).
Alternate Parallelization Strategies

Fine-grained locking cost lower than sort overhead, as well as vertex/edge partitioning.

Insertions-only updates on an RMAT synthetic network (graph generation), 33 million vertices, 268 million edges.
Parallel Performance Comparison of the various graph representations

20 million edge insertions/deletions; RMAT synthetic network of 33 million vertices, 268 million edges.
Parallel Performance Comparison of the various graph representations

50 million edge updates (75% insertions, 25% deletions)

Performance of Dyn-arr+sorting and Hybrid-arr-treap on par for this insertion-deletion ratio.

RMAT synthetic network with 33 million vertices, 268 million edges.
Utilizing temporal information, dynamic graph queries can be reformulated as problems on static networks – eg. Queries on graphs with entities filtered up to a particular time instant, time interval etc.

• Induced subgraphs kernel: facilitates this dynamic \rightarrow static graph problem transformation
• Assumption: the system has sufficient physical memory to hold the entire graph, and an additional snapshot.
• Computationally, very similar to doing batched insertions and deletions, worst-case linear work.
Graph traversal

- Level-synchronous graph traversal for low-diameter graphs, and each edge in the graph visited only once/twice.

- Dynamic networks
 - Filter vertices and edges according to time-stamp information, recompute BFS from scratch
 - Dynamic graph algorithms for BFS [DFR06]: better amortized work bounds, space requirements – harder to parallelize.

- **Our contribution**: Fast, lock-free parallel algorithm for shared memory parallel systems processing time stamps, and with edge filtering
Parallel Performance on the IBM Power 570

RMAT network with 500 million vertices, 4 billion edges.

Filtering edges increases graph diameter, lowers concurrency in a level-synchronous approach.

Number of processors

Execution time (seconds)

Relative Speedup

1 2 4 8 12 16

0 100 200 300 400 500

0 3 6 9 12 15

Parallel Programming for Graph Analysis
STREAMING DATA ANALYSIS
Outline

• Background: Streaming Data Analysis
 – Existing approaches do not meet current needs.
 – Characteristics of data, problem, & related approaches

• Data structures for massive streaming graph analysis
 – STINGER: Extensible, hybrid data structure supporting efficient, no-lock access

• Case study: Updating clustering coefficients, a localized graph metric
Background

• Streaming data analysis
 – Known control & experimental paradigm
 – New problem domains, unknown territory

• Characteristics
 – Current data rates & unserved apps
 – Irregular, partial, & massive data
 – Archetypal questions

• Existing related, but different, topics
Streaming Data Analysis

Original uses:
- Small input data.
- Small, often discrete sim.
- Slow control / response cycle

Now common in manufacturing. Easily handled by current commercial computing abilities.

Photo of Yakima hops from Andrew Balet.
Streaming Data Analysis

Current explorations:
- Moderate input data.
- Cutting-edge sim.
- Response metered by simulation speed

Petascale, traditional HPC. Not finished or easy, but at least being explored.

Streaming Data Analysis

Current needs, future knowledge:
- Massive, *irregularly structured* input data.
- New simulation, analysis methods
- Widely varied, unexplored response / control methods

Source → Control

Simulation / query → Viz

Parallel Programming for Graph Analysis
Streaming Data Analysis

Current needs, future knowledge:

- Massive, *irregularly structured* input data.
- New simulation, analysis methods
- Widely varied, unexplored response / control methods

We are (barely) here.
Streaming Data Analysis

Current needs, future knowledge:

- Massive, *irregularly structured* input data.
- New simulation, analysis methods
- Widely varied, unexplored response / control methods

Analysts need us here. Yesterday.
Streaming Data Analysis

• Faster-than-real-time simulation & control used in production, video games

• Approaching real-time simulation & control in large scale physical models
 – Big problem? *Toss in a big machine / many machines.*

• Neither algorithms, architectures, language systems, nor programmers are much beyond initial exploration of handling *currently available, massive, irregular data.* Cannot yet explore what to control...
Current Example Data Rates

• Financial:
 - NYSE processes 1.5TB daily, maintains 8PB
• Social:
 - Facebook adds >100k users, 55M “status” updates, 80M photos daily; more than 750M active users with an average of 130 “friend” connections each.
 - Foursquare, a new service, reports 1.2M location check-ins per week
• Scientific:
 - MEDLINE adds from 1 to 140 publications a day

Shared features: All data is rich, irregularly connected to other data. All is a mix of “good” and “bad” data... And much real data may be missing or inconsistent.
Current Unserved Applications

• Separate the “good” from the “bad”
 – Spam. Frauds. *Irregularities*.
 – Pick news from world-wide events tailored to interests as the events & interests change.

• Identify and track changes

• Discover new relationships
 – Similarities in scientific publications.

• Predict upcoming events
 – Present advertisements *before* a user searches.

Shared features: Relationships are abstract. Physical locality is only one aspect, unlike physical simulation.
Streaming Data Characteristics

• The data expresses unknown (i.e. unpredictable) relationships.
 – The relationships are not necessarily bound by or related to physical proximity.
 – Arranging data for storage locality often is equivalent to the desired analysis.
 – There may be temporal proximity... That is a question we want to answer!
Streaming Data Characteristics

- The data expresses relationships *partially*.
 - Personal friendship is not the same as on-line “friendship.”
 - Streams often are lossy or contain errors.
 - Real links may be dropped, false links added.
 - Time synchronization is difficult.
 - Need to determine error models...
Streaming Data Characteristics

• The relationship state (graph) is massive.
 – NYSE, a single exchange: 8PB
 Regulators are supposed to monitor this?
 – Reorganizing even the data storage structure is a huge task.
 – Stresses storage (external and memory)
 – *For now*, we are interested in evolution of the current state, not questions stretching arbitrarily into the past...
Archetypal Questions

- To approach the applications, consider classes of abstract questions:
 - Single-shot, time-based queries including time
 - Are there s-t paths between time T_1 and T_2?
 - *Were two people friends yesterday?*
 - What are the important vertices at time T?
 - Persistent, continual property monitors
 - Does the path between s and t shorten drastically?
 - Is some vertex suddenly very central?
 - *Have road blockages caused a dangerous bottleneck?*
 - Persistent monitors of fully dynamic properties
 - Does a small community stay independent or merge w/larger?
 - When does a vertex jump between communities?
 - *What causes a person to change the channel?*

Only the first class is relatively well understood.
Many related topics exist in the literature.
None of these quite match the problem's needs.
But many of their results are just waiting to be used and extended...
Related Research Topics

• Streaming algorithms (CS theory):
 – Effective summaries of properties (graph and otherwise) carrying only a little state
 – Many results approximate flows, apply randomization...
 – We are interested in carrying a lot of state (350M users, 8PB of data, etc.) but producing useful summaries from noisy data.
Related Research Topics

• Dynamic graph algorithms (CS theory):
 – Maintain graph properties under change
 – Often require specific, complex data structures and fore-knowledge of the interesting properties
 – Massive maintained state does not permit multiple copies.
 – Still need to explore the data to discover what properties are interesting.
Related Research Topics

• Sensor networks, stream databases:
 – Cope with constant streams of data
 – Goal is to reduce the stream along the path; no node is large.
 – Existing, narrow exploration of what data to ignore using what already is known
 – *We want to exploit high-end machines to discover and explore new properties.*
 – *New knowledge, new opportunities for existing systems*
Related Research Topics

• Stream processing:
 – Useful implementation technique
 • Hardware: GPGPU, Cell / System S
 • Prog. Env.: OpenCL, CUDA, Brook, CQL
 – Each emphasizes spatial data locality.
 – The problems have unpredictable, irregular access patterns.
 – Many analyses we want to compute are equivalent to access predictions.
 – Exploring algorithms and architectures guides HW/language design.
Data Structure Desires

- Efficient, on-line modification
 - Update of edge data
 - Insertion / removal of edges, vertices
 - (for simplicity, will not discuss vertices)
- This means **no blocking**
 - Parallel reads concurrent with changes.
 - Writers must stay consistent, not readers.
 - Expect few writes across a massive graph. Penalizing readers is not acceptable.
- Low-overhead traversal
 - Traversing edges is a crucial building block
Graph Data: Adjacency Lists

The textbook approach: Represent edges with a linked list.

vertex array
linked list of adjacent vertices

Benefit: Known lock-free insertion, removal algorithms.

Drawback: Large overhead on traversal regardless of architecture.
Graph Data: Adjacency Lists

Variation: Represent edges with a linked tree, skiplist, ...

Benefit: Same...

Drawback: Even slower traversal.
Graph Data: Packed Arrays

Sparse matrix approach: Use arrays to hold adjacent vertices. *(Note: Can pack trees, treaps, etc. into arrays.)*

Benefit: Fast traversal, loading only needed data.

Drawback: Changing the length is expensive (O(degree)). Even worse in compressed sparse row (CSR) format (O(# edges)).
Graph Data: Packed Arrays

Sparse matrix variant: Permit holes in the array.

Benefit: Fast enough traversal, although holes are examined.

Drawback: Still may require re-allocating the array, although that may not matter in the long run.
Graph Data: Hybrid List of Arrays

Hybrid: A list of arrays with holes...
 • Not too crazy. Many language systems implement linked lists as a list of arrays.

Benefit: Fast enough traversal, assuming blocks are sized for the architecture.
Drawback: More complicated looping structure.
Many applications need different *kinds* of relationships / edges. The hybrid approach can accommodate those by separating different kinds' edge arrays. An additional level of indirection permits fast access by source vertex or edge type.
STINGER: Edge Insertion

Insertion (best case): From the source vertex, skip to the edge type, then search for a hole.

Worst case: Allocate a new block and add to the list...
STINGER: Edge Removal

Removal: Find the edge. Remove by negating the adj. vertex. Atomic store.

If insertion sets the adj. vertex > 0 after other updates, insertion will appear atomic.
Massive Streaming Data Analytics

- Accumulate as much of the recent graph data as possible in main memory.

Pre-process, Sort, Reconcile

“Age off” old vertices

Alter graph

Update metrics

Change detection

STINGER graph

Insertions / Deletions

Affected vertices
Case Study: Clustering Coefficients

- Used as a measure of “small-worldness.”
- Larger clustering coefficient \rightarrow more inter-related
- Roughly, the ratio of actual triangles to possible triangles around a vertex.

Defined in terms of *triplets*.
- i-j-v is a **closed triplet** (triangle).
- m-v-n is an **open triplet**.

Clustering coefficient

$\frac{\text{# closed triplets}}{\text{# all triplets}}$

- Locally, count around v.
- Globally, count across entire graph.
 - Multiple counting cancels ($3/3=1$)
Batching Graph Changes

- Individual graph changes for local properties will not expose much parallelism. Need to consider many actions at once for performance.
- Conveniently, batches of actions also amortize transfer overhead from the data source.
 - Common paradigm in network servers (c.f. SEDA: Staged Event-Driven Arch.)
- Even more conveniently, clustering coefficients lend themselves to batches.
 - Final result independent of action ordering between edges.
 - Can reconcile all actions on a single edge within the batch.
Streaming updates to clustering coefficients

- Monitoring clustering coefficients could identify anomalies, find forming communities, etc.
- Computations stay local. A change to edge \(<u, v>\) affects only vertices \(u, v\), and their neighbors.

- Need a fast method for updating the triangle counts, degrees when an edge is inserted or deleted.
 - Dynamic data structure for edges & degrees: STINGER
 - Rapid triangle count update algorithms: exact and approximate
The Local Clustering Coefficient

\[C_v = \frac{\text{number of closed triplets centered around } v}{\text{number of triplets centered around } v} \]

\[C_v = \frac{\sum_{i \in e_v} |e_i \cap (e_v \setminus \{v\})|}{d_v(d_v - 1)} = \frac{T_v}{d_v(d_v - 1)}. \]

Where \(e_k \) is the set of neighbors of vertex \(k \) and
\(d_k \) is the degree of vertex \(k \)

We will maintain the numerator and denominator separately.
Algorithm 1 An algorithmic framework for updating local clustering coefficients. All loops can use atomic increment and decrement instructions to decouple iterations.

Input: Edge \(\langle u, v \rangle \) to be inserted (+) or deleted (−), local clustering coefficient numerators \(T \), and degrees \(d \)

Output: Updated local triangle counts \(T \) and degrees \(d \)

1: \(d_u \leftarrow d_u \pm 1 \)
2: \(d_v \leftarrow d_v \pm 1 \)
3: \(\text{count} \leftarrow 0 \)
4: for all \(x \in e_v \) do
 5: if \(x \in e_u \) then
 6: \(T_x \leftarrow T_x \pm 1 \)
 7: \(\text{count} \leftarrow \text{count} \pm 1 \)
8: \(T_u \leftarrow T_u \pm \text{count} \)
9: \(T_v \leftarrow T_v \pm \text{count} \)
Three Update Mechanisms

• Update local & global clustering coefficients while edges <u, v> are inserted and deleted.

• Three approaches:
 1. **Exact**: Explicitly count triangle changes by doubly-nested loop.
 • \(O(d_u \times d_v)\), where \(d_x\) is the degree of \(x\) after insertion/deletion
 2. **Exact**: Sort one edge list, loop over other and search with bisection.
 • \(O((d_u + d_v) \log (d_u))\)
 3. **Approx**: Summarize one edge list with a Bloom filter. Loop over other, check using \(O(1)\) approximate lookup. May count too many, never too few.
 • \(O(d_u + d_v)\)
Bloom Filters

- **Bit Array:** 1 bit / vertex
- **Bloom Filter:** less than 1 bit / vertex
- Hash functions determine bits to set for each edge
- Probability of false positives is known (prob. of false negatives = 0)
 - Determined by length, # of hash functions, and # of elements
- Must rebuild after a deletion

Bit Array and Bloom Filter

<table>
<thead>
<tr>
<th>Bit Array</th>
<th>Bloom Filter</th>
<th>HashA(10)</th>
<th>HashA(23)</th>
<th>HashB(10)</th>
<th>HashB(23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0</td>
<td>0 0 1 0 0 0 0 1 0 1 1</td>
<td>2</td>
<td>11</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Example Hash Functions

- HashA(10) = 2
- HashB(10) = 10
- HashA(23) = 11
- HashB(23) = 8
Updating Triplet Counts

Consider a starting graph:
Updating Triplet Counts

Insert two edges (green):
Updating Triplet Counts

Consider adjacent vertices (green boxes):

The *open* triplet count is a function only of degree. Update the local *open* triplet count for each green boxed vertex.
Updating Triplet Counts

Now examine all vertices adjacent to those:
Updating Triplet Counts

Prune consideration to vertices adjacent to *two* newly attached vertices (red boxes):

- Being adjacent to two newly joined edges is necessary for being part of a new closed triple (triangle) although not sufficient.
- From each red boxed vertex, search for a new edge opposite it. Only need to search the red edges.
Updating Triplet Counts

Update closed triplet (triangle) counts for found triangles (blue boxes):

- **Note:** Only accessed edges adjacent to the newly inserted edges. Batching *reduces* work over individual actions.
- Glossed over cases (two, three new edges in triangle); none need extra searches.
- Technique also handles edge removal.
Preliminary Performance

- 64 processor Cray XMT @ PNNL
- 16M vertices, 537M initial
- Results from earlier algorithms that require more edge traversals:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1 edge</th>
<th>1000 edges</th>
<th>4000 edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>90</td>
<td>25 100</td>
<td>50 100</td>
</tr>
<tr>
<td>Approx.</td>
<td>60</td>
<td>83 700</td>
<td>193 300</td>
</tr>
</tbody>
</table>

- Approx: Summarizes adjacency structure with a Bloom filter, 100% accuracy in this test.
Tracking connected components

- Global property
 - Track <vertex, component> mapping
 - Undirected, unweighted graphs
- Scale-free network
 - most changes are within one large component
- Edge insertions
 - primarily merge small component into the one large component
- Deletions
 - rarely disconnect components
 - small fraction of the edge stream
Insertions-only connected components algorithm

Edge insertion (in batches):

- Relabel batch of insertions with component numbers.
- Collapse the graph, removing self-edges. Any edges that remain cross components.
- Compute components of component ↔ component graph. Relabel smaller into larger.
- Problem size reduces from number of changes to number of components.
- Can proceed concurrently with STINGER modification.
The Problem with Deletions

• An edge insertion contains local information about connectivity
 – $\text{Insert}(u, v) = u$ and v are connected

• An edge deletion cannot always determine locally if a component has disconnected
 – $\text{Delete}(u, v) =$ non-existence of edge between u & v

• Re-establishing connectivity after a deletion could be a global operation
Related Work

• Shiloach & Even (1981): Two breadth-first searches
 – 1st to reestablish connectivity, 2nd to find separation
• Eppstein et al. (1997): Partition according to degree
• Henzinger, King, Warnow (1999): Sequence & coloring
• Henzinger & King (1999): Partition dense to sparse
 – Start BFS in the densest subgraph and move up
• Roditty & Zwick (2004): Sequence of graphs

• Conclusion: In the worst case, graph traversal per deletion is expensive. Use heuristics to avoid it, if possible.
Tracking connected components

Edge deletion:

- **Exact**: A single deletion in a batch will trigger static connected components
- **Heuristic**: Accumulate N deletions before recomputation
- **Heuristic**: Deleted edges that provably break triangles can be ignored
- Can tune heuristics for data
Neighbor Intersection for Deletion

- **Goal:** quickly rule out edge deletions that do not change the component
- Scale-free networks have small-world property

- If our stream contains the deletion of an edge from vertex u to v above:
 - By intersecting the neighbor sets of u and v, we can see they have a common neighbor
 - Therefore the deletion cannot cleave a component
- We can build and evaluate the neighbor sets and intersections in parallel for all deletions in a batch
Algorithm for Bit Array Intersection

- For each unique source vertex in the batch (in parallel)
 - Compute a bit array representing the neighbor list
- Relatively few to construct because of power law dist.
- Perform the deletions in STINGER
- For each destination vertex in the batch (in parallel)
 - For each neighbor, query the bit array of the source
 - Any common neighbor means the component did not change

- This technique reduces the number of edge deletions that could cause structural change by an order of magnitude in preliminary investigations.
 - Example: ~7000 → ~700 for batches of 100k edges
 - Actual # of relevant deletions: ~10
Cray XMT Performance

- Insertions-only improvement 10x-20x over recomputation
- Triangle heuristic 10x-15x faster for small batch sizes
- Better scaling with increasing graph size than static connected components
Effect of Batch Size

<table>
<thead>
<tr>
<th></th>
<th>$B = 10,000$</th>
<th>$B = 1,000,000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertions only</td>
<td>21,000</td>
<td>931,000</td>
</tr>
<tr>
<td>Insertions + Deletion Heuristic</td>
<td>11,800</td>
<td>240,000</td>
</tr>
<tr>
<td>Static Connected Components</td>
<td>1,070</td>
<td>78,000</td>
</tr>
</tbody>
</table>

Updates per sec, 32 of 128P Cray XMT, 16M vertices, 135M edges

- Greater parallelism within a batch yields higher performance
- Trade-off between time resolution and update speed
- Performance exceeds specified real-world rates
Connected components – faster deletions

• Before:
 – Neighbor intersection for each edge deleted
 – 240k updates/sec on 32 processor Cray XMT
 – ~90% of deletions ruled out as “safe”

• Now:
 – Check for deletions in spanning tree, suggestion from Uzi Vishkin at MTAAP'11.
 – Neighbor intersection for each deleted edge
 – Traverse spanning tree for common parent
 – (Joint work with Rob McColl at Georgia Tech.)

• New method rules out 99.7% of deletions in a RMAT graph with 2M vertices and 32M edges
Adding a spanning tree

- Vertex-component mapping: Fast insertion updates
 - Also: fast queries
- Spanning tree: Faster deletions
 - Deleted edges not in tree are “safe”
- Store & update both for both properties

Vertex-component map

<table>
<thead>
<tr>
<th>V</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

Spanning tree

<table>
<thead>
<tr>
<th>V</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
New Heuristic for Deletions

• For each edge to be deleted:
 – If edge is not in the spanning tree: SAFE
 – If edge endpoints have a common neighbor: SAFE
 – If a neighbor can still reach the root of the tree: SAFE
 – Else: Possibly cleaved a component
New Heuristic for Deletions

- For each edge to be deleted:
 - If edge is not in the spanning tree: SAFE
 - If edge endpoints have a common neighbor: SAFE
 - If a neighbor can still reach the root of the tree: SAFE
 - Else: Possibly cleaved a component
New Heuristic for Deletions

- For each edge to be deleted:
 - If edge is not in the spanning tree: SAFE
 - If edge endpoints have a common neighbor: SAFE
 - If a neighbor can still reach the root of the tree: SAFE
 - Else: Possibly cleaved a component
Scalability of New Heuristics

- Spanning tree, neighbor intersection, & tree climbing for deletions

- Intel E7-8870 (40 cores, 128 GiB)