
Abstract

Given an arbitrary learning situation, it is diffi-
cult to determine the most appropriate learning
strategy. The goal of this research is to provide a
general representation and processing framework
for introspective reasoning for strategy selection.
The learning framework for an introspective sys-
tem is to perform some reasoning task. As it
does, the system also records a trace of the rea-
soning itself, along with the results of such rea-
soning. If a reasoning failure occurs, the system
retrieves and applies an introspective explanation
of the failure in order to understand the error and
repair the knowledge base. A knowledge struc-
ture called a Meta-Explanation Pattern is used to
both explain how conclusions are derived and
why such conclusions fail. If reasoning is repre-
sented in an explicit, declarative manner, the sys-
tem can examine its own reasoning, analyze its
reasoning failures, identify what it needs to learn,
and select appropriate learning strategies in order
to learn the required knowledge without overreli-
ance on the programmer.

1 INTRODUCTION

In recent years several machine learning techniques have
been proposed. Yet it is problematic, given a particular
learning situation, to determine the most appropriate
learning strategy. Many learning theories depend upon
particular domains and specific classes of problems. The
goal of this research is to provide a general representation
and processing framework for introspective reasoning
about reasoning failures and the selection of appropriate
learning strategies for different failure classes. A taxon-
omy of reasoning failures is being developed toward this
end. It is claimed that explicit, declarative representations
of reasoning failures allow a reasoning system to examine
its own reasoning processes, analyze its reasoning fail-
ures, identify what it needs to learn, and select appropriate
learning strategies in order to learn the required knowl-
edge.

The learning framework for an introspective system is as
follows: First the system performs some reasoning task.
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As it does so, the system records a trace of the reasoning
along with its conclusions and the goal it is pursuing.
Included in the trace are the considerations prompting
such a decision and the bases for making the decision.
Monitoring its progress, the system reviews each reason-
ing chain in order to detect failures. If a failure develops,
the system must not only correct the mistake, but must
attempt to learn from the mistake in order to avoid it in the
future. The learning which is performed has three phases:
Identify what went wrong (blame assignment), decide
what to learn, and select an appropriate learning strategy.
Blame assignment requires that the system identify both
faulty background knowledge (BK) and faulty processing
decisions. An introspective agent can use its knowledge of
failures in order to understand how it failed to reason cor-
rectly in a given situation and hence to learn. This paper
will examine three types in the failure taxonomy:

Mis-indexed Structure - The reasoner may have an appli-
cable knowledge structure to deal with a situation, but it
may not be indexed in memory so that it is retrieved using
the cues provided by the context. In this case the system
must add a new index, or generalize an existing index
based on the context. If on the other hand, the reasoner
retrieves a structure that later proves inappropriate, it must
specialize the indices to this structure so that the retrieval
will not recur in similar situations (Cox & Ram, 1991).

Novel Situation - A failure can arise when the reasoner
does not have an appropriate knowledge structures to deal
with a situation. In such cases, the reasoner could use a
variety of learning strategies, including explanation-based
generalization (EBG) (DeJong & Mooney, 1986; Mitch-
ell, et al., 1986) or explanation-based refinement (Ram,
1992), coupled with index learning (Hammond, 1989;
Ram, 1992) for the new knowledge structures.

Incorrect BK- Even if the reasoner has applicable knowl-
edge structures, they may be incorrect or incomplete.
Learning in such cases is usually incremental, involving
strategies such as elaborative question asking (Ram, 1991,
1992) applied to the reasoning chain, and abstraction or
generalization techniques applied to the BK.

Meta-AQUA is a computer program that performs multi-
strategy learning through self-analysis of its reasoning
processes during a story understanding task. In order to
perform this kind of reasoning, a new kind of knowledge
structure was proposed, called aMeta-Explanation Pat-
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tern (Meta-XP) (Cox & Ram, 1991). Meta-XPs are simi-
lar to explanation patterns (Schank, 1986), and are causal
justifications of the reasoning performed by a system that
explain how and why the system reasons. These structures
form the bases for blame assignment and learning. There
are two broad classes of Meta-XPs: Trace Meta-XPs and
Introspective Meta-XPs.

A Trace Meta-XP (TMXP) records a trace of the reason-
ing performed by a system along with both the causal
linkages explaining the decisions taken and the goal the
system was pursuing during such reasoning. TMXPs are
similar to Carbonell’s (1986) derivational analogy traces,
except that the underlying reasoning processes may be
based on a reasoning model other than search-based prob-
lem solving. TMXPs declaratively represent the mental
processes employed in making a processing decision,
record both the information that initiated the decision and
the information that the decision was based on, and
explain how given conclusions are drawn.

An Introspective Meta-XP (IMXP) is a structure used both
to explain why reasoning processes fail and to learn from
reasoning failure. It associates a failure type with a partic-
ular set of learning strategies by providing aknowledge
goal, or a goal to learn (Ram, 1991; Ram & Hunter, to
appear). IMXPs also point to likely sources of the failure
within the TMXP.

This paper concentrates on the representation and use of
Introspective Meta-XPs in the learning theory. Section 2
presents the overall representation of IMXPs. Section 2.1
provides a representation for base IMXPs. Section 2.2 dis-
cusses the knowledge goals and plans generated by core
IMXPs. Section 2.3 illustrates the theory with a process-
ing example from Meta-AQUA using a composite Meta-
XP. Section 3 closes with a discussion of some issues.

2 REPRESENTATION OF
INTROSPECTIVE META-XPS

Whereas a Trace Meta-XP explains how a failure
occurred, providing the sequence of mental events and
states along with the causal linkage between them, an
Introspective Meta-XP explains why the results of a chain
of reasoning are wrong. The IMXP posits a causal reckon-
ing between the events and states of the TMXP. In addi-
tion, an IMXP provides a learning goal specifying what
needs to be learned. Then, given such an explanation
bound to a reasoning chain, the task of the system is to
select a learning strategy to reduce the likelihood of
repeating the failure.

An IMXP consists of six distinctive parts:

• The IMXP type class
• The failure type accounted for by the IMXP
• A graph representation of the failure
• Temporal ordering on the links of the graph
• An ordered list of likely locations in the graph where
the processing error may have occurred.

• A corresponding list of knowledge goals that can be
spawned in order to repair the failure.

There are three classes of IMXPs: base, core, and com-
posite.Base types constitute the blocks with whichcore
IMXPs are built. We have identified six types in the base
class: successful prediction, inferential expectation fail-
ure, incorporation failure, belated prediction, retrieval
failure, and input failure. The core types are representa-
tions of the failure types described by the failure taxon-
omy, such as Mis-indexed Structure, Novel Situation and
Incomplete-BK. Core types are combined to formcom-
posite IMXPs that describe situations encountered by rea-
soning agents, such as the example of section 2.3.

The internal structure of an IMXP consists of nodes, rep-
resenting both mental states and mental events (pro-
cesses), and the causal links between them. Enables links
point from precondition states to processes; results links
join processes with resultant states; and initiates links
connect two states. The graph gives both a structural and a
causal accounting of what happened and what should
have happened when processing information.

Introspective Meta-XPs generateknowledge goals, which
represent the system’s learning goals. Knowledge goals
help guide the learning process by suggesting strategies
that would allow the system to learn the required knowl-
edge. There are two classes of knowledge goals (Ram,
1991; Ram and Hunter, to appear). Aknowledge acquisi-
tion goal constitutes a desire for knowledge to be added to
the BK. Aknowledge organization goal indicates a desire
to adjust the indices which organize the BK. Using such
indices the system can efficiently retrieve appropriate
structures with which an input can be understood.

The knowledge goals spawned by an introspective exami-
nation of a reasoning failure are achieved by the use of
learning plans, similar to those described by Hunter
(1990). The plans are implemented as action sequences
which call various learning algorithms. Because the
knowledge goals have pointers to the trace of the intro-
spective reasoning, they have access to the TMXPs and
IMXPs involved in the analysis of the failure.

2.1 BASE CLASS IMXPS

The three types of failures discussed in the introduction
(Mis-indexed Structure, Novel Situation and Incorrect
BK) can be accounted for by the complementary notions
of omission error and commission error. Commission
errors stem from reasoning which should not have been
performed or knowledge which should not have been
used. Omission errors originate from the lack of some rea-
soning or knowledge.

We have identified two types of commission errors:Infer-
ential expectation failures typify errors of projection.
They occur when the reasoner expects an event to happen
in a certain way, but the actual event is different or miss-
ing. Incorporation failures result from an object or event
having some attribute which contradicts some restriction
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on its values. Additionally, three omission errors have
been identified:Belated prediction occurs after the fact.
Some prediction which should have occurred did not, but
only in hindsight is this observation made.Retrieval fail-
ures occur when a reasoner cannot remember an appropri-
ate piece of knowledge. In essence it represents forgetting.
Input failure is error due to lack of some input informa-
tion. To construct the three core types described in this
paper, representations for expectation failure, retrieval
failure, and incorporation failure are needed.

2.1.1 Inferential Expectation Failure

To illustrate representations of the base types, let node A
be an actual occurrence of an event, an explanation, or an
arbitrary proposition. The node A (see Fig. 1)1 results
from either a mental calculation or an input concept. Let
node E be the expected occurrence. The expected node E
mentally-results from some reasoning trace
enabled by some goal, G. Now if the two propositions are
identical, so that A = E, or A⊃ E, then a successful pre-
diction has occurred.2 Failures occur when A≠ E. This
state exists when either A and E are disjoint, or conflicting
assertions within the two nodes conflict. For example, A
and E may represent persons, but E contains a relation
specifying gender = male, whereas A contains the relation
gender = female. Inferential expectation failures occur
when the reasoner predicts one event or feature, but
another occurs instead. The awareness of expectation fail-
ure is initiated by anot-equals relation between A
and E.

2.1.2 Retrieval Failure

Instead of an expectation (E) being present, it is absent
with retrieval failure due to the inability of the system to

1. Attributes and relations are represented explicitly. The ACTOR
attribute of event X with value Y is equivalent to the relationACTOR
havingdomain X andco-domain Y.
2. See Cox & Ram (1991) for a summary of interpretation for A⊂ E.

Figure 1: Expectation Failure
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retrieve a knowledge structure that produces E (see Fig.
2). To represent these conditions, Meta-AQUA uses non-
monotonic logic values ofin (in the current set of beliefs)
andout (out of the current set of beliefs) (Doyle, 1979).
Extended values includehypothesized-in (weakly
assumed in) andhypothesized (unknown). Thus
absolute retrieval failure is represented by A [truth =in]
= E [truth = out]. The relation that identifies the truth
value of E as being out of the current set of beliefsmen-
tally-initiates the assertion that a retrieval fail-
ure exists. Cuts across links in the figure signify causal
relations for which the truth slot of the link is alsoout.

2.1.3 Incorporation Failure

When the incorporation of some input into memory fails
due to conflict with the BK, an incorporation failure
exists. The conflict produces anot-equals relation
between the actual occurrence and a conceptual con-
straint. This relation mentally-initiates the
anomaly (Fig. 3). Such anomalies are used to identify
questions to drive the reasoning and learning processes.

2.2 CORE CLASS IMXPS

2.2.1 Mis-indexed Structure

The core type Mis-indexed Structure has two variants:
Erroneous Association and Missing Association. AnErro-
neous Association is represented with inferential expecta-
tion failure. An index has associated some context with
part of the BK that produced incorrect inferences. A
knowledge organization goal is spawned to adjust the
index so that it will still retrieve those structures in the BK
when appropriate, but not in future instances similar to the
current situation. Learning plans are associated with such
goals to execute a specialization algorithm producing a
more discriminating index. Because the goal has links to a
declarative representation of the reasoning which pro-
duced it, the algorithm has access to the context of the
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Figure 2: Retrieval Failure
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error.

A Missing Association is represented by retrieval failure.
Here, an appropriate knowledge structure was not
retrieved because there was no index to associate the con-
text with the structure. Thus some node M in the BK must
bein. The goal associated with the IMXP is to find M. If
this can be verified, then the plan which found the struc-
ture directs an indexing algorithm to examine the indices
of M, looking for an index compatible with the index cal-
culated for A. If found, this index is generalized so that
the current cues provided by the context of A will retrieve
E. If no such index is found, a new index is computed. If
M cannot be found, a reasoning question is raised con-
cerning the possibility that M exists. The question is rep-
resented as a knowledge goal and indexed by the context
of A, and the process is suspended.

2.2.2 Novel Situation

A Novel Situation is structurally like a Mis-indexed
Structure (Missing Association variant), except the node
M (and thus its associated index) has a truth value ofout.
That is, there is no item in memory that can be retrieved
and reasoned with to produce the expectation of a concept
like A.

Novel situations occur when A≠ E and E’s truth slot is
eitherhypothesized-in or out. When Meta-AQUA
identifies a novel situation it posts a goal to learn a new
explanation of the event. The associated plan is to perform
EBG on node A, so that the knowledge can be applied to a
wider set of future events. The plan also directs an index-
ing algorithm to the same node so that the new explana-
tion will be retrieved in similar situations.

2.2.3 Incorrect-BK

Only one instance of the failure type Incorrect-BK is cur-
rently represented. This failure is an inconsistency
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Figure 3: Incorporation Failure

between a known fact and a constraint in the BK. Such
failures invoke a knowledge acquisition goal to adjust the
constraint in the BK. An associated learning plan then
tests whether the two assertions (the fact and the con-
straint) are conceptual siblings. If this is so, then the pro-
gram will perform abstraction3 on the constraint, raising it
to its parent on the basis of induction. The constraint is
then marked as beinghypothesized-in. The reason-
ing chain which led to this hypothesis is indexed off the
hypothesis so that the reasoning chain can be retrieved
when the constraint is used in future stories. The hypothe-
sis is verified if the anomalous assertion is re-encountered
in later situations.

2.3 COMPOSITE CLASS IMXPS

Consider an example story processed by Meta-AQUA:

S1: A police dog sniffed at a passenger’s luggage in the
Atlanta airport terminal.

S2: The dog suddenly began to bark at the luggage.

S3: At this point the authorities arrested the passenger,
charging him with smuggling drugs.

S4: The dog barked because it detected two kilograms of
marijuana in the luggage.

Numerous inferences can be made from the story, many of
which may be incorrect, depending on the knowledge of
the reader. Meta-AQUA’s knowledge includes general
facts about dogs and sniffing, including the fact that dogs
bark when threatened, but it has no knowledge of police
dogs. It also knows of past weapons smuggling cases, but
has never seen drug interdiction. Nonetheless the program
is able to recover and learn from the erroneous inferences
this story generates.

S1 produces no inferences other than sniffing is a normal
event in the life of a dog. However, S2 produces an anom-
aly because the system’s definition of “bark” specifies that
the object of a bark is animate. So the program (incor-
rectly) believes that dogs bark only when threatened by
animate objects. Since luggage is inanimate, there is a
contradiction, leading to an incorporation failure. This
anomaly causes the understander to ask why the dog
barked at an inanimate object. It is able to produce but one
explanation: the luggage somehow threatened the dog.
The BK contains only this reason for why dogs bark.

S3 asserts an arrest scene which reminds Meta-AQUA of
an incident of weapons smuggling by terrorists. The sys-
tem then infers a smuggling bust that includes detection,
confiscation, and arrest scenes. Because baggage searches
are the only detection method the system knows, the sniff-
ing event remains unconnected to the rest of the story.

Finally, S4 causes the question generated by S2 “Why did

3. The use of the term abstraction is as defined by Michalski (1991), and
can be opposed to that of generalization. The former is an operation on
theco-domains of relations, whereas the latter is an operation on rela-
tion domains.
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the dog bark?” to be retrieved, and the understanding task
is resumed. Instead of revealing the anticipated threaten-
ing situation, S4 offers another hypothesis. The system
prefers the explanation given by S4 over its earlier one.
The system characterizes the reasoning error as an expec-
tation failure caused by the incorrect retrieval of a known
explanation (“dogs bark when threatened by objects,”
erroneously assumed to be applicable), and a missing
explanation (“the dog barked because it detected mari-
juana,” the correct explanation in this case). Using this
characterization as an index, the system retrieves IMXP-
Novel-Situation-Alternative-Refuted (see Fig. 4).

This composite Meta-XP consists of three core Meta-XPs:
XP-Novel-Situation (centered about “Retrieval Failure”),
an Erroneous Association variant of the XP-Mis-indexed-
Structure (centered about “Expectation Failure”) and XP-
Incorrect-BK (centered about “Incorporation Failure”).
The plan seeking to achieve the knowledge goal spawned
by the XP-Novel-Situation directs an EBG algorithm to
be applied to the explanation of the bark (node A2). Since
the detection scene of the drug-bust case and the node rep-
resenting the sniffing are unified due to the explanation
given in S4, the explanation is generalized to drug busts in
general and installed at the location of node M′. The
explanation is then indexed in memory, creating a new
index (I′). The plan for the goal of the XP-Mis-indexed-
Structure directs an indexing algorithm to the defensive
barking explanation (node E). It recommends that the
explanation be re-indexed so that it is not retrieved in sim-
ilar situations in the future. Thus the index for this XP
(node I) is specialized so that retrieval occurs only on ani-
mate objects, not physical objects in general. The plan
achieving the goal of the XP-Incorrect-BK directs the sys-
tem to examine the source of the story’s anomaly. The
solution is to alter the conceptual representation of bark so
that the constraint (node C) on the object of dog-barking
instantiations is abstracted from animate objects to physi-
cal objects.

Although the program is directly provided an explanation
linking the story together, Meta-AQUA performs more
than mere rote learning. It learns to avoid the mistakes
made during the story processing. Meta-XPs allow the
system to choose appropriate learning strategies in order
to learn exactly that which the system needs to know to
process similar future situations correctly. A subsequent
story, in which a police dog is used to find a marijuana
plant in a suspect’s home trash bin produces no errors.

3 DISCUSSION

Meta-XPs provide a number of computational benefits.
Because Trace Meta-XPs make the trace of reasoning
explicit, an intelligent system can directly inspect the rea-
sons supporting specific conclusions, evaluate progress
towards a goal, and compare its current reasoning to past
reasoning in similar contexts. Hiding knowledge used by
the system in procedural code is thus avoided. Instead,
there exists an explicit declarative expression of the rea-

sons for executing a given piece of code. With these rea-
sons enumerated, a system can explain how it produced a
given failure and retrieve an introspective explanation of
the failure. Also, because both the reasoning process and
the BK are represented using the same type of declarative
representations, processes which identify and correct gaps
in the BK can also be applied to the reasoning process
itself. For example, a knowledge goal may be directed at
the reasoning process as well as at the BK. Further,
because there is a declarative trace of past reasoning pro-
cesses, there is the potential for speedup learning as with
derivational replay. Finally, the ability of a Meta-XP to
provide goals for applicable learning algorithms to be
used in given circumstances provides a sound basis for
multistrategy learning.

Many multistrategy learners are simply integrated sys-
tems consisting of a cascade of more than one learning
algorithm (e.g., Flann & Dietterich, 1989; Shavlik & Tow-
ell, 1989). For each and every input the control is the
same. An initial learning technique is applied such that its
output becomes the input to the next technique. Newer
systems use more sophisticated schemes whereby various
algorithms may apply to different inputs depending on the
situation. In these paradigms, selection of the learning
algorithm becomes computationally important. One bene-
fit of using IMXPs in this type of framework is their abil-
ity to apply learning tasks appropriate to a given situation
without having to perform blind search. Many non-cas-
caded multistrategy learning systems apply learning algo-
rithms in a predefined order (e.g., Genest, et al., 1991;
Pazzani, 1991). If the first fails, then the next strategy is
tried, and so forth. Much effort may be wasted in worst-
case scenarios.

This research has produced a novel, theoretical approach
combining multiple learning methods in an integrated
manner. This paper focuses on the justifications and tech-
nical details. The authors are currently involved in
research to evaluate the model’s cognitive plausibility as
well as the computational benefits of the approach.
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