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Abstract

Given an arbitrary learning situation, it is fdif
cult to determine the most appropriate learning
strategy The goal of this research is to provide a
general representation and processing framework
for introspective reasoning for strategy selection.
The learning framework for an introspective sys-
tem is to perform some reasoning task. As it
does, the system also records a trace of the rea-
soning itself, along with the results of such rea-
soning. If a reasoning failure occurs, the system
retrieves and applies an introspective explanation
of the failure in order to understand the error and
repair the knowledge base. A knowledge struc-
ture called a Meta-Explanation Pattern is used to
both explain how conclusions are derived and
why such conclusions fail. If reasoning is repre-
sented in an explicit, declarative manriee sys-
tem can examine its own reasoning, analyze its
reasoning failures, identify what it needs to learn,
and select appropriate learning strategies in order
to learn the required knowledge without overreli-
ance on the programmer
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As it does so, the system records a trace of the reasoning
along with its conclusions and the goal it is pursuing.
Included in the trace are the considerations prompting
such a decision and the bases for making the decision.
Monitoring its progress, the system reviews each reason-
ing chain in order to detect failures. If a failure develops,
the system must not only correct the mistake, but must
attempt to learn from the mistake in order to avoid it in the
future. The learning which is performed has three phases:
Identify what went wrong (blame assignment), decide
what to learn, and select an appropriate learning strategy
Blame assignment requires that the system identify both
faulty background knowledge (BK) and faulty processing
decisions. An introspective agent can use its knowledge of
failures in order to understand how it failed to reason cor-
rectly in a given situation and hence to learn. This paper
will examine three types in the failure taxonomy:

Mis-indexed Sructure - The reasoner may have an appli-
cable knowledge structure to deal with a situation, but it
may not be indexed in memory so that it is retrieved using
the cues provided by the context. In this case the system
must add a new index, or generalize an existing index
based on the context. If on the other hand, the reasoner
retrieves a structure that later proves inappropriate, it must
specialize the indices to this structure so that the retrieval
will not recur in similar situations (Cox & Ram, 1991).

LINTRODUCTION Novel Stuation - A failure can arise when the reasoner
In recent years several machine learning technigues haw#oes not have an appropriate knowledge structures to deal
been proposed. €Y it is problematic, given a particular with a situation. In such cases, the reasoner could use a
learning situation, to determine the most appropriatevariety of learning strategies, including explanation-based
learning strategyMany learning theories depend upon generalization (EBG) (DeJong & Moone}986; Mitch-
particular domains and specific classes of problems. Thell, et al., 1986) or explanation-based refinement (Ram,
goal of this research is to provide a general representatioh992), coupled with index learning (Hammond, 1989;
and processing framework for introspective reasoningRam, 1992) for the new knowledge structures.

about reasoning failures and the selection of appropriatf,rect Bk- Even if the reasoner has applicable knowl-
learning strategies for diérent failure classes. A taxon- edge structures, they may be incorrect or incomplete.

omy of reasoning failures is being developed toward thi§ garing in such cases is usually incremental, involving

end. It is claimed that explicit, declarative representation§trategies such as elaborative question asking (Ram, 1991,

of reasoning failures allow a reasoning system to examingggy)“anplied to the reasoning chain, and abstraction or
its own reasoning processes, analyze its reasoning faikenerajization techniques applied to the BK.

ures, identify what it needs to learn, and select appropriat . )
learning strategies in order to learn the required knowlMeta-AQUA is a computer program that performs multi-
edge. strategy learning through self-analysis of its reasoning

he | ing f K . . . rocesses during a story understanding task. In order to
The learning framework for an introspective system is aéerform this kind of reasoning, a new kind of knowledge

follows: First the system performs some reasoning taskg; - cture was proposed, calledvieta-Explanation Pat-
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tern (Meta-XP) (Cox & Ram, 1991). Meta-XPs are simi-® A corresponding list of knowledge goals that can be
lar to explanation patterns (Schank, 1986), and are causgpawned in order to repair the failure.

justifications of the reasoning performed by a system thaithere are three classes of IMXPs: base, core, and com-

explain how and why the system reasons. These_ structur Ssite. Base types constitute the blocks with whichre
form the bases for blame assignment and learning. The{gp< are built. Vé have identified six types in the base
are two broad classes of Meta-XPsade Meta-XPs and class: successful prediction, inferential expectation fail-

Introspective Meta-XPs. ure, incorporation failure, belated prediction, retrieval
A Trace Meta-XP (TMXP) records a trace of the reason- failure, and input failure. The core types are representa-
ing performed by a system along with both the causaions of the failure types described by the failure taxon-
linkages explaining the decisions taken and the goal themy, such as Mis-indexed Structure, Novel Situation and
system was pursuing during such reasoning. TMXPs armcomplete-BK. Core types are combined to farom-
similar to Carbonel§ (1986) derivational analogy traces, posite IMXPs that describe situations encountered by rea-
except that the underlying reasoning processes may ®ning agents, such as the example of section 2.3.
Ibearlrs1esdocl)\2nz re_?'\s/lc))(nlér;g d@ggﬁ;ﬁbﬁ; trr‘e%r;:::r:fr;h%afnegn?;?%e m_ternal structure of an IMXP consists of nodes, rep-
) esenting both mental states and mental events (pro-

processes employed in making a processing decisio . .
record both the information that initiated the decision an%:sses), and the causal links between them. Enables links

the information that the decision was based on. an oint from precondition states to processes; results links
: : . ' in processes with resultant states; and initiates links
explain how given conclusions are drawn.

connect two states. The graph gives both a structural and a
An Introspective Meta-XP (IMXP) is a structure used both causal accounting of what happened and what should
to explain why reasoning processes fail and to learn frorhave happened when processing information.

reasoning failure. It associates a failure type with a parti
ular set of learning strategies by providindrawledge
goal, or a goal to learn (Ram, 1991; Ram & Hunter

CI'ntrospective Meta-XPs generadtaowl edge goals, which
represent the systesnlearning goals. Knowledge goals
. ! . help guide the learning process by suggesting strategies
a%?]?r?%elw(&%also point to likely sources of the fallurethat would allow the system to learn the required knowl-

: edge. There are two classes of knowledge goals (Ram,
This paper concentrates on the representation and useX8¥91; Ram and Hunteto appear). Anowledge acquisi-
Introspective Meta-XPs in the learning thed®gction 2  tion goal constitutes a desire for knowledge to be added to
presents the overall representation of IMXPs. Section 2.the BK. Aknowledge organization goal indicates a desire
provides a representation for base IMXPs. Section 2.2 dige adjust the indices which ganize the BK. Using such
cusses the knowledge goals and plans generated by caneices the system canfiefently retrieve appropriate
IMXPs. Section 2.3 illustrates the theory with a processstructures with which an input can be understood.
ing example from Meta-AQUA using a composite Meta-

XP. Section 3 closes with a discussion of some issues. The knowledge goals spawned by an introspective exami-

nation of a reasoning failure are achieved by the use of
learning plans, similar to those described by Hunter
2 REPRESENTATION OF (1990). The plans are implemented as action sequences
INTROSPECTIVE META-XPS which call various learning algorithms. Because the
) , knowledge goals have pointers to the trace of the intro-
Whereas a fhce Meta-XP explains how a failure ghective reasoning, they have access to the TMXPs and

occurred, providing the sequence of mental events angixps involved in the analysis of the failure.
states along with the causal linkage between them, an

Introspective Meta-XP explains why the results of a chaim 1 BASE CLASS |MXPS
of reasoning are wrong. The IMXP posits a causal recko
ing between the events and states of the TMXRddi-

tion, an IMXP provides a learning goal specifying what

r]1_'he three types of failures discussed in the introduction
(Mis-indexed Structure, Novel Situation and Incorrect

needs to be learned. Then, given such an explanati ) can be accounted for by the complementary notions

bound to a reasoning chain, the task of the system is f§ Omission error and commission err@ommission

select a learning strategy to reduce the likelihood ofTOrS Stem from reasoning which should not have been
repeating the failure. performed or knowledge which should not have been

used. Omission errors originate from the lack of some rea-

An IMXP consists of six distinctive parts: soning or knowledge.

® The IMXP type class We have identified two types of commission errémer-

® The failure type accounted for by the IMXP ential expectation failures typify errors of projection.

* A graph representation of the failure They occur when the reasoner expects an event to happen
® Temporal ordering on the links of the graph in a certain waybut the actual event is téfent or miss-

* An ordered list of likely locations in the graph whereing. Incorporation failures result from an object or event
the processing error may have occurred. having some attribute which contradicts some restriction
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on its values. Additionallythree omission errors have retrieve a knowledge structure that produces E (see Fig.
been identifiedBelated prediction occurs after the fact. 2). To represent these conditions, Meta-AQUA uses non-
Some prediction which should have occurred did not, butnonotonic logic values afn (in the current set of beliefs)
only in hindsight is this observation madRetrieval fail-  andout (out of the current set of beliefs) (Doyle, 1979).
ures occur when a reasoner cannot remember an appropixtended values includeypot hesi zed-i n (weakly

ate piece of knowledge. In essence it represergsttong. assumed in) anchypot hesi zed (unknown). Thus
Input failure is error due to lack of some input informa- absolute retrieval failure is represented by A [truthrg

tion. To construct the three core types described in this E [truth = out]. The relation that identifies the truth
paper representations for expectation failure, retrievalvalue of E as being out of the current set of beliefs-

failure, and incorporation failure are needed. tally-initiates the assertion that a retrieval fail-
_ _ _ ure exists. Cuts across links in the figure signify causal
2.1.1 Inferential Expectation Failure relations for which the truth slot of the link is atsat .

To illustrate representations of the base types, let nodeg11 3 tion Fail

be an actual occurrence of an event, an explanation, or an- ncorporation Farfure

arbitrary proposition. The node A (see Fig.1 t¢sults  When the incorporation of some input into memory fails
from either a mental calculation or an input concept. Letlue to conflict with the BK, an incorporation failure
node E be the expected occurrence. The expected nodesksts. The conflict produces reot - equal s relation
nmental ly-results from some reasoning trace between the actual occurrence and a conceptual con-
enabled by some goal, G. Now if the two propositions arstraint. This relationnmental | y-initiates the
identical, so that A = E, or Al E, then a successful pre- anomaly (Fig. 3). Such anomalies are used to identify
diction has occurrel Failures occur when A& E. This  questions to drive the reasoning and learning processes.
state exists when either A and E are disjoint, or conflicting

assertions within the two nodes conflict. For example, A

and E may represent persons, but E contains a relation tabnd
specifying gender = male, whereas A contains the relation

gender = female. Inferential expectation failures occur
when the reasoner predicts one event or feature, bu
another occurs instead. The awareness of expectation fai
ure is initiated by anot - equal s relation between A i
and E. Results
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Figure 2: Retrieval Failure

2.2 CORE CLASSIMXPS

cordoman co-domain 2.2.1 Mis-indexed Structure
The core type Mis-indexed Structure has two variants:
Erroneous Association and Missing Association Eiro-
neous Association is represented with inferential expecta-
tion failure. An index has associated some context with
2.1.2 Retrieval Failure part of the BK that produced incorrect inferences. A
it is abse#powledge oganizati_on gc_>a| is spawned to adjust the
index so that it will still retrieve those structures in the BK
when appropriate, but not in future instances similar to the
current situation. Learning plans are associated with such
. . _ goals to execute a specialization algorithm producing a
e o e e e o More discriminating index. Because the goal has lins to a
havingdomai n X andco- donai n Y. declarative representation of the reasoning which pro-
2. See Cox & Ram (1991) for a summary of interpretation for & duced it, the algorithm has access to the context of the

domain domain

Figure 1: Expectation Failure

Instead of an expectation (E) being present,
with retrieval failure due to the inability of the system to
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between a known fact and a constraint in the BK. Such

failures invoke a knowledge acquisition goal to adjust the
Mentally constraint in the BK. An associated learning plan then
Frables tests whether the two assertions (the fact and the con-
straint) are conceptual siblings. If this is so, then the pro-
gram will perform abstractidron the constraint, raising it
to its parent on the basis of induction. The constraint is
then marked as beirtgypot hesi zed- i n. The reason-
ing chain which led to this hypothesis is indexefitioé
hypothesis so that the reasoning chain can be retrieved
when the constraint is used in future stories. The hypothe-
sis is verified if the anomalous assertion is re-encountered
in later situations.

Reasoning
Chain

Mentally
Results

Mentally
Results

co-domain

domain Mentally

Initiates

Incorporation
Failure

2.3 COMPOSITE CLASSIMXPS
co-domain Consider an example story processed by Meta-AQUA:

co-domain

S1: A police dog snfiéd at a passengsrluggage in the
Atlanta airport terminal.

Figure 3: Incorporation Failure S2: The dog suddenly began to bark at the luggage.

error S3: At this point the authorities arrested the passenger

A Missing Association is represented by retrieval failure. chaging him with smuggling drugs.

Here, an appropriate knowledge structure was no&4: The dog barked because it detected two kilograms of
retrieved because there was no index to associate the CORarijuana in the luggage.

text with the structure. Thus some node M in the BK must ]

bei n. The goal associated with the IMXP is to find M. If Numerous inferences can be made from the stoayy of

this can be verified, then the plan which found the struc¥hich may be incorrect, depending on the knowledge of
ture directs an indexing algorithm to examine the indiceghe reader Meta-AQUAs knowledge includes general

of M, looking for an index compatible with the index cal- facts about dogs and siifg, including the fact that dogs
culated for A. If found, this index is generalized so thafo@rk when threatened, but it has no knowledge of police
the current cues provided by the context of A will retrieved0gs. It also knows of past weapons smuggling cases, but
E. If no such index is found, a new index is computed. Ihas never seen drug interdiction. Nonetheless the program
M cannot be found, a reasoning question is raised cors able to recover and learn from the erroneous inferences
cerning the possibility that M exists. The question is repthis story generates.

resented as a knowledge goal and indexed by the conteg produces no inferences other tharfisiifis a normal

of A, and the process is suspended. event in the life of a dog. Howeve2 produces an anom-
) ) aly because the systesrdefinition of “bark” specifies that
2.2.2 Novel Situation the object of a bark is animate. So the program (incor-

A Novel Situation is structurally like a Mis-indexed rectly) believes that dogs bark only when threatened by
Structure (Missing Association variant), except the nod@nimate objects. Since luggage is inanimate, there is a
M (and thus its associated index) has a truth valeeiof ~ contradiction, leading to an incorporation failure. This

That is, there is no item in memory that can be retrieve@nomaly causes the understander to ask why the dog

and reasoned with to produce the expectation of a concep@rked at an inanimate object. It is able to produce but one
like A. explanation: the luggage somehow threatened the dog.

. . . The BK contains only this reason for why dogs bark.
Novel situations occur when # E and E$ truth slot is y y dog

eitherhypot hesi zed- i n orout . When Meta-AQUA  S3 asserts an arrest scene which reminds Meta-AQUA of
identifies a novel situation it posts a goal to learn a nev@n incident of weapons smuggling by terrorists. The sys-
explanation of the event. The associated plan is to perfor@m then infers a smuggling bust that includes detection,
EBG on node A, so that the knowledge can be applied togpnfiscation, and arrest scenes. Because baggage searches
wider set of future events. The plan also directs an indexare the only detection method the system knows, thie snif

ing algorithm to the same node so that the new explandg event remains unconnected to the rest of the.story

tion will be retrieved in similar situations. Finally, S4 causes the question generated by S2 “Why did

2.2.3 Incorrect-BK
| . f the fail . 3. The use of the term abstraction is as defined by Michalski (1991), and
Only one instance of the failure type Incorrect-BK is CUl-can pe opposed to that of generalization. The former is an operation on

rently represented. This failure is an inconsistencytheco- domai ns of relations, whereas the latter is an operation on rela-
tiondonai ns.
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the dog bark?” to be retrieved, and the understanding taslons for executing a given piece of codethwthese rea-

is resumed. Instead of revealing the anticipated threatesons enumerated, a system can explain how it produced a
ing situation, S4 dérs another hypothesis. The systemgiven failure and retrieve an introspective explanation of
prefers the explanation given by S4 over its earlier onghe failure. Also, because both the reasoning process and
The system characterizes the reasoning error as an expéue BK are represented using the same type of declarative
tation failure caused by the incorrect retrieval of a knowrrepresentations, processes which identify and correct gaps
explanation (“dogs bark when threatened by objects,in the BK can also be applied to the reasoning process
erroneously assumed to be applicable), and a missiritself. For example, a knowledge goal may be directed at
explanation (“the dog barked because it detected marthe reasoning process as well as at the BK. Further
juana,” the correct explanation in this case). Using thidecause there is a declarative trace of past reasoning pro-
characterization as an index, the system retrieves IMXRzesses, there is the potential for speedup learning as with
Novel-Situation-Alternative-Refuted (see Fig. 4). derivational replayFinally, the ability of a Meta-XP to
Sorovide goals for applicable learning algorithms to be
Used in given circumstances provides a sound basis for
multistrategy learning.

This composite Meta-XP consists of three core Meta-XP
XP-Novel-Situation (centered about “Retrieval Failure”),
an Erroneous Association variant of the XP-Mis-indexed
Structure (centered about “Expectation Failure”) and XPMany multistrategy learners are simply integrated sys-
Incorrect-BK (centered about “Incorporation Failure”). tems consisting of a cascade of more than one learning
The plan seeking to achieve the knowledge goal spawnegorithm (e.g., Flann & Dietterich, 1989; Shavlik &W-

by the XP-Novel-Situation directs an EBG algorithm toell, 1989). For each and every input the control is the
be applied to the explanation of the bark (node A2). Sinceame. An initial learning technique is applied such that its
the detection scene of the drug-bust case and the node reptput becomes the input to the next technique. Newer
resenting the srfihg are unified due to the explanation systems use more sophisticated schemes whereby various
given in S4, the explanation is generalized to drug busts ialgorithms may apply to dérent inputs depending on the
general and installed at the location of node Mhe situation. In these paradigms, selection of the learning
explanation is then indexed in memoryeating a new algorithm becomes computationally important. One bene-
index (I'). The plan for the goal of the XP-Mis-indexed- fit of using IMXPs in this type of framework is their abil-
Structure directs an indexing algorithm to the defensivéty to apply learning tasks appropriate to a given situation
barking explanation (node E). It recommends that thevithout having to perform blind search. Many non-cas-
explanation be re-indexed so that it is not retrieved in simeaded multistrategy learning systems apply learning algo-
ilar situations in the future. Thus the index for this XPrithms in a predefined order (e.g., Genest, et al., 1991;
(node 1) is specialized so that retrieval occurs only on aniPazzani, 1991). If the first fails, then the next strategy is
mate objects, not physical objects in general. The platried, and so forth. Much fefrt may be wasted in worst-
achieving the goal of the XP-Incorrect-BK directs the syscase scenarios.

tem to examine the source of the stergnomaly The This research has produced a novel, theoretical approach

solution is to alter the conceptual representation of bark S@ombining multiple learning methods in an integrated

Fhat th? constraint (node C) on the. object O.f do(~:"bark'ngnannerThis paper focuses on the justifications and tech-
instantiations is abstracted from animate objects to phySHicaI details. The authors are currently involved in

cal objects. research to evaluate the modeatognitive plausibility as
Although the program is directly provided an explanatiornwell as the computational benefits of the approach.
linking the story togetherMeta-AQUA performs more
than mere rote learning. It learns to avoid the mistake§Cknowledgements

made during the story processing. Meta-XPs allow therhis research was supported by the National Science
system to choose appropriate learning strategies in ordebundation under grant IRI-9009710. The authors thank
to learn exactly that which the system needs to know tgue Farrell for proofing a copy of this paper

process similar future situations correctly subsequent
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