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Abstract

Case-based reasoning systems have traditionallybeen
used to perform high-level reasoning in problem do-
mains that can be adequately described using dis-
crete, symbolic representations. However, many real-
world problem domains, such as autonomous robotic
navigation, are better characterized using continuous
representations. Such problem domains also require
continuous performance, such as continuous sensori-
motor interaction with the environment, and contin-
uous adaptation and learning during the performance
task. We introduce a new method for continuous case-
based reasoning, and discuss how it can be applied to
the dynamic selection, modification, and acquisition
of robot behaviors in autonomous navigation systems.
We conclude with a general discussion of case-based
reasoning issues addressed by this work.

1 Introduction
Case-based reasoning systems have traditionally been used to
perform high-level reasoning in problem domains that can be
adequately described using discrete, symbolic representations.
For example, CHEF uses case-based planning to create recipes
[Hammond, 1989], AQUA uses case-based explanation to un-
derstand newspaper stories [Ram, 1993b], HYPO uses case-
based interpretation for legal argumentation [Ashley & Riss-
land, 1987], MEDIATOR uses case-based problem solving for
dispute resolution [Kolodner, Simpson, & Sycara, 1985], and
PRODIGY uses case-based reasoning in the form of deriva-
tional analogy for high-level robot planning [Veloso & Car-
bonell, 1991].

In our research, we have been investigating the problem of
performance and learning in continuous, real-time problem do-
mains, such as autonomous robotic navigation. Our method,
called continuous case-based reasoning shares many of the
fundamental assumptions of what might be called “discrete”
case-based reasoning in symbolic problem domains.1 Learn-
ing is integrated with performance. Performance is guided by
previous experience. New problems are solved by retrieving
cases and adapting them. New cases are learned by evaluat-
ing proposed solutions and testing them on a real or simulated
world. However, continuous problem domains require different
underlying representations and place additional constraints on

1We do not eschew symbolic representations; rather, the issue is
the continuous, time-varying nature of any proposed representations,
whether symbolic, numeric, or otherwise.

the problem solving process. For example, consider the prob-
lem of driving a car on a highway. Car driving experiences can
vary from one another in infinitely many ways. The speed of a
car might be 55 mph in one experience and 54 mph in another.
Within a given episode, the speed of the car might continuously
vary, both infinitesimally from moment to moment, and signif-
icantly from, say, the highway to an exit ramp. The problem
solving and learning process must operate continuously; there
is no time to stop and think, nor a logical point in the process at
which to do so.

Such problem domains are “continuous” in three senses.
First, they require continuous representations. For example,
a robotic navigation task requires representations of continuous
perceptual and motor control information. Second, they require
continuous performance. For example, driving a car requires
continuous action. Often, problem-solving performance is in-
cremental of necessity because of limited knowledge available
to the reasoning system and/or because of the unpredictabilityof
the environment; the system can at best execute the “best” short-
term actions available to it and then re-evaluate its progress. A
robot, for example, may not know where obstacles lie until it ac-
tually encounters them. Third, these problem domains require
continuous adaptation and learning. As the problems encoun-
tered become more varied and difficult, it becomes necessary to
use fine-grained, detailed knowledge in an incremental manner
to act, and to rely on continuous feedback from the environment
to adapt actions and learn from experiences.

Case-based reasoning in such problem domains requires sig-
nificant enhancements to the basic case-based reasoning meth-
ods used in discrete, symbolic reasoning systems. When are two
experiences different enough to warrant consideration as inde-
pendent cases? What is the scope of a single case? Is the entire
car trip from one’s house to the grocery store a single case that
can be used to guide and improve one’s driving performance
in future situations? How should “continuous cases” be repre-
sented? How can they be used to guide performance? How are
they learned and modified through experience? And how can
this performance and learning be integrated into a continuous,
on-line, real-time process?

In this paper, we provide an answer to these questions based
on our research into a robot navigation task. The proposed
methods are fully implemented in a computer system which uses
reactive control for its performance element, and case-based
reasoning for continuous adaptation of the performance element
and for continuous learning through experience. We discuss the
relevant technical details of the system, and we conclude with
the contributions of our research and their implication for the
design of case-based reasoning systems in general.



2 The robot navigation task
Autonomous robotic navigation is defined as the task of finding
a path along which a robot can move safely from a source point
to a destination point in a obstacle-ridden terrain, and execut-
ing the actions to carry out the movement in a real or simu-
lated world. Several methods have been proposed for this task,
ranging from high-level planning methods to reactive methods.
High-level planning methods use extensive world knowledge
about available actions and their consequences to formulate a
detailed plan before the actions are actually executed in the
world (e.g., [Fikes, Hart, & Nilsson, 1972; Georgeff, 1987;
Maes, 1990; Sacerdoti, 1977]). Considerable high-level knowl-
edge is also needed to learn from planning experiences (e.g.,
[Hammond, 1989; Minton, 1988; Mostow & Bhatnagar, 1987;
Segre, 1988]). Situated or reactive control methods, in contrast,
perform no planning; instead, a simple sensory representation
of the environment is used to select the next action that should
be performed [Arkin, 1989; Brooks, 1986; Kaelbling, 1986;
Payton, 1986]. Actions are represented as simple behaviors,
which can be selected and executed rapidly, often in real-time.
These methods can cope with unknown and dynamic environ-
mental configurations, but only those that lie within the scope of
predetermined behaviors. Furthermore, such methods cannot
modify or improve their behaviors through experience, since
they do not have any predictive capability that could account
for future consequences of their actions, nor a higher-level for-
malism in which to represent and reason about the knowledge
necessary for such analysis.

We have developed a self-improving navigation system that
uses reactive control for fast performance, augmented with a
continuous case-based reasoning method that allow the system
to adapt to novel environments and to learn from its experi-
ences. The system autonomously and progressively constructs
representational structures that aid the navigation task by sup-
plying the predictive capability that standard reactive systems
lack. The representations are constructed using a hybrid case-
based and reinforcement learning method without extensive
high-level reasoning. The system is very robust and can per-
form successfully in (and learn from) novel environments, yet it
compares favorably with traditional reactive methods in terms
of speed and performance. A further advantage of the method
is that the system designers do not need to foresee and rep-
resent all the possibilities that might occur since the system
develops its own “understanding” of the world and its actions.
Through experience, the system is able to adapt to, and perform
well in, a wide range of environments without any user inter-
vention or supervisory input. This is a primary characteristic
that autonomous agents must have to interact with real-world
environments.

3 Technical details
Our self-improving robotic navigation system consists of a navi-
gation module, which uses schema-based reactive control meth-
ods, and an on-line adaptation and learning module, which uses
case-based reasoning and reinforcement learning methods. The
navigation module is responsible for moving the robot through
the environment from the starting location to the desired goal
location while avoiding obstacles along the way. The adaptation
and learning module has two responsibilities. The adaptation
sub-module performs on-line adaptation of the reactive con-
trol parameters to get the best performance from the navigation
module. The adaptation is based on recommendations from
cases that capture and model the interaction of the system with
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Figure 1: System architecture

its environment. With such a model, the system is able to pre-
dict future consequences of its actions and act accordingly. The
learning sub-module monitors the progress of the system and
incrementally modifies the case representations through experi-
ence. Figure 1 shows the functional architecture of the system.

3.1 Schema-based reactive control
The reactive control module is based on the AuRA architecture
[Arkin, 1989], and consists of a set of motor schemas that rep-
resent the individual motor behaviors available to the system.
Each schema reacts to sensory information from the environ-
ment, and produces a velocity vector representing the direction
and speed at which the robot is to move given current environ-
mental conditions. For example, the schema AVOID-STATIC-
OBSTACLE directs the system to move itself away from detected
obstacles, and the associated schema parameter Obstacle-Gain
determines the magnitude of the repulsive potential field gener-
ated by the obstacles perceived by the system. The velocity vec-
tors produced by all the schemas are then combined to produce
a potential field that directs the actual movement of the robot.
Simple behaviors, such as wandering, obstacle avoidance, and
goal following, can combine to produce complex emergent be-
haviors in a particular environment. Different emergent behav-
iors can be obtained by modifying the simple behaviors. A
detailed description of schema-based reactive control methods
can be found in Arkin [1989].

3.2 Behavior selection and modification
Our first attempt at building a case-based reactive navigation
system focussed on the issue of using case-based reasoning to
guide reactive control. A central issue here is the nature of the
guidance: At what grain size should the reactive control module
represent its behaviors, and what kind of “advice” should the
case-based reasoning module provide to the reactive control
module?

In order to achieve more robust robotic control, we advocate
the use of sets of behaviors, called behavior assemblages, to
represent appropriate collections of cooperating behaviors for
complex environments, and of behavior adaptation to adapt and
fine-tune existing behaviors dynamically in novel environments
[Ram, Arkin, Moorman, & Clark, 1992]. There are two types of
behavior adaptations that might be considered. One option is to
have the system modify its current behavior based on immediate
past experience. While useful, this is only a local response to
the problem. A more global solution is to have the system select
completely new assemblages of behaviors based on the current
environment in which it finds itself. A robust system should be
able to learn about and adapt to its environment dynamically in
both these ways.
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Figure 2: Typical navigational behaviors of different tunings of the
reactive control module. The figure on the left shows the non-learning
system with high obstacle avoidance and low goal attraction. On the
right, the learning system has lowered obstacle avoidance and increased
goal attraction, allowing it to “squeeze”through the obstacles and then
take a relatively direct path to the goal.

Different combinations of schema parameters produce differ-
ent behaviors to be exhibited by the system (see figure 2). This
allows the system to interact successfully in different environ-
mental configurations requiring different navigational “strate-
gies” [Clark, Arkin, & Ram, 1992; Moorman & Ram, 1992].
Traditionally, parameters are fixed and determined ahead of
time by the system designer. However, on-line selection and
modification of the appropriate parameters based on the current
environment can enhance navigational performance. We tested
this idea by building the ACBARR (A Case-BAsed Reactive
Robotic) system and evaluating it qualitatively and quantita-
tively through extensive simulation studies using a variety of
different environments and several different performance met-
rics (see [Ram, Arkin, Moorman, & Clark, 1992] for details).
The experiments show that ACBARR is very robust, performing
well in novel environments. Additionally, it is able to navigate
through several “hard” environments, such as box canyons, in
which traditional reactive systems would perform poorly.

In the ACBARR system, we incorporated both behavior
adaptation and behavior switching into a reactive control frame-
work. At the local level, this is accomplished by allowing the
system to adapt its current behavior in order to build “momen-
tum”. If something is working well, the system continues doing
it and tries doing it a little bit harder; conversely, if things are
not proceeding well, the system attempts something a little dif-
ferent. This technique allows the system to fine tune its current
behavior patterns to the exact environment in which it finds
itself. For example, if the robot has been in an open area for a
period of time and has not encountered any obstacles, it picks
up speed and does not worry as much about obstacles. If, on the
other hand, it is in a cluttered area, it lowers its speed and treats
obstacles more seriously. For behavior-based reactive systems,
this translates into altering the schema gains and parameters
continuously, provided the system has a method for determining
the appropriate modifications. ACBARR uses case-based rea-
soning to retrieve behavior modification rules. These rules are
then used incrementally to alter the gain and parameter values
based on current environmental conditions and past successes.

The other method for behavior modification in ACBARR is
at a more global level. If the system is currently acting under
the control of an assemblage of behaviors which are no longer
suited to the current environment, it selects a new assemblage
based on what the environment is now like. Continuing with

the above example, suppose that the robot is in a very cluttered
environment and is employing a conservative assemblage of
motor behaviors. It then breaks out of the obstacles and enters
a large open field (analogous to moving from a forested area
into a meadow). If only local changes were allowed, the robot
would eventually adjust to the new environment. However, by
allowing a global change to take place, the system needs only
to realize that it is in a radically new environment and to select
a new assemblage of motor behaviors, one better suited to the
new surroundings. Interestingly, case-based reasoning is used
to realize this type of modification as well.

Assemblages of behaviors are represented as cases, or stan-
dard scenarios known to the system, that can be used to guide
performance in novel situations. As in a traditional case-based
reasoning system, a case is used to propose a plan or a solu-
tion (here, a behavior assemblage) to the problem (here, the
current environmental configuration). However, our method
differs from the traditional use of case-based reasoning in an
important respect. A case in our system is also used to propose
a set of behavior adaptations, rather than merely the behaviors
themselves. This allows the system to use different strategies in
different situations. For example, the system might use a “cau-
tious” strategy in a crowded environment by gradually slowing
down and allowing itself to get closer to the surrounding obsta-
cles. In order to permit this, strategies suggest boundaries on
behavioral parameters rather than precise values for these pa-
rameters. Cases are used both to suggest behavior assemblages
as well as to perform dynamic (on-line) adaptation of the param-
eters of behavior assemblages within the suggested boundaries.
The knowledge required for both kinds of suggestions is stored
in a case, in contrast with traditional case-based reasoning sys-
tems in which cases are used only to suggest solutions, and a
separate library of adaptation rules is used to adapt a solution
to fit the current problem. Further details can be found in Ram,
Arkin, Moorman & Clark [1992].

3.3 Case representation
While ACBARR demonstrated the feasibility of on-line, case-
based reasoning in systems requiring continuous, real-time re-
sponse, it relied on a fixed library of cases that were hand-
coded into the system. The system could adapt to novel
environments—an important kind of learning—but it could not
improve its own adaptation behavior through experience. Since
the knowledge required for behavior adaptation is stored in
cases, we turned our attention to the problem of learning cases
through experience. We built SINS (Self-Improving Navigation
System), which is similar to the ACBARR system but can learn
and modify its own cases through experience. The representa-
tion of the cases in SINS is different and is designed to support
learning, but the underlying ideas behind the two systems are
very similar.

Since we did not want to rely on hand-coded, high-level do-
main knowledge, the representations used by SINS to model its
interaction with the environment are initially under-constrained
and generic; they contain very little useful information for the
navigation task. As the system interacts with the environment,
the learning module gradually modifies the content of the rep-
resentations until they become useful and provide reliable in-
formation for adapting the navigation system to the particular
environment at hand.

The learning and reactive modules function in an integrated
manner. The learning module is always trying to find a better
model of the interaction of the system with its environment
so that it can tune the reactive module to perform its function



better. The reactive module provides feedback to the learning
module so it can build a better model of this interaction. The
behavior of the system is then the result of an equilibrium point
established by the learning module which is trying to refine the
model and the environment which is complex and dynamic in
nature. This equilibrium may shift and need to be re-established
if the environment changes drastically; however, the model is
generic enough at any point to be able to deal with a very wide
range of environments.

The reactive module in SINS can be adapted to exhibit many
different behaviors. SINS improves its performance by learn-
ing how and when to tune the reactive module. In this way, the
system can use the appropriate behavior in each environmen-
tal configuration encountered. The learning module, therefore,
must learn about and discriminate between different environ-
ments, and associate with each the appropriate adaptations to be
performed on the motor schemas. This requires a representa-
tional scheme to model the interaction between the system and
the environment. However, to ensure that the system does not
get bogged down in extensive high-level reasoning, the knowl-
edge represented in the model must be based on perceptual and
motor information easily available at the reactive level.

SINS uses a model consisting of associations between the
sensory inputs (e.g., Obstacle-Density) and schema parameters
values (e.g., Obstacle-Gain, associated with the AVOID-STATIC-
OBSTACLE schema). Each set of associations is represented as
a case. Sensory inputs provides information about the config-
uration of the environment, and is obtained from the system’s
sensors. Schema parameter information specifies how to adapt
the reactive module in the environments to which the case is
applicable. Each type of information is represented as a vector
of analog values. Each analog value corresponds to a quan-
titative variable (a sensory input or a schema parameter) at a
specific time. A vector represents the trend or recent history of a
variable. A case models an association between sensory inputs
and schema parameters by grouping their respective vectors
together. Figure 3 show an example of this representation.

This representation has three essential properties. First, the
representation is capable of capturing a wide range of possible
associations between of sensory inputs and schema parame-
ters. Second, it permits continuous progressive refinement of
the associations. Finally, the representation captures trends or
patterns of input and output values over time. This allows the
system to detect patterns over larger time windows rather than
having to make a decision based only on instantaneous values
of perceptual inputs.

3.4 Case learning
The case-based reasoning and learning module creates, main-
tains and applies the case representations used for on-line adap-
tation of the reactive module. The main objective of the learning
method is to construct a model of the continuous sensorimotor
interaction of the system with its environment, that is, a mapping
from sensory inputs to appropriate behavioral (schema) param-
eters. This model allows the adaptation module to continuously
control the behavior of the navigation module by selecting and
adapting schema parameters in different environments. To learn
a mapping in this context is to detect and discriminate among
different environment configurations, and to identify the ap-
propriate schema parameter values to be used by the reactive
module, in a dynamic and on-line manner. This means that,
as the system is navigating, the learning module is perceiv-
ing the environment, detecting an environment configuration,
and modifying the schema parameters of the reactive module
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Figure 3: Sample representations showing the time history of analog
values representing perceived inputs and schema parameters. Each
graph in the case (below) is matched against the corresponding graph
in the current environment (above) to determine the best match, after
which the remaining part of the case is used to guide navigation (shown
as dashed lines).

accordingly, while simultaneously updating its own cases to
reflect the observed results of the system’s actions in various
situations.

The method is based on a combination of ideas from case-
based reasoning and learning, which deals with the issue of
using past experiences to deal with and learn from novel situ-
ations, and from reinforcement learning, which deals with the
issue of updating the content of system’s knowledge based on
feedback from the environment (see [Sutton, 1992]). However,
in traditional case-based planning systems (e.g., [Hammond,
1989]) learning and adaptation requires a detailed model of the
domain. This is exactly what reactive planning systems are try-
ing to avoid. Earlier attempts to combine reactive control with
classical planning systems (e.g., [Chien, Gervasio, & DeJong,
1991]) or explanation-based learning systems (e.g., [Mitchell,
1990]) also relied on deep reasoning and were typically too
slow for the fast, reflexive behavior required in reactive control
systems. Unlike these approaches, our method does not fall
back on slow non-reactive techniques for improving reactive
control.

Each case represents an observed regularity between a par-
ticular environmental configuration and the effects of different
actions, and prescribes the values of the schema parameters
that are most appropriate (as far as the system knows based
on its previous experience) for that environment. The learn-
ing module performs the following tasks in a cyclic manner:
(1) perceive and represent the current environment; (2) retrieve
a case whose sensory input vector represents an environment
most similar to the current environment; (3) adapt the schema
parameter values in use by the reactive control module by in-
stalling the values recommended by schema parameter vectors
of the case; and (4) learn new associations and/or adapt existing
associations represented in the case to reflect any new informa-
tion gained through the use of the case in the new situation to



enhance the reliability of their predictions.
The perceive step builds a set of vectors representing the

sensory input, which are then matched against the correspond-
ing vectors of the cases in the system’s memory in the retrieve
step. The case similarity metric is based on the mean squared
difference between each of the vector values of the case over
a trending window, and the vector values of the environment.
The best match window is calculated using a reverse sweep over
the time axis similar to a convolution process to find the relative
position that matches best. The best matching case is handed to
the adapt step, which selects the schema parameter values from
the case and modifies the corresponding values of the reactive
behaviors currently in use using a reinforcement formula which
uses the case similarity metric as a scalar reward. Thus the
actual adaptations performed depend on the goodness of match
between the case and the environment.

Finally, the learn step uses statistical information about prior
applications of the case to determine whether information from
the current application of the case should be used to modify
this case, or whether a new case should be created. The vectors
encoded in the cases are adapted using a reinforcement formula
in which a relative similarity measure is used as a scalar reward
or reinforcement signal. The relative similarity measure quan-
tifies how similar the current environment configuration is to
the environment configuration encoded by the case relative to
how similar the environment has been in previous utilizations
of the case. Intuitively, if case matches the current situation
better than previous situations it was used in, it is likely that the
situation involves the very regularities that the case is begin-
ning to capture; thus, it is worthwhile modifying the case in the
direction of the current situation. Alternatively, if the match is
not quite as good, the case should not be modified because that
will take it away from the regularity it was converging towards.
Finally, if the current situation is a very bad fit to the case, it
makes more sense to create a new case to represent what is
probably a new class of situations.

A detailed description of each step would require more space
than is available in this paper (see Ram & Santamaria [1993]
for details). Here, we note that since the reinforcement formula
is based on a relative similarity measure, the overall effect of
the learning process is to cause the cases to converge on stable
associations between environment configurations and schema
parameters. Stable associations represent regularities in the
world that have been identified by the system through experi-
ence, and provide the predictive power necessary to navigate
in future situations. The assumption behind this method is that
the interaction between the system and the environment can be
characterized by a finite set of causal patterns or associations
between the sensory inputs and the actions performed by the
system. The method allows the system to learn these causal
patterns and to use them to modify its actions by updating its
schema parameters as appropriate.

The methods presented above have been evaluated using ex-
tensive simulations across a variety of different types of envi-
ronment, performance criteria, and system configurations. We
measured the qualitative and quantitative improvement in the
navigation performance of the SINS system, and systematically
evaluated the effects of various design decisions on the per-
formance of the system. The results show the efficacy of the
methods across a wide range of qualitative metrics, such as
flexibility of the system and ability to deal with difficult en-
vironmental configurations, and quantitative metrics that mea-
sure performance, such as the number of navigational problems

solved successfully and the optimality of the paths found for
these problems. Details of the experiments can be found in
Ram & Santamaria [1993].

4 Discussion
Continuous case-based reasoning is a variation of traditional
case-based reasoning that can be used to perform continuous
tasks. The underlying steps in the method are similar, namely,
problem characterization, case retrieval, adaptation and execu-
tion, and learning. The ACBARR and SINS systems perform
a kind of case-based planning, and in that respect are simi-
lar to CHEF [Hammond, 1989]. However, there are several
interesting differences due to the continuous nature of the do-
main, and to the on-line nature of the performance and learn-
ing tasks. Our approach is also similar to Kopeikina, Bran-
dau, & Lemmon’s [1988] use of case-based reasoning for real-
time control. Their system, though not intended for robotics,
is designed to handle the special issues of time-constrained
processing and the need to represent cases that evolve over
time. They suggest a system that performs the learning task
in batch mode during off peak hours. In contrast, our ap-
proach combines the learning capabilities of case-based reason-
ing with the on-line, real-time aspects of reactive control. In
this respect, our research is also different from earlier attempts
to combine reactive control with other types of higher-level
reasoning systems (e.g., [Chien, Gervasio, & DeJong, 1991;
Mitchell, 1990]), which typically require the system to “stop
and think.” In our systems, the perception-action task and the
adaptation-learning task are integrated in a tightly knit cycle,
similar to the “anytime learning” approach of Grefenstette &
Ramsey [1992].

Our approach combines continuous representations, contin-
uous performance, and continuous learning into a single in-
tegrated framework. There are three basic assumptions that
underlie this approach. First, the interaction between the rea-
soning system and the environment is causal and consistent. By
causal we mean that the same actions executed under the same
environmental conditions would result in the same outcomes
(or similar outcomes, but such variations are much slower than
the execution cycle of the system). By consistent we mean
that small changes in the executed actions under the same en-
vironmental conditions would result in small changes in the
outcomes. This guarantees that the system can use past expe-
rience to guide performance in similar situations in the future
and hope to obtain the same results from its actions. The sec-
ond assumption underlying our approach is that the system’s
experiences are likely to be typical of future experiences, and
that the system will usually encounter problem situations that
are similar to those that it already has experience with. These
assumptions are also common to many traditional case-based
reasoning systems (see, for example, the “typicality assump-
tion” of Ram [1993b]), although they are not always stated
explicitly or in this exact manner.

The third assumption is, perhaps, unique to continuous case-
based reasoning. In our current work, we have assumed that
the problem domain can be represented quantitatively. This
is required by the semantic concepts and operations in our
method. In particular, our method requires a formal and well-
defined similarity metric to judge the similarity of two situa-
tions, which is used to determine the direction and magnitude
of the necessary adaptations. While case-based reasoning in
non-continuous domains also requires a similarity metric for
partial matching, most such metrics used in existing systems are



not fine-grained enough to determine the degree of similarity
between continuous cases or to place situations that could vary
continuously and infinitesimally from each other on a similarity
scale. This assumption could be relaxed if adequate symbolic
representations and similarity metrics could be developed, but
more research is needed into this issue.

Our approach to continuous case-based reasoning introduces
several innovations to the basic case-based reasoning paradigm.
Due to the similarity in the assumptions and methods, we con-
jecture that many of these innovations would be useful in tradi-
tional case-based reasoning systems as well. Let us discuss the
underlying case-based reasoning issues in more detail.

4.1 Continuous cases
Our methods represent a novel approach to case-based reason-
ing for a new kind of task, one that requires continuous, on-line
performance. The system must continuously evaluate its per-
formance, and continue to adapt the solution or seek a new one
based on the current environment. Furthermore, this evaluation
must be done using the simple perceptual features available to
a reactive control system, unlike the complex thematic features
or abstract world models used to retrieve cases and adaptation
strategies in many case-based reasoning systems. Case-based
reasoning in such task domains requires a continuous repre-
sentation of cases, in terms of the available features, that rep-
resent the time course of these features over suitably chosen
time windows. These representations are learned and modified
continuously while simultaneously being used to guide action.

4.2 Abstract cases

In a traditional, symbolic task domain, a case represents an ac-
tual experience or an abstraction of one. For example, cases
in CHEF [Hammond, 1989] represent actual recipes created by
the program. In a continuous domain, however, an actual ex-
perience consists of the time histories of real parametric values
of perceptual and control parameters. For example, a naviga-
tional experience might involve a starting location of (2.34 m,
1.23 m) on a two-dimensional grid, and a destination location of
(6.71 m, 10.98 m) on that same grid. The experience might con-
sist of the values of perceptual parameters such as the current
position of the robot (an x-y coordinate pair of real numbers),
number of obstacles sensed in the immediate vicinity of the
robot (an integer), or the distance in meters to the nearest obsta-
cle, and control parameters such as the minimum safe distance
of approach to an obstacle (in meters), the speed of the robot
(in meters per second), or the current heading of the robot (in
radians). These parameters vary continuously over time; thus
the complete experience is represented by time graphs of each
of these parameters. Clearly, it is not feasible to store the entire
time history of each of these parameters for each problem that
the robot solves, nor is it useful to do so.2

Thus SINS learns and stores some abstraction of the actual
experience. One might argue that CHEF actually does the same,
since an actual cooking experience would involve perceptual
input (such as looking at the frying pan and judging whether the
ingredients have browned enough) and control output (such as
moving the spatula to stir the ingredients in the pot). In CHEF,
the experiences have already been abstracted by the programmer
and represented in symbolic form. One of the open issues
in our research is the automatic extraction of such symbolic

2However, if the range of allowable variations of perceptual and
control parameters is bounded by the nature of the task, such a
“memory-based approach” may be in fact be feasible [Atkeson, 1990].

representations from the actual continuous experiences of the
system (e.g., [Kuipers & Byun, 1988]).

4.3 Virtual cases
A related, but different, problem with continuous task domains
is that an experience can differ from another in infinitely many
ways, and differences can range from significant to infinitesi-
mal. Only a tiny fraction of all possible experiences will ac-
tually be undergone by the system. However, the power of a
case-based reasoning system comes from its cases, and so it
is desirable to have a representative library of cases that will
cover the range of experiences the system is likely to encounter.
We introduce the idea of a virtual case, which represents a
representative experience that the system could well have had
but may or may not actually have had. Rather than trying to
remember all the details (down to the grain-size defined by the
programmer) of each experience, or some abstraction of these
details, SINS combines past cases and present experiences to
create a virtual experience. This is similar to the abstraction
process described earlier, with the difference that a virtual case
does not represent an abstract or generalized description of an
actual experience but rather a virtual experience derived from
a combination of several actual experiences. The notion of a
virtual case might be useful in symbolic case-based reasoning
systems as well. To take a simple example, AQUA learns about
and updates existing cases based on new experiences [Ram,
1993b]. This process results in hypotheses that may or may not
be “true” of a single experience, but are useful and plausible.
If used in future reasoning, these hypotheses could be viewed
as virtual cases. SINS’s virtual cases are more sophisticated
since they are continuously refined through use; the refinement
algorithms are also different, as discussed below.

4.4 Two types of behavior modification
As discussed earlier, our systems use case-based reasoning to
suggest global modifications (behavior selection) as well as to
suggest more local modifications (behavior adaptation). The
knowledge required for both kinds of suggestions are stored in
a case, in contrast with traditional case-based reasoning sys-
tems in which cases are used only to suggest solutions, and a
separate library of adaptation rules is used to adapt a solution to
fit the current problem. In many problem domains, even non-
continuous ones, planning (or other types of problem-solving)
cannot be performed separately from plan execution. In such
situations, case-based reasoning can be used to propose a plan
(or solution) as well as continuously refine it during execution.
Another difference of interest is that cases in ACBARR and
SINS propose modifications, not directly of the plan or tra-
jectory, but of the reactive planner itself which then result in
modifications to the proposed trajectories.

4.5 Two types of adaptation
Traditional case-based reasoning systems retrieve cases and
adapt the solutions proposed by those cases in order to pro-
vide new solutions to new problems at hand. However, in order
to build virtual cases, our systems also need to adapt the cases
themselves in response to new experiences. This is similar
to the incremental case modification process in AQUA [Ram,
1993b] in that, in addition to using a case to deal with a new
situation, the system can use an experience to learn more about
its existing cases.

In our problem domain, cases represent environmental regu-
larities that have been identified by the system through its expe-
rience. These provide the predictive power necessary to navi-
gate in future situations. Cases are used for behavior adaptation;



in standard case-based reasoning terms, this can be viewed as
the process of using the recommendations provided by the case
to adapt the solutions currently being pursued by the system. In
addition, cases themselves can be adapted through experience;
this can be viewed as a process of discovery in which the system
develops a model of the world around it. The system “explores”
the search space as its case representations traverse this space
and find good “niches” representing regularities. The former
process could be viewed as a process of “solution adaptation,”
and the latter as one of “case modification.”

The particular method of case modification used in our system
is similar to that of Sutton [1990], whose system uses a trial-
and-error reinforcement learning strategy to develop a world
model and to plan optimal routes using the evolving world
model. Unlike this system, however, our system does not need
to be trained on the same world many times, nor are the results
of its learning specific to a particular world, initial location, or
destination location. In general, we hypothesize that case mod-
ification may be useful in other types of case-based reasoning
systems as well, although different methods may need to be
developed to perform the modifications. AQUA’s incremen-
tal case modification, for example, can be viewed as such an
extension to SWALE’s solution adaptation [Schank, 1986].

Different criteria may also need to be developed for deciding
when to modify a case to fit the new experience, when to learn
a new case to represent the new experience, and when to use
the case for solution adaptation but without modifying it. Our
system uses a relative similarity measure to identify potential
regularities. Intuitively, if case matches the current situation
better than previous situations it was used in, it is likely that the
situation involves the very regularities that the case is beginning
to capture; thus, it is worthwhile modifying the case in the
direction of the current situation. Alternatively, if the match is
not quite as good, the case should not be modified because that
will take it away from the regularity it was converging towards.
Finally, if the current situation is a very bad fit to the case, it
makes more sense to create a new case to represent what is
probably a new class of situations.

4.6 On-line real-time response
Unlike traditional case-based reasoning systems which rely on
deep reasoning and analysis (e.g., [Hammond, 1989]), and un-
like other machine learning augmentations to reactive control
systems which fall back on non-reactive reasoning (e.g., [Chien,
Gervasio, & DeJong, 1991]), our method allows the system
to continue to perform reactively with very little performance
overhead as compared to a “pure” reactive control system. Even
if real-time response is not required, however, continuous case-
based reasoning could still be used in problem domains which
are inherently continuous and require continuous representa-
tions.

4.7 Adaptive reactive control
Our research also contributes to reactive control for autonomous
robots in the following ways. One, we propose a method for the
use of assemblages of behaviors tailored to particular environ-
mental demands, rather than of single or multiple independent
behaviors. Two, our systems can select and adapt these be-
haviors dynamically without relying on the user to manually
program the correct behavioral parameters for each navigation
problem. Three, the knowledge required for behavior selec-
tion and modification is automatically acquired through expe-
rience using multiple learning methods. Finally, our system
exhibits considerable flexibility over multiple domains. For
example, it performs well in uncluttered worlds, highly clut-

tered worlds, worlds with box canyons, and so on, without
any reconfiguration. In this paper, we have focussed on the
case-based reasoning aspects of our work; robot control is-
sues are discussed in [Ram, Arkin, Moorman, & Clark, 1992;
Ram & Santamaria, 1993].

5 Conclusions
We have presented a novel method for augmenting the perfor-
mance of a reactive control system that combines case-based
reasoning for on-line parameter adaptation and reinforcement
learning for on-line case learning and adaptation. The method
is fully implemented and has been evaluated through extensive
simulations.

The power of the method derives from its ability to capture
common environmental configurations, and regularities in the
interaction between the environment and the system, through an
on-line, adaptive process. The method adds considerably to the
performance and flexibility of the underlying reactive control
system because it allows the system to select and utilize differ-
ent behaviors (i.e., different sets of schema parameter values)
as appropriate for the particular situation at hand. SINS can be
characterized as performing a kind of constructive representa-
tional change in which it constructs higher-level representations
(cases) of system-environment interactions from low-level sen-
sorimotor representations [Ram, 1993a].

In SINS, the perception-action task and the adaptation-
learning task are integrated in a tightly knit cycle, similar to
the “anytime learning” approach of [Grefenstette & Ramsey,
1992]. Perception and action are required so that the system
can explore its environment and detect regularities; they also,
of course, form the basis of the underlying performance task,
that of navigation. Adaptation and learning are required to
generalize these regularities and provide predictive suggestions
based on prior experience. Both tasks occur simultaneously,
progressively improving the performance of the system while
allowing it to carry out its performance task without needing to
“stop and think.”

There are still several unresolved issues in our research.
While we have been able to determine appropriate time win-
dows for SINS through simulation studies, the size or extent
of the cases needed to represent extended experiences in con-
tinuous domains is still an open issue [Kolodner, 1993]. Fur-
thermore, the retrieval process is very expensive and limits the
number of cases that the system can handle without deteriorating
the overall navigational performance, leading to a kind of utility
problem [Minton, 1988]. Our current solution to this problem
is to place an upper bound on the number of cases allowed in
the system. A better solution would be to develop a method for
organization of cases in memory; however, conventional mem-
ory organization schemes used in case-based reasoning systems
(see [Kolodner, 1993]) assume structured, nominal information
rather than continuous, time-varying, analog information of the
kind used in our cases.

Another open issue is that of the nature of the regularities
captured in the system’s cases. While SINS’ cases do enhance
its performance, they are not easy to interpret. Interpretation
is desirable, not only for the purpose of obtaining of a deeper
understanding of the methods, but also for possible integration
of higher-level reasoning and learning methods into the system.
For example, instead of guessing initial schema parameter val-
ues or modifying them incrementally through trial and error, an
explanation-based module working on top of the case adapta-
tion module could provide better suggestions for these values,



thus speeding up the search process of finding the best schema
parameter values associated with a particular environment situ-
ation. This requires a symbolic understanding of the knowledge
represented in the system’s cases.

Despite these limitations, SINS is a complete and au-
tonomous self-improving navigation system, which can interact
with its environment without user input and without any pre-
programmed “domain knowledge” other than that implicit in
its reactive control schemas. As it performs its task, it builds
a library of experiences that help it enhance its performance.
Since the system is always learning, it can cope with major en-
vironmental changes as well as fine tune its navigation module
in static and specific environment situations.
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