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Why goals?

In cognitive science, artificial intelligence, psychology, and
education, a growing body of research supports the view that
learning islargely a goa-directed process. Experimental stud-
ies show that people with different goals process information
differently; work in machinelearning presents functional argu-
mentsfor goa -based focusing of learner effort. Recent work in
these fields has focussed on issues of how learning goals arise,
how they affect learner decisions of when and what to learn,
and how they guidethelearning process. Itisincreasingly evi-
dent that investigation of goa-driven learning can benefit from
bringing these perspectives together in a multidisciplinary ef-
fort (Leake & Ram, 1993).

The central idea underlying goal-driven learning is that be-
cause the value of learning depends on how well the learning
contributes to achieving the learner’s goals, the learning pro-
cess should be guided by reasoning about the information that
isneeded to servethosegoals. The effectiveness of goal-driven
learning depends on being able to make good decisions about
when and what to learn, on selecting appropriate strategies for
achieving the desired learning, and on guiding the application
of the chosen strategies. Research into such topicsincludesthe
development of computational modelsfor goa -drivenlearning,
the testing of those model s through psychological experiments
and empirical experiments with computer programs, the justi-
fication of the models through functiona arguments about the
role and utility of goasin learning, and the use of models of
goa-driven learning in guiding the design of educational envi-
ronments. Thecommon themesintheseresearch effortsarethe
investigation of types of learning goas, the origins of learning
goas, and therole of goalsin the learning process.

Research ongoa-drivenlearninginartificia intelligencehas
been motivated largely by computational arguments. The prob-
lem of combinatoria explosion of inferencesiswell known; in
any realistic task domain, time and resource constraints pro-
hibit consideration of all but a few of the possible inferential
paths. Consequently, any reasoner, human or machine, must
focus its attention and resources on pursuing those inferential
pathsthat are likely to be most useful. Similarly, in any redis-
tic situation, there are several different types of learning that a
reasoner might perform, several kinds of new knowledge that
a reasoner might acquire, and several kinds of reformulation
or reorganization of existing knowledge that a reasoner might
carry out. Again, dueto timeand resource constraintsit isonly
practical to perform afew of these operations. Consequently,
the reasoner must focus its attention and resources on execut-
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ing the learning operations that are likely to be most useful.
Because the utility of an inference or a piece of knowledge can
best beeva uated rel ativeto aparticul ar task or goal, goal-based
considerations must guide reasoning and learning.

In addition to these computational argumentsfor goal -driven
learning, research in goa-driven learning has a cognitive basis
in psychological research. Thisresearch has established much
evidence for the influence of goals on human learning, and for
the use of active, strategic, and goal-driven processes in many
kinds of learning that humans perform. However, many ques-
tionsremain concerning the kinds of goals that people pursue,
the conditions under which those goal s influence learning, and
the kinds of learning that are influenced by those goals.

Research in cognitive science combines the cognitive per-
spective of psychology with the computational perspective of
artificia intelligence, devel oping computational models of hu-
man learning that are evaluated using computationa metrics
as well as by comparison with human performance. Research
in education has also been concerned with psychologica data
about human learning, but from a pragmatic perspective. This
research has attempted to use empirical evidence to guide the
design of instructional and educational scenarios so as to fa-
cilitate learning, taking as its starting point the evidence for
facilitation of certain kinds of learning by particular kinds of
goals. These scenarios have also been used as the basisfor fur-
ther psychologica experimentation to validate the underlying
theories. Inthispaper, we describeaframework for goal -driven
learning and its relationship to prior and current theories from
each of these perspectives.

An everyday example

Goal-driven learning is triggered when a reasoner needs to
learnin order toimproveits performance at sometask. A goal-
drivenlearner determines what to learn by reasoning about the
information it needs, and determines how to learn by reason-
ing about the rel ative merit of aternativelearning strategiesin
the current circumstances. For example, for afirst-time stereo
buyer, the goal of getting good buy on a stereo may give rise
to at least two learning goals: a goal to learn the best sources
for sound equipment and to a goa to learn how to judge the
merits of competing equipment. Each of these learning goals
may trigger learning subgoals. In order to learn the best place
to buy sound equipment, the buyer may first have to learn gen-
eral criteriafor what constitutes a good store for buying sound
equi pment, and then specifics about prices, service, etc. toclas-
sify different stores. In order to learn how to judge particular
equipment, the buyer will have to learn about the classes of a-
ternatives available and about specific equipment within those
classes. Thus some learning goals involve gathering informa



tion in the externa world, while others involve reformul ating
or changing information that is aready known, by operations
such as forming generalizations or reorganizing memory.

Inorder to performthedesired | earning, the stereo buyer must
select strategies for accomplishing each of its learning goals.
For exampl e, the buyer may choose between learning strategies
including asking others' opinions, reading magazine articles,
forming inductive or explanation-based generalizations from
demonstrations of equipment, or even disassembling equip-
ment to determine the quality of its electronic components.
Learning strategy selection depends on factors such as the
buyer’ sprior knowledge, thebuyer’sresources (e.g., how much
time the buyer can spend on the shopping process), opportu-
nities (e.g., happening to meet an expert on sound equipment
a a party), and the buyer’'s own abilities (e.g., whether the
buyer has the expertise to judge the quality of equipment by
disassembling it).

Thisexample illustratesthe value of goa -driven learningin
focusing learner effort, and al so suggeststhe range of rolesthat
goas can play in influencing learning. Goals determine how
much effort to alocate to performance tasks (e.g., the task of
buying a stereo), indirectly influencing the resources available
for thelearning that will be performed aspart of that task. Goals
also determine the focus of attention when new informationis
received as input (eg., focusing attention on announcements
of stereo sales). They determine what should be learned (e.g.,
determining that it is worthwhile to generalize about relation-
ships between store types and prices). They give criteria for
evaluating the results of learning and deciding what |earned
information to store (in this example, the value of learning
is its usefulness for guiding the shopping decision). Table 1
summarizes these and other possibleroles of goalsin learning.

Towards a planful model of learning

Asthepreviousexampleillustrates, agoa -drivenlearner makes
decisionsabout what, how, and when tolearn in order to further
itsgoas. Consequently, itslearning can be considered a“plan-
ful” process (e.g., Hunter, 1990; Leake, to appear; Michal ski
& Ram, to appear; Pryor & Collins, 1992; Quilici, thisvolume;
Ram & Cox, 1994; Ram, Cox, & Narayanan, to appear; Ram
& Hunter, 1992; Redmond, 1992; Schank & Abelson, 1977,
Xiaand Yeung, 1988). This learning process is analogous to
models of problem solving in which the reasoner uses task
goasto formulate action plans for achieving these goals (e.g.,
Newell & Simon, 1972; Greeno & Simon, 1988; VanLehn,
1989). Learning actions or schemas are selected, combined,
and invoked appropriately on the basis of existing learning
goas and available environmental opportunities for learning.
Learning is a behavior explicitly carried out to seek informa-
tion, driven by needs arising from the reasoner’s performance
on atask that learning isintended to facilitate, and mediated by
the formul ation and manipulation of explicit learning goals.

The motivation for the goal-driven approach is to control
processing in a rich world. Simply put, knowledge that is
valid in principle need not necessarily be useful (Mitchell &
Keller, 1983); thus, itisdesirableto avoid theeffort involvedin
learning knowledge that does not contribute to the reasoner’s
overall purpose. More specifically, some of the motivations
for goa -based approaches include (see also Cox & Ram, this
volume):

¢ Alleviating problems of computational complexity: The
ability of a reasoner to make decisions about its reasoning

Guiding the performance task by:
o Determining theresourcesmadeavailableto the performance
task

e Guiding the control or search procedure used in the perfor-
mance task

e Guidingretrievd of plans, problem solutions, and other types
of knowledge

e Focusing attention on certain aspects of the input

¢ Guiding the evaluation of the outcome of the performance
task

Guiding thelearning task, by:

o Specifyingthetarget of learning (desired output of alearning
algorithm)

e Sdlecting the learning algorithmsto be used

e Consgtraining the learning process (for example, influencing
the policies under which the learning a gorithms operate)

e Focussing the search for information needed to carry out the
learning

¢ Determining when learning should be attempted

¢ Aiding evaluation of results of learning with respect to the
desired output

Guiding storage, by:

e Selecting what to store

¢ Determining how learned knowledgeis indexed

Table 1: Ways in which goa s can influence learning.

and learning processes helps to aleviate problems caused
by the computational complexity of reasoning in an open
world, by enabling the reasoner to focus its efforts towards
processing that serves its goals (Cox, 1993; Hunter, 1990;
Leake, 1992; L eske, thisvolume; Ram & Hunter, 1992). An
analysis of the utility of learning can help in determining
the target of learning (desJardins, 1992), in guiding learning
processes (Gratch, DeJong, & Chien, this volume; Provost,
this volume), and dso in deciding whether to learn at all
(Markovitch & Scott, 1993; Minton, 1990).

o Facilitatingtheuse of opportunitiestolearn: If areasoner
does not have sufficient resources at thetimeit realizesit has
aneedtolearn, or if therequisiteknowledgeis not available
at that time, the reasoner can suspend its learning goalsin
memory so that they can be retrieved and pursued at a later
time (Hunter, 1990; Hammond, Converse, Marks, & Seifert,
1993; Ram, 1991, 1993; Ram, Cox, & Narayanan, to appear;
Ram & Hunter, 1992).

e Improving the global effectiveness of learning: Taking
goal prioritiesand goa dependencies into account when de-
ciding what to learn and how to coordinate multiplelearning
strategies improves the effectiveness of learning in a sys-
tem with multiple goals. Learning strategies, represented
as methods for achieving learning goas, can be chained,
composed, and optimized, resulting in learning plans that
are created dynamically and pursued in a flexible manner
(Cox, 1993; Cox & Ram, this volume; Gratch, Delong,
& Chien, this volume; Hadzikadic & Yun, 1988; Hunter,
1990; Michalski, 1993; Michalski & Ram, to appear; Ram



& Hunter, 1992; Redmond, 1992; Stroulia& Godl, thisvol-
ume).

¢ Increasing theflexibility of learning: In situationsinvolv-
ing multiple reasoning failures, multiple active and sus-
pended learning goals, multiple applicable learning strate-
gies, and limited resources, direct mapping from specific
types of failures to individud learning strategies is impos-
sible, and an active, planful approach becomes necessary.
For a given failure, there may be more than one agorithm
which needs to be applied for successful learning and, con-
versely, agiven agorithm may apply to many different types
of failures(Cox, 1993; Cox & Ram, thisvolume; Ram, Cox,
& Narayanan, to appear; Krulwich, Birnbaum, & Coallins,
1992). A planful model of learning alows decoupling of
many-to-many relationships, leading to more flexible be-
havior (Cox, 1993; Cox & Ram, thisvolume).

¢ Improving management of interactionsbetween learning
processes: Explicit formulation of learning goals facilitates
detection of dependency relationships, so that goa viola-
tions can be avoided (Cox, 1993; Cox & Ram, thisvolume).
When multipleitems are learned from a single episode, the
changes resulting from one learning algorithm may affect
the knowledge structures used by another algorithm. Such
dependencies destroy any implicit assumption of indepen-
dence built into a given learning agorithm that is used in
isolation. For example, one learning algorithm may split a
concept definition into separate schemas or otherwise mod-
ify thedefinition. Therefore, an indexing algorithmthat uses
the attributes of concepts to create indices must necessar-
ily follow the execution of any agorithm that changes the
conceptua definition.

Psychologica evidence also supports the existence of goal-
based influences on human focus of attention, inference, and
learning (e.g., Barsalou, 1991; Faries & Reiser, 1988; Hoffman,
Mischel, & Mazze, 1981; Ng & Bereiter, 1991; Seifert 1988;
Srull & Wyer, 1986; Wisniewski & Medin, 1991; Zukier, 1986;
see a so discussion by Hunter, 1990). These idess are related
to the “god satisfaction principle” of Hayes-Roth and Lesser
(1976), which states that more processing should be given to
knowledge sources whose responses are most likely to satisfy
processing goals, and to the “relevance principle’ of Sperber
and Wilson (1986), which statesthat humans pay attention only
to information that seems relevant to them. Those principles
make sense because cognitive processesare geared to achieving
alarge cognitive effect for a small effort. To achieve this, the
understander must focusiits attention on what seemsto it to be
the most relevant information available.

Goals can fecilitate learning even when they are not gener-
ated internally by the reasoner; for example, Steinbart (1992)
shows that asking users questions (i.e., “creating” knowledge
goasin people) can help them learn from a computer-assi sted
training program, and Patalano, Seifert, and Hammond (1993)
show that presenting users with agoal and a plan to achieve it
can facilitate later detection of relevant features of a situation.
Thereis aso much research on the origins of goals; for exam-
ple, Graesser, Person, and Huber (1992) discuss severd types
of questions, or goals to seek information, and the cognitive
mechanisms that generate them.

A significant body of psychological research pointstothein-
fluence of “metacognition” —cognition by a person concerning
that person’sown coghitive processes—in human performance
(e.g., Forrest-Presdey, MacKinnon & Waller, 1985; Weinert,

1987; Wellman, 1985, 1992). Gavelek and Raphael (1985)
discuss a form of metacognition, called metacomprehension,
which addresses the abilities of individual sto adjust their cog-
nitive activity in order to promote more effective comprehen-
sion, in particular, the manner in which questions generated by
sources externa tothelearner (i.e., fromtheteacher or text), as
well as those questions generated by the learners themsel ves,
serve to promote their comprehension of text. White and Gun-
stone (1989) arguethat resol ution of conflicting beliefsand per-
manent conceptua change requires “metal earning”—control
over one's learning. For example, they discuss a study by
Gauld (1986) that showsthat studentswho learn new scientific
beliefs often revert to their original beliefs over time because
they have merely accepted the new knowledge without any
real commitment toit. They argue that deep reflection on one’'s
beliefs is a key part of the awareness and control over one's
learning, and suggest methods for promoting metalearning in
science classrooms.

The goal -driven learning framework does not imply that all
processing is explicitly goa-driven. A reasoner that was com-
pletely goal-driven would only notice what it was looking for
already; it would not be able to respond to and learn from un-
expected input. Instead, it is reasonable to assume that there
would be some automatic, bottom-up, or non-goal-driven pro-
cessing during reasoning and learning, which would support
strategic, top-down, or goal-driven processes such asthosedis-
cussed here (e.g., Barsalou, to appear; Kintsch, 1988; Leake,
1992; McKoon & Ratcliff, 1992; Ram, 1991). It is clear, of
course, that humans cannot exert explicit meta-control over al
their learning processes, and thelevel of control that can be ex-
erted, aswell as how it is exerted, remain open questions. Itis
also possible (though, in our opinion, unlikely) that it may turn
out not to be efficient to use thisframework as a technological
basis for the design of computer programs that learn. Never-
theless, the framework presented here may be used to take an
intentional stance (Dennett, 1987) towards a reasoner for the
purposes of building a computational model of learning. In
such a stance, the competence of the reasoner can be modeled
using goals, learning decisions, learning actions, and so forth
as the basic theoretical constructsin task-level and algorithm-
level descriptions of the reasoner. That stance can be taken
without any commitment to existence of these constructs at
the implementational level of, say, neura representations and
processes in the human brain, or to the degree of conscious
self-awareness of these processes in human thought.

A framework for goal-driven learning

In order to form a unified view of the diverse research results
on goal-driven learning, we propose a genera framework for
describing the goal-driven learning process. While no single
piece of research to date has investigated this framework as a
wholeor exactly as stated, the framework servesto provide an
integrativestructureintowhich individual research effortsfit as
pieces of the puzzle of goal-drivenlearning. The key idea be-
hind our framework isto model learning asan active (explicitly
goal-driven) and strategic (rational and deliberative) processin
which a reasoner, human or machine, explicitly identifies its
goasinlearning and attemptsto learn by determining and pur-
suing appropriate learning actions via explicit reasoning about
itsgoals, its abilities, and environmental opportunities.

In thisframework, learning is motivated by the performance
tasks that the reasoner is attempting to perform in the world.



The performance tasks give rise to task goals, as well as sub-
gods of those goals, and subtasks to achieve them. As the
tasks and subtasks are performed, the reasoner formulates ex-
plicit learning goals to perform types of learning which, if
successful, would improve its ability to carry out those perfor-
mance tasks or subtasks. The learning goals, in turn, guide the
learning behavior of the reasoner, leading it to focus attention,
allocate resources, and select appropriate learning algorithms
or learning strategieswhen opportunitiesto learn arise. Inour
previousexample, thetop-level task goal would beto get agood
buy on a stereo, which would spawn subtasks such as going to
a store and purchasing the stereo. These subtasks give rise to
learning goals to learn information needed to select the store
and the stereo to buy. Some of those learning goals may seek
to gather information about the externa world, while others
may seek to create generalizations, test hypotheses, reorga-
nize memory, or otherwise change existing knowledge. Those
learning goa's prompt the choice of learning strategies such as
“shopping around,” looking at reviews in magazines, and so
forth.

The goal-driven learning process involves not only learning
about theworld, but a so learning toimprovethereasoner’ sown
reasoning process. In order to identify the learning that needs
to occur, the reasoner needs to be able to analyze its reasoning
process in addition to the knowledge that the reasoner invokes
during the reasoning process. To facilitate this, the reasoner
maintains a reasoning trace of its interna decision-making.
The reasoning trace provides the basis for introspective rea-
soning or meta-reasoning to guide learning and improve its
reasoning performance.

More concretely, goal-driven learning can be modeled as
a two-step process. The first step involves the generation of
learning goals based on the performance tasks and task goals
of the reasoner. This step can be thought of as the process of
deciding what to learn, and resultsin the formul ation of learn-
ing goals that specify the desired learning that is to occur as
well as the origin of the need for this learning. The second
step involves the pursuit of learning goals based on the rea
soner’s needs, its resources, and on environmental factors that
determinethe timeliness of pursuing certain learning actionsin
a given situation. This step can be thought of as the process
of deciding how and when to learn and carrying out the learn-
ing. When the learning actually occurs, this step resultsin the
satisfaction of one or more of the reasoner’s learning goals.

Step 1: Generating learning goals:  Figure 1 describes the
process by which learning goas are generated. The reasoner
isassumed to be pursuing a performance task that can be char-
acterized in terms of the current situation and task goal s speci-
fying the desired result of the task. In the stereo example, the
situation might be that the shopper livesin New York, knows
nothing about stereos, and has $500 to spend; the task goa
would be to buy a stereo that was a good value for the $500
price range.

Giventheperformancetask, thereasoner performsreasoning
in support of that task and maintains a trace reflecting its rea-
soning process. The reasoning trace records the goal -subgoal
decompositional structure of thetask goals, the choice of meth-
ods for achieving them and other decisions taken, the factors
influencing those decisions, and descriptions of other reason-
ing actions (e.g., attempts to retrieve information) and their
outcomes (Carbonell, 1986; Ram & Cox, 1994). For exam-

Performancetask = Situation + task goals

is processed by

Selection and application of reasoning method

results in

Reasoning trace + result of reasoning
* is input to

Evaluation of processing

detects
Reasoning failure

% is input to

Analysis of reasoning failure

+ gives rise to

Learning goal = Goal specification + task specification

Figure 1: Generation of learning goals

ple, forming an executable plan to get a good buy on a stereo
requires knowing which stereo to buy and where to buy it. If
the reasoner does not know, a reasoning failure occurs because
current knowledge isinsufficient to make a decision.

At a suitable point in processing, the reasoning trace and
its results are evaluated in light of the reasoner’s task goals.
If any problems arose during processing, learning is needed
to enable the reasoner to avoid similar problems in the future.
In being driven by deficiencies in the reasoner’s knowledge,
the process for generating learning goals is in the spirit of
impasse-driven or failure-driven learning (e.g., Chien, 1989;
Collins & Birnbaum, 1988; Hammond, 1989; Kocabas, this
volume; Krulwich, thisvolume; Laird, Newell, & Rosenbloom,
1986; Mooney & Ourston, 1993; Mostow & Bhatnagar, 1987,
Newell, 1990; Owens, 1991; Park & Wilkins, 1990; Ram &
Cox, 1994; Riesbeck, 1981; Schank, 1982; Schank & Leake,
1989; Sussman, 1975; VanLehn, 1991a8). There are severa
kindsof failuresthat may beinvolved, for example, expectation
failures, retrieval failures, and knowledge application failures.
In our framework, an unexpected success is aso treated as an
expectation “failure”. Ram, Cox, and Narayanan (to appear)
present a taxonomy of possible types of failures and discuss
their relationship to goal-driven learning.

Even if no failure has yet occurred, anticipation of a rea
soning failure may trigger learning. For example, a reasoner
may redlize that it cannot perform a task and decide to per-
form the necessary learning before even attempting thetask. In
our framework, al these motivationsfor |earning—reasoning
failures, difficulties, impasses, suboptimalities, surprises, and
other types of processing problems or anticipated processing
problems—uwill be collectively and simply referred to as fail-
ures.

Different kinds of failures give rise to different kinds of
learning goals. For example, a reasoner may need to acquire
additional knowledge if its reasoning reached an impasse due
to missing knowledge, as in the case of a novice stereo buyer
who has no knowledge of which brand of stereo to buy. If the
reasoner possessed sufficient knowledge but did not retrieveit
at an appropriatetime, it may need to reorganize memory (Ram
& Cox, 1994; Ram, Cox, & Narayanan, to appear). A reasoner
may need to modify the underlying representational vocabulary
if its vocabulary is found to be inadequate (e.g., Schlimmer,
1987; Wrobel, 1988). In some situations, areasoner might also
need to add toitsrepertoire of reasoning strategies (e.g., Leske,



1993).

When a reasoning failure is detected, the reasoning trace
is analyzed, in a process called credit/blame assignment, to
find the source of the failure (Freed & Coallins, this volume;
Hammond, 1989; Krulwich, this volume; Minsky, 1963; Ram
& Cox, 1994; Weintraub, 1991). Blame assignment may be
thought of asaprocess of model-based diagnosisof thereasoner
itself (Birnbaum, Collins, Freed & Krulwich, 1990; Stroulia,
Shankar, Goel, & Penberthy, 1992). If the failureis attributed
to faulty knowledge, learning is needed to improve the rea
soner’s performance, and alearning goal is generated to repair
that knowledge. In our framework, the learning goal is char-
acterized in terms of two pieces of information: The desired
learning—what learning is needed—and a description of the
task that motivates learning—why learning is needed. The ad-
ditiona information about why learning is needed isimportant
to alow the reasoner to carry out its tasks in an opportunistic
manner, with learning goal s(and thetasksthat they support) be-
ing suspended until circumstances are favorableto their pursuit
(Ram, 1991, 1993; Ram & Hunter, 1992).

Step 2: Pursuing learninggoals:  Inthegoa-drivenview of
learning, learning goals are treated anal ogoudly to task goalsin
the world. Just as task goals are achieved through a planning
processusing avail ablemethodsfor reasoning and action, learn-
ing goals are achieved through a knowledge planning process
using available learning methods or strategies (Hunter, 1990;
Quilici, this volume; Ram & Hunter, 1992; Redmond, 1992).
In the knowledge planning process, explicit reasoning is done
about learning goals, their relative priorities, and strategies by
which they can be achieved. These learning goals, also caled
knowledge goals (Ram, 1987, 1990; Ram & Hunter, 1992),
can be represented in a goal dependency network (Michal ski,
1993; Michaski & Ram, to appear), which is used to select
and combine learning actions into learning strategies that are
appropriate for current learning goals and for the learning op-
portunitiesprovided by the current environment.

Individual learning actions may include performing knowl-
edge acquisition (e.g., asking a friend to recommend a stereo)
knowledge reorganization (e.g., grouping stores by the size of
their stereo departments), knowl edge reformul ation or transmu-
tation (e.g., forming new generalizations from stored episodes
concerning others' experiences with particular sound equip-
ment), and so on. Their application is guided by the learning
goals of the reasoner (Gratch, DeJong, & Chien, this volume;
Hunter, 1990; Michalski & Ram, to appear; Pryor & Coallins,
1992; Ram & Cox, 1994; Ram & Hunter, 1992). Figure 2
sketches the second step of the goal-driven learning process.
This step begins with reasoning about the relationships and
relative priorities of learning goalsin order to form a goal de-
pendency network. Based on the information contained in the
goa dependency network and on environmenta factors affect-
ing the appropriateness of different goals, the reasoner selects
the learning goalsto pursue. Learning strategies for achieving
those goals in the current environment are then selected and

applied.

Per spective on the framework: The model of learning em-
bodied in the above steps contrasts with the approach to learn-
ing taken in traditional machine learning systems in artificial
intelligence. Typicaly, in those systems, learning is primar-
ily apassive, data-driven process of applying asinglelearning

Learning goals + priorities
form
Goal dependency network of learning goals, priorities and dependencies

% are input to

|Learn|ng goal selection |

determines

Active learning goals

Environmental
factors

% are input to

[Cearning sirategy sefection |

% determine

Learning strategies to apply

Figure 2: Pursuing learning goals using appropriate learning
strategies

algorithm (or a predetermined combination of a few learning
algorithms) to trai ning exampl es presented to thesystem. Goal-
driven learning, in contrast, is an active and strategic process
driven by reasoning about information needs, aternativelearn-
ing strategies, and opportunities in the environment. In our
framework, the process of determining what to learn is an in-
tegral part of the computationa model of learning, as is the
process of deciding (on a dynamic basis) how and when to
learn it.

Our view of goal-driven learning implies a tightly coupled
rel ationship between learning and the“rest of reasoning.” This
view is consistent with recent models of intelligence that are
framed as integrated intelligent architectures, in which the
knowledge and reasoning tasks underlying learning and per-
formance areintegrated into a completeinteracting system (see
Laird, 1991, and VanL ehn, 1991b, for examples of thiswork).
A common theme in this research, and one that is compatible
with the goal-driven learning framework proposed here, isthe
explicitrepresentation of task goal's, reasoning goa's, and learn-
ing goals, and their role in a multistrategy reasoning process
that integrates| earning with performance tasks such as problem
solving or comprehension (e.g., see Ram, Cox, & Narayanan,
to appear).

Types of goals

In order to understand how goals can relate to one another
and to learning, it is useful to consider the classes of goas
that influence learning. As Barsalou (to appear) observes, in
Some Sense any reasoner executing a built-in procedure can be
viewed ashavinga“goal” to performthat typeof processing, so
that any learner could be considered trivially “ goa-driven”. To
distinguish between built-in behaviors and behaviors that are
more explicitly goal-driven, Barsalou differentiates between
implicit background orientations and explicit problem solving
or task goas. Explicit task goals are the goals that guide a
problem solving process in which a person intends to achieve
a set of goas, assesses what must be performed to achieve
them, and executes the needed actions. In contrast, an implicit
background orientationisa behavior that is performed without
explicit reasoning about when and how it should be pursued.
For example, one such implicit orientation isthe orientation to
congtantly maintain a world model that adequately represents
the reasoner’s environment (e.g., Barsalou, to appear; Leake,



1989, 1992), dthough in some formalisms thisis expressed in
terms of an explicit goa (see, e.g., Van de Velde, 1988).

Explicit goalsaretraditionally expressed as specifications of
atarget or desired outcome of aproblem solving or learning task
(e.g., Fikes, Hart, & Nilsson, 1972; Newell & Simon, 1972).
However, Ram and Hunter (1992; Hunter, 1990; Ram & Cox,
1994) argue that capturing the introspective nature of the goal -
driven learning process requires a richer characterization in
which a god is not merely a specification of a target. They
argue that atarget specification or an orientationisagoal only
if the reasoner can actively plan to accomplish the goal, can
make decisions about it, and can even decide to suspend it or
not to pursueit.

In order for the reasoner to make such decisions, goals must
be explicitly represented, and the reasoner must be able to
reflect on its goals, how to achieve them, and their relative
prioritiesand interdependencies. Ram and Hunter (1992) dis-
Ccuss a representation of learning goals in terms of the desired
knowledge to be learned as well as the reason that the knowl-
edgeisneeded. Additional representational issues concern the
kindsof decision-making rel ationshipsthat goals can enter into
(Thagard & Millgram, to appear) and theintergoal rel ationships
and interdependencies in which goals can play arole (Cox &
Ram, this volume; Michalski & Ram, to appear; Schank and
Abelson, 1977; Slade, 1993; Wilensky 1983).

In our framework, the “goals’ in goal-driven learning re-
search can be divided into three classes: task goals, learning
goals, and policies. Broadly, task goas determinewhy therea-
soner islearning in the first place, learning goal's specify what
thereasoner needsto learn, and policiesinfluence howlearning
occurs. Task gods, exemplified by early planning programs
(e.g., Fikes, Hart, & Nilsson, 1972; Sacerdoti, 1977) are spec-
ifications of desired outcomes from a performance task in the
external world, which are explicitly pursued through planful
reasoning processes or, in some recent models, goa -directed
reactive processes (e.g., Earl & Firby, this volume; Freed &
Callins, thisvolume; Maes, 1990). Because task goals charac-
terizeadesired state of affairs, they can also be used to describe
the need for information that a planner requiresto achieve that
state of affairs (e.g., Leake, 1991, Ram & Leake, 1991), to un-
derstand interactionsbetween task goas(e.g., Freed & Collins,
thisvolume), and to influence or bias learning strategies (e.g.,
Martin, thisvolume). Insome models, task goal s (and resulting
learning goal s) are decomposed into subgoal s or task structures
to facilitate planning and learning (e.g., Karlsson, thisvolume;
Stroulia& Goel, thisvolume).

Other computational models explicitly describe goals for
learning, rather than implicitly characterizing it in terms of
the external task. These learning goals differ from task goals
in that, while they too specify a desired state, the specified
dtate is an internal or menta state—a state of knowledge or
belief that the learner is attempting to achieve. Task goals
are satisfied through problem solving in the external (usualy
physical) world, while learning goals are satisfied through a
learning process that, in the goa-driven learning framework,
is viewed as problem solving in the “informational” world.
These learning goal shave been characterized in different ways,
including as knowledge goals, knowledge acquisition goas,
knowledge-buildinggoal s, questions, learning goa's, and delta-
knowledge goals (e.g., Cox & Ram, this volume; desJardins,
1992; Hunter, 1990; Michalski, 1993; Ng & Bereiter, 1991;
Oehlmann, Sleeman, & Edwards, 1992; Quilici, thisvolume;

Ram, 1987, 1990, 1991; Ram & Cox, 1994; Ram & Hunter,
1992; Schank & Abelson, 1977). In our framework, learning
goals, in additionto specifying thedesired outcome of learning,
specify the reason that the desired learning is required (e.g.,
“task specifications’ (Ram, 1991; Ram & Hunter, 1992) specify
the suspended reasoning task that is awaiting the knowledgeto
be learned).

Finally, several computational models reflect other types of
influences and constraintson learning that are goal -rel ated. Al-
thoughthese are not “goals’ in the sense of drivingthelearning
process in an explicit manner, they may play an important role
in influencing that process. Such influences include goa con-
cepts, target concepts, purposes, operationality criteria, bias,
policies, quality metrics, and utility metrics (desJardins, 1992;
Gordon & Perlis, 1989; Gratch, DeJong, & Chien, this vol-
ume; Kedar-Cabelli, 1987; Kdler, 1988; Laird, Rosenbloom,
& Newell, 1986; Leake, 1991, 1992; Markovitch & Scott,
1993; Martin, this volume; Michalski, 1983; Minton, 1990;
Mitchell, 1982; Mitchell, Keller, & Kedar-Cabelli, 1986; Perez,
thisvolume; Provost, thisvolume; Utgoff, 1986). Policies and
congtraints are not learning goals in the sense that the learner
does not actively seek to satisfy them; instead, they influence
the learning processes that the learner usesto achieveitslearn-
ing goals. In particular, they describe the policies under which
the learning task should operate in order to better achieve the
overarching learning goals, and describe relevant constraints
on the processes that carry out the learning task. Note that a
learner might formulate explicit learning goals to learn these
criteria. For example, a learner might formulate an explicit
goa to learn appropriate biases for a given type of learning
situation, and pursue an explicit learning agenda to learn such
biases.

The underlying commonality among these constructsisthat
each reflects an intention to influence learning according to
needs that are external to the learning process itself. How-
ever, quite different focuses are apparent in the formulations
described in the previous sections. Consequently, developing
agenera theory of goa-driven learning depends on analyzing
the relationships of these constructs and their rolein reasoning
and learning.

To relate the previous perspectives, we refer to the general
class of goals to describe theoretical constructs that refer to
mental entitiesthat are explicitly represented and actively pur-
sued through a planful reasoning process.? Task goals refer
to goals which specify desired effects in the world externa
to the reasoner. Learning goals or knowledge goals refer to
goa's which specify desired effects within the reasoner such
as acquiring new knowledge or augmenting, reorganizing, or
reformulating existing knowledge. Learning goals describe
not only the desired processing outcome, but how the desired
knowledge will be used when it is acquired. Reasoning goals
refer to more general interna goals to form conclusions or in-
ferences through learning or other reasoning processes. Target
concepts specify a desired concept to be learned, but not nec-
essarily learned through a goal-driven learning process, and
genera policies or orientationsinfluence learning without be-
ing explicitly represented or available for manipulation by the
reasoner’ sreasoning or learning process, including constraints
on the formulation of hypotheses such as biases, operationality

2Note that this definition does not imply that goals or goal-driven
processing must necessarily be conscious, nor that the reasoner must
necessarily be able to report externally about this processing.



Explicitly Rangeof effects Influences  Solution Effect on
represented?  (internal to selectionof  process solution
reasoner or in solution generation
external world)  algorithm?
Goals Yes Either Yes Planning Guidance
Task goals Yes External Yes Planning actions Guidance
in external world
Reasoning goals/ || Yes Internal Yes Knowledgeplanning  Guidance
learning goals
Policies Sometimes Internal Sometimes  Unspecified Constraint
Target concepts Yes Internal No Unspecified Guidance
Operationality Yes Internal No Unspecified Constraint

criteria

Table 2: Types of goalsand policies.

criteria, and utility metrics. Table 2 summarizes these dis-
tinctions, and Table 1 summarizes the different roles that such
congtructsplay in learning.

Note, however, that these classes of goals can overlap and
influence each other. Task goashave been used to guidelearn-
ing and performance in severa systems, and can aso be used
to formulate learning goals to acquire information necessary
for a given task (Ram & Leake, 1991) or to come to a better
understanding of thetask itself (Freed & Collins, thisvolume).
In conjunction with knowledge or theories, they can guide
learning processes (Barsalou, 1991; Ng & Bereiter, 1991; Wis-
niewski & Medin, 1991). Likewise, athough target concepts
are generaly provided to a learning system as input by a hu-
man user, in some models target concepts are generated from
aspects of the performance task in amanner similar to the gen-
eration of learning goals. For example, Kedar-Cabelli (1987)
discussesamethod for generating target conceptsfrom standard
congtraints on artifacts to be used in particular plans. Keller
(1987) aso sketches a process for generating learning goals
from higher-level performance objectives. Similarly, policies
(such as bias, which is usually formulated as a passive, back-
ground constraint on learning) may be actively monitored and
modified by the reasoner to guide the learning task (Gordon
& Perlis, 1989; Martin, this volume; Provodt, this volume;
Provost & Buchanan, 1992; Utgoff, 1986).

Several models include learning goals as an explicit part of
their formulation of the learning process. Learning goas have
been used to guide resource alocation, information search,
hypothesis evaluation, and other aspects of learning; to select
and combine learning strategies; to guide and to learn about
the reasoning process itself; and to model active learning in
educational contexts.

Pragmatic implications of goal-driven learning

Goal-driven learning can provide considerable power in intel-
ligent systems, whether those systems are viewed as compu-
tational models of human intelligence, or purely as artificia
intelligence systems. In learning systems, goals can be used to
focuslearning and to avoid unrestricted search and inferencing.
They can a so be used to guidetheinformation-seeking process
and to make decisions about what, when, and how to learn.
Applying aplanful model of learning promisesto be fruitful
for many applications, including perception (Pryor & Coallins,
1992), intelligent information retrieval (Ram & Hunter, 1991),
learning through apprenticeship (Redmond, 1992), knowledge

acquisition (Quilici, this volume), information search during
explanation (Leake, this volume), robotics (Earl & Firby, this
volume; Karlsson, this volume), medical diagnosis (Hunter,
1990), natural language understanding (Cox & Ram, thisvol-
ume; Ram, 1991), manufacturing (Perez, this volume; Ram,
Narayanan, & Cox, 1993), and scientific discovery (Kocabas,
thisvolume).

In addition, goals can be used as a theoretical device to
build computationa models of strategic and active reason-
ing and learning processes, and such models have practical
ramifications for the design of instructional material. Ng and
Bereiter (1991) show that different kinds of goals facilitate
different kinds of reasoning and result in different kinds of
learning. Such results suggest principles for the design of
computer-based tools for education (Scardamalia & Bereiter,
1991). For example, van Berkum, Hijne, de Jong, van Joolin-
gen, and Njoo (1991) use goal-driven learning both as a the-
oretica framework for decomposing the education problem
and as aguidetoward designing simul ation-based instructional
software. Schank proposes that because of the importance of
goasin motivating and guiding learning, instruction should be
conducted using a particular type of simulation environment—
a goal-based scenario—to exploit the role of learning goas
(Schank, Fano, Jona, & Béll, to appear). In goa-based sce-
narios, students play roles that are connected to their goals,
and whose successful completion requires acquisition of the
skillsto be taught. In that way, goa-based scenarios provide
a framework for students to perform goal-driven learning to
acquire the skillsto betaught.

Summary

In goal-driven learning, decisions of when to learn, what to
learn, and how to learn are determined by explicit reasoning
about needs for information. Although many aspects of goal-
driven learning have been investigated in diverse fields, that
research has been conducted in a piecemeal fashion, largely
segregated by field. Even when multiple studies have been
conducted in asingle field, as is the case for artificia intelli-
gence, each study has tended to concentrate on a few aspects
of the problem without placing those aspects within a unifying
framework and examining their larger implications.

We have presented aunifying picture of existing goal -driven
learning research in terms of a new framework for modeling
goa-driven learning, in terms of the types of goals that may
guidelearning, and in terms of the ways those goal s can influ-



ence learning. The framework presented here is not suggested
as a fina theory of goal-driven learning, but rather a device
for understanding the relationships of different results rel evant
to goa-driven learning and for suggesting issues that must
be addressed with further investigation through a coordinated
multidisciplinary research effort. The individual models and
perspectives of the following papersilluminate specific aspects
of the framework and the issues that remain to be addressed in
future research.
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