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Abstract
The utility problem in learning systems occurs when
knowledge learned in an attempt to improve a sys-
tem's performance degrades performance instead. We
present a methodology for the analysis of the utility
problem which uses computational models of problem
solving systems to isolate the root causes of a utility
problem, to detect the threshold conditions under
which the problem will arise, and to design strategies
to eliminate it. We present models of case-based rea-
soning and control-rule learning systems and compare
them with respect to the swamping utility problem.
Our analysis suggests that CBR systems are more re-
sistant to the utility problem than CRL systems. 1

1. Introduction
All intelligent systems that learn can suffer from the
utility problem, which occurs when knowledge learned
in an attempt to improve a system's performance de-
grades performance instead (MINTON 1990). In this pa-
per, we analyze the utility problem and examine its ef-
fects in case-based reasoners and control-rule problem
solvers. Our methodology for this analysis couples a
functional analysis of an AI system with a performance
analysis of the system's algorithmic and implementa-
tional components. Such a computational model allows
the identification of the root causes of the utility prob-
lem, which are combinations of algorithmic characteris-
tics of an AI system (e.g., serial search of memory) with
particular “parameters” that affect its operation (e.g.,
knowledge base size). Identifying the precise algorithmic
nature of a root cause allows us to predict the threshold
conditions under which it will affect a system severely
enough to cause a utility problem.

Our analysis provides a general and theoretical
framework for addressing this problem in systems that
have been studied empirically (e.g., control-rule learning
(CRL) systems) and in systems for which little utility
analysis has been performed (e.g., case-based reasoning
(CBR) systems). We use this framework to compare CBR
and CRL systems, and find that CBR systems are more
resistant to the utility problem than CRL systems.

2. Analyzing the Utility Problem
The utility problem was first detected in PRODIGY/EBL
(MINTON 1988). PRODIGY/EBL is a control-rule
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learner,2a type of system that attempts to improve its
problem-solving performance by learning search-control
knowledge, called control rules, that reduce the amount
of search it needs to perform by eliminating dead-end
paths and selecting profitable ones. What Minton and
others noticed about systems like PRODIGY/EBL was
that the system could actually get slower after having
learned control rules, rather than faster. At each step in
the search space, a control-rule problem solver has to
match all of its control rules against the current state to
determine if they should fire. As that library of control
rules grows in size, the cost of matching the control rules
increases to the point that it outweighs or “swamps” the
savings in search they provide.

This side effect of learning was called the “utility
problem”: learning designed to improve the system's
performance ended up degrading performance instead
(HOLDER ET AL. 1990). Since Minton's discovery of this
“swamping” utility problem in PRODIGY, researchers
have identified many different types of utility problems,
each manifesting itself in slightly different ways. Be-
cause some types of utility problems are affected by the
hardware architecture of the system and others are
largely independent of hardware concerns, we can group
the different types of utility problems into two rough
classes: architectural utility problems, which arise from
interactions between a system’s learning and its hard-
ware architecture, and search-space utility problems,
which arise from interactions between learning and
problem solving algorithms. A full discussion of the dif-
ferent types of utility problems is contained in (FRANCIS
& RAM 1994). In this paper, we will focus on swamping,
which is the utility problem most commonly encountered
in learning systems. We will reserve the term “the utility
problem” for the general utility problem, and will refer
to specific versions of the utility problem, such as
swamping, by their names.

3. A Methodology for Utility Analysis
We propose the use of algorithmic complexity theory as
a tool for the analysis of the general utility problem. Our
methodology involves analyzing different types of AI
systems and decomposing their cognitive architectures
into lower-level functional units, including problem-
solving engines and memory systems, that can be repre-
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sented by formal algorithmic models. Our algorithmic
approach incorporates both functional-level aspects of
the computation, such as the system's cognitive architec-
ture and its knowledge base, and implementation-level
aspects, such as the performance characteristics of the
system's hardware architecture. This multi-level analysis
is crucial for the study of the utility problem because
many utility problems arise due to interactions between
the functional level of the system and the way that func-
tional computation is actually implemented. Our meth-
odology can be used to identify potential utility problems
as well as to design coping strategies to eliminate their
effects. In this paper, we focus on a comparative analysis
of case-based reasoning and control-rule systems.

3.1. AI Systems and Learning
Formally, we can describe an AI system as a triple (CA,
KB, HA). The cognitive architecture CA specifies a
system in terms of separate functional modules that carry
out fixed subtasks in the system, while the knowledge
base KB represents the internal "data" that the CA uses
to perform its computations. The hardware architecture
HA defines the operations that a system can perform at
the implementation level, as well as their relative costs.
The cost (and hence the utility) of an operation may be
different on different HA’s: for example, retrieval might
take longer on a serial machine than it would on a paral-
lel machine.

3.2. Utility and the Utility Problem
Utility can only be defined in terms of "performance"
measures that judge the efficiency of a reasoner, such as
execution time, number of states searched, storage space
used, or even quality of solution. These evaluation met-
rics measure the costs that a system incurs during its
reasoning. Given a particular evaluation metric, the util-
ity of a learned item can be defined as the change in ex-
pectation values of a problem solver's performance on
the metric across a problem set (MARKOVITCH & SCOTT
1993). To compute the utility of a change to the system's
knowledge base with respect to some metric, we want to
compute the costs that the system will incur for different
problems weighted by the probability that the system will
actually encounter those problems. Thus, utility is a
function not only of the learned item but also of the
learning system, the problem set, problem distribution,
and the evaluation metric. The utility problem occurs
when a learning system makes a change to its KB with
the goal of improving problem solving utility on some
metric by a calculated improvement Fc, but which has
the side effect of degrading problem solving utility for
another (possibly identical) metric by some actual
amount Fa that outweighs the savings (i.e., Fc<Fa).

3.3. Dissecting the Utility Problem
In general, utility problems are not global, emergent
properties of computation but can instead be tied to
specific interactions between the CA, the KB, and the
performance characteristics of the HA. In a CRL system,
the interaction of interest is the relationship between

match time and knowledge base size; in a CBR system, a
similar interaction exists between case retrieval time and
case library size.

We can formally define an interaction to be a combi-
nation of a set of parameters, a module, and a set of ef-
fects. The module represents the part of the CA that is
responsible for the relationship between the parameters
and their effects. Parameters represent characteristics of
the system's knowledge base, while effects represent the
performance measures that affected by the interaction.
Thus, an interaction defines a function between learning
(changes in the knowledge base) and performance
(changes in the evaluation metric), mediated by the
characteristics of the algorithmic component of the in-
teraction (the module).

Utility problems arise when a learning module in the
system causes parameter changes which interact with
some CA component to produce "side" effects that im-
pact the performance measures a learning module is de-
signed to improve. This kind of coupling between a
learning module and an interaction is a potential root
cause of a utility problem. For a particular root cause,
the calculated improvement Fc is the savings that the
learning module is designed to perform, while the actual
cost Fa is the actual change in performance taking into
account the side effects of the interaction.

By comparing the algorithmic behavior of the learning
module, the root cause interaction it is paired with, and
the cost and savings functions that they contribute, we
can compute threshold conditions  limiting values for
the parameter changes that the system can tolerate before
the actual costs exceed the calculated improvement and
the system encounters a utility problem. Eliminating the
general utility problem involves identifying the root
causes of particular utility problems that can arise in a
system and designing coping strategies that prevent their
threshold conditions from being satisfied.

4. Modeling CRL and CBR Systems
To compare CBR and CRL systems, we must develop
computational models of these systems and compare
learning and problem solving in each.

The baseline for comparison of the computational
model approach is the unguided problem solver. Un-
guided problem solvers (UgPS) are a class of problem
solvers that operate without search control knowledge.
The algorithm of a UgPS is a knowledge-free weak
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method guaranteed to find a solution if one exists, such
as breadth-first search; the only knowledge it uses is its
operator library. For a given problem p with a solution
of path length d operating in a search space with
branching factor b, a UgPS will examine bd nodes during
search (see Figure 1). The number of nodes that the sys-
tem expands is termed the complexity of a problem and
is denoted Cp. Because the UgPS solves problems in ex-
ponential time, it can serve as a “baseline” against which
more efficient learning systems can be compared. Much
of “intelligence” can be viewed as attempts to reduce this
combinatorial explosion through the use of heuristics or
other techniques (NEWELL & SIMON 1975; RAM &
HUNTER 1992; SCHANK & ABELSON 1977).

4.1. Control-Rule Problem Solvers
Learning systems improve over the UgPS by finding
ways to reduce or eliminate search. A CRL system re-
duces search by retrieving and applying control rules at
each state it visits during problem solving, giving it the
ability to select or reject states. This control knowledge is
a completely different kind of knowledge than operator
knowledge and must be stored in a separate control rule
library. If a system's control rule library is empty and

control rules are not available, the problem solver resorts
to blind search. Once a solution path has been found,
correct decisions can be cached in the library as control
rules that will guide the system in the future (see Figure
2). This model, while simplified, approximates many
existing systems, including Soar and Prodigy.

4.2. Case-Based Reasoners
Case-based reasoning is primarily experience-based;
when a CBR system encounters a new problem, it checks
its case library of past problem solving episodes, or
cases, looking for a similar case that it can adapt to meet
the needs of the new problem. Our model of CBR has
two primary knowledge libraries: the case library itself,
indexed so that the most appropriate case can be re-
trieved in new problem-solving situations, and an adap-
tation library that stores adaptation operators that are
used to transform the cases once they are retrieved.
When a CBR system is presented with a problem, it re-
trieves an appropriate past case based on the problem's
features, its goals, and the indices it has in its case li-
brary. Then, the case is adapted by performing search in
the space of problem paths: the adaptation operators
transform entire paths into new paths until a satisfactory

solution path is achieved (see Figure 3). Once the new
solution is found, it is stored in the case library indexed
for future retrieval.

5. Analyzing Retrieval Costs
Our analysis of these models focuses on retrieval costs in
CRL and CBR systemshow many retrievals are made,
and how much does each retrieval cost? Retrieval is of-
ten cited as the core source of power for CBR systems,
yet the retrieval cost is a critical factor in the swamping
utility problem. An analysis of retrieval costs in CRL and
CBR systems before and after learning reveals interest-
ing differences in how each deals with retrieval.

For our analysis, we will assume that both the CRL
and CBR systems operate on the same problem set, and
that their problem spaces are defined by the same opera-
tor library. We further assume that the costs of adapta-
tion operators are roughly equivalent to those of regular
operators; this assumption may or may not be true for
particular systems but is reasonable for this analysis.

We define a basic operation of retrieval, R, which
chooses an item in a knowledge library based on some
matching function. In general, for a given hardware ar-
chitecture HA, the cost of retrieval for a knowledge li-
brary i, denoted Ri, is a function of both the library i and
the item to be retrieved, r:  Ri = f(r,i). For a serial hard-
ware architecture, HAs, the most important variable in
this cost function is the number of items in the knowl-
edge library, Ki. We will approximate this serial cost
function with Ri = cKi, where c is a constant multiplier
that approximates the (nearly) linear cost function for
matching on serial systems like Has.3

The particular interaction we will examine is the re-
trieval time interaction: the relationship between the
retrieval operation Ri, knowledge library size Ki, and
running time t. Because the learning operations in CBR
and CRL systems have the effect of increasing the size of
knowledge libraries in the system, their learning mod-
ules coupled with the retrieval time interaction form po-
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tential root causes of the utility problem. Now, let’s ex-
amine the dynamics of learning and retrieval in CBR
and CRL systems and attempt to establish the threshold
conditions for the utility problem in each.

5.1. Retrieval in Control-Rule Problem Solvers
In its initial state, without control rules, a CRL system is
equivalent to the UgPS. It searches Cp states, retrieving a
set of operators at each step with a cost of Ro. No control
rules exist, so the cost of control-rule retrieval Rc = 0.
Thus, the total cost in retrievals of the initial system is
CpRo. After the system has learned a set of control rules,
it has the capacity to guide its search. The number of
states searched is reduced to Cp', where Cp' < Cp. How-
ever, in addition to retrieving a set of operators, it also
needs to retrieve control rules at each step; thus, the cost
for solving a problem rises to Cp'(Ro+Rc').

The expected savings that guided problem solving
brings are the costs of the states that the problem solver
avoids: (Cp − Cp')Ro. The added costs are the costs of
matching the control rules at each step: Cp'(Rc' − Rc) =
Cp'∆Rc. (Note: because Rc = 0, ∆Rc = Rc'). The utility
problem will arise when the added costs exceed the ex-
pected savings. Thus, the threshold condition is (Cp −
Cp')Ro < Cp'∆Rc; in other words, the swamping utility
problem arises when the added cost of retrieval out-
weighs the benefits of individual rules. But will this
threshold condition ever be met?

In the limit, the maximum search reduction is to a
single path (Cp' = d), and operator retrieval costs are
constant (Ro' = Ro) since the library of operators the
system uses does not change in size. The maximum ex-
pected savings possible for any problem are thus (Cp −
d)Ro. In contrast, the cost of retrieving control rules (Rc')
increases without bound as the control base Kc increases
in size; in the limit, the added costs associated with a
rulebase are dRc' = dc(Kc) and thus can outweigh the
maximum possible savings. Therefore, the threshold
conditions can be met and the CRL system will encoun-
ter the utility problem.

These results indicate that swamping is a function of
the potential speedup of learned items, the cost function
of retrieval (which is itself dependent on retrieval
strategies and machine architecture), and the number of
items a system needs to learn. If the system converges on
a bounded set of learned items and the hardware slow-
down never approaches the utility of those items, the
system will never be swamped.4 If the learned items are
of low utility, or if the learner never converges on a
bounded set, as might be the case for an open-world or
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multidomain system, then the swamping problem can
eliminate the benefits of the learned rules.

5.2. Retrieval in Case-Based Reasoners
To analyze utility effects in CBR systems, we need to
measure the performance of a CBR system as it learns.
To provide a basis for this measurement, we assume that
a CBR system that does not have an appropriate case in
memory can resort to some method (e.g., adaptation of a
"null case" or “from-scratch” reasoning) that is cost-
equivalent to the UgPS. Many existing CBR systems
have such a last-resort method (e.g., KOTON 1989,
KOLODNER & SIMPSON 1988).

A CBR system that resorts to null-case adaptation be-
ginning with no experiences must still incur the cost of
retrieving the null case (Rc) and then search the space of
problem paths until the case has been adapted into a sat-
isfactory solution. Under our earlier assumptions, the
total number of paths the system examines is Cp, and one
adaptation retrieval (Ra) occurs per step. Thus, the total
cost of case adaptation before learning is Rc + CpRa.
After the system has learned a library of cases, it will
still need to retrieve a case but each case will require
much less adaptation, reducing the number of paths ex-
amined to Cp' where Cp' << Cp. The cost of retrieving
cases will increase to Rc' where Rc' >Rc. Thus, the total
costs are Rc' + Cp'Ra.

To evaluate these results we must again examine the
benefits and costs of case retrieval. The expected savings
are the costs of the states that the problem solver avoids:
(Cp − Cp') Ra, while the added costs are the increased
costs of retrieval of cases Rc' − Rc = ∆Rc. In the limit,
the cost of retrieval increases without bound as the case
library increases in size: Rc' = c(Kc). However, as we
approach the limit the case library contains many appro-
priate cases and little adaptation needs to be done
perhaps only one or two steps. In general, whenever the
threshold condition (Cp − Cp') Ra < ∆Rc is met, the cost
of retrieval outweighs the benefits of case adaptation;
under these conditions, CBR systems will be swamped.

5.3. Advantages of Case-Based Reasoning
While this analysis reveals that both control-rule learners
and CBR systems can suffer from the swamping utility
problem, it also reveals that CBR systems have impor-
tant advantages over CRL systems.

The primary advantage CBR systems have over con-
trol-rule problem solvers is that cases are retrieved only
once during the lifetime of problem solving. For a con-
trol rule problem solver to avoid swamping, the increase
in cost of retrieval of a control rule must be less than the
fraction of total states that the system avoids in guided
problem solving times the cost of an operator: ∆Rc <
Ro(Cp − Cp')/Cp'. For a CBR system, on the other hand,
the increase in cost of a case retrieval must be less than
the cost of the number of adaptation steps avoided: ∆Rc
< Ra(Cp − Cp'). The missing Cp' term in the denominator
of the CBR equation arises because the increased cost of
retrieval of control rules are incurred at each step in the
search space, whereas the increased cost of case retrieval



is incurred only once during problem solving for a CBR
system. In other words, CBR systems amortize the cost
of case retrieval across all adaptations, making them
much more resistant to increases in retrieval costs than
CRL systems.

This amortization also makes CBR more amenable to
solutions to the swamping problem, such as deletion
policies or indexing schemes. In order to be effective,
any coping strategy needs to reduce retrieval time to the
point that the threshold conditions are never satisfied.
For CRL systems, this upper limit is Rc' < Ro(Cp −
Cp')/Cp'; for CBR systems, this upper limit is Rc' <
Ra(Cp − Cp'), a much higher (and hence much less strin-
gent) limit on the maximum time retrieval can take for a
system to be guaranteed to avoid swamping.

5.4. Future Comparative Analysis
The above analysis does not close the book on the utility
problem in CBR and CRL systems. There are a number
of other differences that can contribute to the utility
problem, including differences in operator costs, degree
of search reduction, and knowledge base size.

Normal problem solving operators and adaptation op-
erators do not necessarily have comparable costs. A
traditional problem solving operator makes a change to a
single state, while an adaptation operator can potentially
make several changes to a case. Thus, the same reduc-
tion in Cp' in CBR and CRL systems could provide dif-
ferent degrees of savings because the individual steps
being saved may not cost the same.

Another difference between CBR and CRL systems is
that they are not guaranteed to produce the same reduc-
tion in Cp' after being exposed to the same set of training
examples. While both types of systems are senstitive to
the structure of the domain, search reduction in CRL
systems depends on the learning and matching policy for
control rules, but in CBR systems depends on the index-
ing scheme and similarity metric used for case retrieval.
Therefore, the same training set might produce different
search reductions for CRL and CBR systems.

Furthermore, depending on the learning biases chosen,
different systems could extract varying numbers of cases
or rules from the same set of examples. Therefore, even
if the search reduction is the same, there is no guarantee
that the size of the systems’ knowledge libraries will be
comparable, and hence no guarantee that their perform-
ance on the utility problem will be identical.

Providing a principled account of the effect contribut-
ing factors like these have on the utility problem is the
primary goal of our research. While we believe we have
identified one factor  amortization  which contrib-
utes to the performance differences of CBR and CRL
systems, it is only one contributing factor among many
that determine the systems’ respective performances.
Accounting for other contributing factors, such as opera-
tor costs, degree of search reduction, and knowledge base
size, will allow a principled comparison of CBR and
CRL systems performance on the utility problem.

For example, there have been few attempts to sys-
tematically evaluate the cost-utility tradeoffs in CBR

systems with very large case libraries. However, reports
of the speedup provided by cases (e.g., KOTON 1989) and
control rules (e.g., TAMBE ET AL 1990) suggest that cases
can provide large improvements, up to an order of
magnitude greater than the speedups provided by control
rules. It is possible that the utility of cases may be high
enough to allow CBR to avoid swamping, but it is not
clear whether this will always be the case.

6. The Bottom Line
CBR’s patterns of retrieval make it resistant to the utility
problem. Because the cost of case retrieval is amortized
over many adaptation steps, ideal CBR systems suffer
less severely from the same overhead and are more ame-
nable to coping strategies than CRL systems. This
analysis suggests several future lines of comparative re-
search on CBR and CRL, such as operator costs, degree
of search reduction and size of knowledge bases.
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