
Can Your Architecture Do This?
A Proposal for Impasse-Driven Asynchronous Memory Retrieval and Integration

Anthony G. Francis, Jr. and Ashwin Ram
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

{centaur,ashwin}@cc.gatech.edu

Abstract

We propose an impasse-driven method for generating
memory retrieval requests and integrating their contents
dynamically and asynchronously into the current reasoning
context of an agent. This method extends our previous
theory of agent architecture, called experience-based agency
(Ram & Francis 1996) by proposing a general method that
can replace and augment task-specific mechanisms for
generating memory retrievals and invoking integration
mechanisms. As part of an overall agent architecture, this
method has promise as a way to introduce in a principled
way efficient high-level memory operations into systems
based on reactive task-network decomposition.

Introduction
On the road to a theory of spontaneous memory retrieval

in humans, we were struck by a revelation: the ability to
respond to asynchronously generated information as it
appears and to productively integrate it into one’s thoughts
and actions was of fundamental importance not only to
humans, but to any intelligent, multifunctional agent living
in a complex, dynamic environment. We took this
principle and ran with it, developing a theory of agent
architecture called experience-based agency based on
parallel task execution, asynchronous memory retrieval,
and dynamic integration mechanisms.

In the process of implementing and testing this theory in
the context of a case-based planning system called Nicole-
MPA, we have discovered a method to generate retrieval
requests and respond to memory retrievals in a principled
way; this discovery is the next steppingstone in our quest to
transform the experience-based agency theory from a
specification for the design of task-specific agents to a
theory of cognitive architecture for general intelligent
action.

Recalling the Perfect Bon Mot
Let’s unpack this a bit. As an agent thinks about and

acts in the world, its reasoning process is constantly
generating, retrieving and processing information relevant
to the task it is performing. But most of the information
provided by the environment — and, in humans, a good bit
of the information provided by our memories — often

seems irrelevant to our current processing, or, as in the
case of the exit sign that comes up too fast when driving or
the perfect bon mot recalled too late in a conversation,
seems to arrive on its own perverse schedule, rather than
when we need it.

But an efficient agent can actually take advantage of this
kind of asynchronous information; whether it comes from
the outside world or the inside of one’s head, an agent
should have the capability to shift lanes quickly (when it is
safe), or to steer the topic subtly backwards to deliver the
atomic catchphrase (unless it has grown too stale). At a
minimum, two essential capabilities are required: the
ability to integrate asynchronous information into the
current reasoning context, and the ability to judge whether
or not it is productive to do so.

But in addition to these, humans have a third capability:
the ability to internally generate — to be reminded of —
information which might be relevant to current problem
solving. To model this ability, we have developed an
asynchronous memory retrieval algorithm based on the
following principles. Given an uniform knowledge base
which stores all an agent’s experiences (called an
“experience store”) and a working memory which stores
the agent’s current reasoning context, asynchronous
retrieval can be achieved by a memory task acting in

 Figure 1. The core idea of asynchronous memory

AAAI-97 Workshop on On-Line Search, Providence, RI, 1997

parallel with other reasoning tasks within the agent,
searching the experience store on its own schedule and
returning candidate retrieval items as soon as they are
found. Memory’s search is guided by whatever is visible in
working memory (such as a reasoning trace or cues from
the outside world) but it remains independent. The only
explicit channels of communication between memory and
reasoning are retrieval requests and retrieval responses, as
Figure 1 illustrates. Appendix A provides more detail on
our implementation of asynchronous memory.

Agent Specification, Agent Architecture
But asynchronous memory by itself does not an agent

architecture make; to build an agent around an
asynchronous memory we must specify further details,
such as how retrievals are integrated into reasoning and
how the agent controls its behavior. We have combined
the constraints of the asynchronous memory theory (a
uniform knowledge base or “experience store”, a global
working memory, and an asynchronous memory retrieval
process) with two additional hypotheses (namely, that
knowledge is integrated through dedicated, reasoning-task-
specific subtasks called integration mechanisms, and that
decisions about integration are executed by a global task
control mechanism) into an overall theory called
experience-based agency (Ram & Francis, 1996).

The experience-based agency theory does not commit to
any particular reasoning method or problem solving
strategy, and therefore is more properly termed a
specification for agent design than a complete cognitive
architecture for general intelligence. Figure 2 illustrates
this distinction: the processes and data structures in grey
are fully specified by the theory, whereas the details of the
reasoning task depend on the design of the agent or system.
Our usage of the theory backs this up; we have
implemented the theory in an agent framework called
Nicole, but our evaluation has focused more narrowly on a
case-based planning system called Nicole-MPA.

One thing we discovered in the course of our
development of Nicole-MPA is that the design of the task
controller — and the types of task networks that it
supported — critically determined the types of reasoning
the system could perform. While it was possible to
program a wide variety of behaviors in the initial task
language, complex interleaving of memory and reasoning
were difficult; furthermore, all memory requests, retrieval
processing, and integration mechanisms had to be handled
through highly explicit, reasoning-task dependent code.
Figure 3 illustrates this elaboration of the original
asynchronous memory model (small arrows indicate that
one task is a subtask of another). As a professor of one of
the authors once said, “Ain’t nothing simple when you’re
doing it for real” (Baird 1989).

As we experimented with the implementation and
discovered its limitations, we refined the theory behind it.
While the basic theory behind the experience store, the
working memory, the asynchronous memory system, and
our specific choices of integration mechanisms have held
up under the pressure, the theory behind task control has
been considerably elaborated. While this elaboration does
not “close the loop” and provide a complete specification
for a complete cognitive architecture, it has provided us
with a way to automatically generate certain memory
requests, process the corresponding retrievals when they
occur, and invoke the appropriate integration mechanisms
when needed — the striped boxes in Figure 2.

Impasse-Driven Memory Retrieval
At the highest level, task control in the current

experience-based agency theory can be described as
recursive, reactive task decomposition, and shares a
common heritage with systems such as RAPs (Firby 1989),
TMK models (Goel & Murdock 1996) and generic tasks
(Chandrasekaran 1989), to name a few. But it also shares
some properties with systems ACT* (Anderson 1983) in
that much task processing occurs through the operation of

 Figure 2. The Architecture of Nicole
 Figure 3. How experience-based agency elaborates the basic

asynchronous memory model.

productions and with systems like Soar (Newell 1990) in
that task processing steps can impasse if appropriate
knowledge is not available. Two classes of impasses —
queuing impasses and choice impasses — provide
opportunities to automate asynchronous memory retrieval.

Task Processing in EBA
The root of the task system consists of several supertasks

— high-level objects, corresponding to major cognitive
functions such as memory, reasoning and perception,
which structure the system’s working memory and spawn
specific subtasks to achieve the cognitive functions
(Moorman & Ram 1996, Ram & Francis 1996). Figure 4
illustrates supertasks’ dual role as both memory and
processing structures. By definition, all supertasks are
processed in parallel; beneath that level, things get more
complicated.

There are five steps to task processing in an experience-
based agent: method selection, method elaboration, subtask
choice, task queueing, and task application. Once a task
has been queued for execution, a method must be selected
to actually execute a task. A method, which may specify a
complex network of subtasks acting serially or in parallel,
must be elaborated to propose a set of subtasks for
execution. Those tasks are evaluated and, depending on
the task network structure, one or more are chosen for
execution. If the chosen subtask’s parameters can be
bound and its preconditions satisfied, the subtask will be
queued for execution, and finally will be applied —
recursively decomposed if it is a complex task, or executed
immediately if it is atomic.

Figure 5 illustrates the task decomposition process
process from the perspective of a task waiting in the
execution queue. First, its parameters are bound and
precondition satisfied, then, a method is selected. That

method is then elaborated to select a set of candidate
subtasks, one or more of which may be chosen for
execution.

Impasse-Driven Retrieval Request Generation
When no productions or atomic tasks exists to

implement a task processing step, the task system can
impasse. In particular, when a method specifies that a
subtask must run to completion and that subtask’s
preconditions cannot be satisfied, the result is a queuing
impasse (shown as the top impasse in Figure 5). One way
to resolve a queuing impasse is to retrieve an item from
memory; traditionally, this has been done in the
implementation with reasoning-task specific code.

However, a task’s preconditions and parameters can
specify both the type and structure it needs, as well as
where in the working memory that knowledge should
appear. It just so happens that the specification of the type
of memory needed for a task is almost identical to the core
of a retrieval request to the memory system (although
memory retrieval specifications can be further elaborated).
Thus, when a queuing impasse occurs, a memory retrieval
request can be automatically spawned and processed in
parallel; once an item has been retrieved asynchronously, it
can be posted to working memory, allowing the task to
proceed.

While this method does not encompass high-level
strategic memory requests, it does provide an automatic
way to detect and satisfy a reasoning task’s needs for
information from long-term memory, something that
previously had to be done by hand. Impasse-driven
retrieval request generation is thus a weak method for
knowledge retrieval — a general method for performing a
task which formerly had to be accomplished through
knowledge-intensive problem solving methods. Figure 6

 Figure 4. Task Decomposition in Nicole. Figure 5. Potential Impasses in Task Decomposition.

illustrates how this method elaborates our original picture
of asynchronous memory retrieval by explicitly separating
strategic and “normal” retrieval and by the addition of
generic request mechanisms; note how the generic
requester and the request accepter are now subtasks of the
task control system, rather than the reasoning task.

Great. But this raises another question: once this
information is retrieved, how can we be sure it will not
disrupt the rest of the reasoning process — which may
have been elaborating and executing other tasks in
parallel?

Impasse-Driven Integration Mechanism Invocation
The solution to this dilemma again lies in how a task

method is specified. Just as a method can specify that a
task must run to completion, it can also specify that out of
several alternative subtasks, only one may be chosen.
When no information exists to choose a subtask, we have a
choice impasse (shown as the bottom impasse in Figure 5).

Integration mechanisms encapsulate (implicitly or
explicitly) three types of knowledge: how to prepare raw
retrievals from memory to make them suitable for a
particular reasoning context, how to actually merge the
prepared retrievals into the current reasoning context, and
evaluation metrics on when this retrieval is fruitful. While
a great deal of preparation can be done in parallel to
ongoing reasoning tasks, merging cannot; by definition
merging represents a departure from the course of ongoing
reasoning. This represents a natural choice point, and
unless some information is available to discriminate
between these choices a choice impasse will arise.

Note that since merging subtasks are by definition
optional, no queuing impasses will arise if their
preconditions cannot be satisified. Only if some other task
satisfies their preconditions for them — such as a
preparation task, which can run to completion in parallel
and can hence generate memory retrievals — will they be
candidates for queuing, and only then will a choice
impasse arise. When the choice impasse does arise, the
evaluation subtask of the integration mechanism can be
invoked, allowing the system to decide whether to continue
reasoning or to attempt to merge.

Because integration mechanisms are intimately tied to
the reasoning processes, no completely general method can
be devised to automatically perform integrations or to
evaluate their utility. However, using choice impasses as
the vehicle to orchestrate integration mechanisms gives us
a clear account of the content needed in an integration
mechanism, a structure for the storage of that content, and
a uniform mechanism for its execution. Figure 7 illustrates
this in action: even though a choice mechanism may be
provided by a reasoning task, it is invoked automatically as
a subtask of the task controller when a choice impasse
occurs.

Why Should You Care?
Using explicit impasses to automatically generate

memory retrieval requests and to organize the
implementation of integration mechanisms certainly makes
our lives easier, but why should the designers of intelligent
agents care about these methods, especially if they aren’t
using an explicit instantiation of the experience-based
agency theory? The answer is twofold: first, this method
teaches a general lesson about intelligent agents in
particular, and second, this method makes an agent built on
the experience-based agency theory in particular a more
viable choice for an implementation.

First, asynchronous memory retrievals coupled with
integration mechanisms are powerful tools to
simultaneously deal with both novel information from the
environment and to enlist the an agent’s own reasoning
processes (through the working memory trace) in the task
of effectively exploiting the agent’s past experiences. But
making asynchronous integration work requires a powerful
controller and a methodology for choosing when to retrieve
and when to integrate. Even if the actual implementation
of a system diverges wildly from the type of task
decomposition used in an experience-based agent, a task-
method-knowledge analysis (TMK) of the reasoning
process within an agent (Goel & Murdock 1996) can
provide pointers of where to retrieve, where to prepare,
where to merge, and where to choose to integrate.

Second, with the addition of this method, designers
building systems explicitly based on experience-based
agency principles no longer need to develop retrieval

 Figure 6. Impasse-Driven Retrieval Request Generation Figure 7. Impasse-Driven Integration Decisions

request generators, retrieval acceptors, integrators and
choice routines in an ad-hoc fashion; they are now a part of
the architecture, determined by the interaction of memory
and task control (and to a lesser extent by the interaction of
task control and specific reasoning mechanisms).

The future of this research is also twofold. First, these
extensions to the theory of experience-based agents need to
be implemented and tested in the context of our testbed
system, Nicole; this will no doubt expose new problems
and, hopefully, new opportunities. Second, the shift from
poorly-defined task packages and execution modules of the
old theory to the explicit task decomposition with
productions, preferences, and impasse-driven spawning of
new tasks lays the foundation to developing general
problem solving methods and a more complete cognitive
architecture for general intelligent action.

Acknowledgements
This research was supported by the United States Air Force
Laboratory Graduate Fellowship Program, by the Air Force
Office of Scientific Research, and by the Georgia Institute
of Technology.

References
Anderson, John R. (1983). The Architecture of Cognition.

Cambridge, Massachusetts: Harvard University Press.
Baird, g. (1989). Personal communication.
Chandrasekaran, B. (1989). Generic tasks as building

blocks of knowledge-based systems: the diagnosis and
routine design examples. Knowledge Engineering Review,
3(3): 183-219, 1988.

Firby, J. (1989). Adaptive Execution in Complex Dynamic
Worlds Ph.D. Thesis, Yale University Technical Report,
YALEU/CSD/RR #672, January 1989.

Goel, A., & Murdock, W. (1996). Meta-cases: Explaining
case-based reasoning. In Ian Smith & Boi Faltings,
(eds.), Advances in Case-Based Reasoning: Lecture
Notes in Computer Science 1168. Springer.

Klimesch, W. J. (1994). The structure of long-term
memory: A connectivity model of semantic processing.
LEA.

Moorman, K. & Ram, A. (1994). Integrating Creativity and
Reading: A Functional Approach. In Proceedings of the
Sixteenth Annual Conference of the Cognitive Science
Society, Atlanta, GA, August 1994.

Newell, A. (1990) Unified theories of cognition. Harvard.
Ram, A., & Francis, A. G. (in press). Multi-Plan Retrieval

and Adaptation in an Experience-Based Agent, to appear

in D. B. Leake, editor, Case-Based Reasoning:
Experiences, Lessons, and Future Directions, AAAI
Press.

Appendix A. Asynchronous Memory
So, how can we construct a memory system which

operates independently from other reasoning tasks, yet
remains sensitive to cues from reasoning and cues from the
outside world that is, a memory which is both
asynchronous and context sensitive? Part of the answer, of
course, depends on the construction of the agent: without
some equivalent of Nicole’s task controller to interleave
tasks, asynchronous retrieval doesn’t even make sense.
But the larger part of the answer depends on the
construction of the memory itself.

We propose that asynchrony can be achieved through the
use of reified retrieval requests and a retrieval monitor
which operate in conjunction with the agent’s task
controller, and that context sensitivity can be achieved
through a process, called context-directed spreading
activation, which operates hand in hand with the agent’s
working memory. Figure 8 illustrates how achieving
asynchronous, context-sensitive retrieval depends upon the
properties of both the memory and the agent; we believe
this memory architecture could function equally well in
any similarly equipped agent.

Asynchronous Retrieval Asynchronous retrieval in this
architecture is achieved using reified retrieval requests
managed by a retrieval monitor. Reified retrieval requests
are first-class knowledge objects in the experience store
that record all the information associated with a request for
information from the memory system — the type of
request, the specification of the item wanted, the asking
task, and so on. These are essentially glorified knowledge
goals, given a privileged position within an experience-
based agent’s architecture through the operation of the
retrieval monitor.

The retrieval monitor keeps track of the requests made
by reasoning tasks with a priority queue of retrieval
requests, with the option to terminate or suspend low-
priority requests if too many resources are being expended
upon retrieval. Upon each retrieval cycle, the monitor
compares the specifications in the retrieval request queue
with most active items in the experience store (as
determined by a selection task; see the following section),
posting an alert to the working memory when complete.

In addition to the traditional features of retrieval —
receiving requests, returning responses (alerts) — there are
some novel features of this memory system tied in directly
to its asynchronous nature. Reasoning tasks can demand a
best guess initially and then allow the monitor to continue
processing the request at a higher level of sensitivity,
updating the request with new cues or specifications as
needed. When an alert is posted, a task can accept or
reject a candidate retrieval. Finally, tasks can either cancel
or accept the work the memory system has done on a
memory request — regardless of whether it ever returned
any results. Because of these additional features of the
retrieval process, reified retrieval requests contain

Desired
Property

Properties of
Agent

Properties of
Memory

asynchrony concurrent tasks,
task controller

reified retrieval
requests,

retrieval monitor
context

sensitivity
working memory context-directed

spreading activation

Figure 8. Properties of Experience-Based Agents and
their Memories

information beyond that necessary for traditional retrievals
— lists of current candidates, histories of past accepts and
rejects, priority levels, sensitivity levels, and so on. Figure
9 illustrates the life history of a retrieval request in this
architecture (for simplicity, retrieval requesters, retrieval
accepters, integration mechanisms and choice mechanisms
are omitted from this diagram; of course, from the
perspective of the innards of the memory module, these
additional tasks are invisible).

Context Sensitivity By themselves, reified retrieval
requests and a retrieval monitor could make up the core of
an asynchronous memory system as long as some task
existed to select “the most active items in the experience
store.” This could be as simple as a sequential search of
memory items examining some fixed number on every
cycle or as complex as hashed search based on the
specifications provided to the memory module. However,
we want a memory system for an experience-based agent
to be efficient, which rules out sequential search of a
experience store; and we want it sensitive to context, which
probably rules out simple hashed search based on
specifications alone.

We propose that context-directed spreading activation
be used as the primary selection task. Context-directed
spreading activation uses the set of currently active items
in the memory system to direct and inform further
activation, on the theory that memory requests are best
served warm — that is, most memory requests can be
satisfied with concepts closely related to the concepts that
the agent has been thinking about or has encountered in its
environment. In psychological terms, context-directed
spreading activation is a priming or preactivation process
(for an overview, see Klimesch 1994).

Thus, there are two sources of activation in an
experience based agent: query activation, which spreads
from the specific knowledge items that are part of retrieval
requests, and context activation, which spreads from items
stored in the system’s working memory. Query activation
is propagated explicitly whenever a retrieval request is
created; context activation is propagated implicitly,
through the add/delete hooks in the working memory.

Other than their source, query activation and context
activation are identical, exploiting the same context-
directing spreading activation process.

 Currently, we use two implementation mechanisms for
context-directed spreading activation.

�• context activation: activation spreads more
efficiently to items which are already activated above
some threshhold value.

�• gated spreading activation: activation spreads more
efficiently along links mediated by relation nodes
which are active.

In more detail, the change in activation that propagates
from a node j to a node i along a link mediated by relation
node r is determined by the equation:

()()++

=

k
r

jkrall

i

jijrgatingbase

i
r

jjr

icontextbase

i a
kj

aSaRRaPP

a
ij

,

,

where:
ai activation of node i
Si j strength of the link between nodes i and j
Pbase basic node propagation parameter
Pcontext active node bias parameter
Rbase basic relation propagation parameter
Rgating active relation bias parameter

While this equation is complex, 1 its behavior is easy to
understand if the various parameters are pushed to limiting
values. The bias parameters serve to determine the degree
of context activation. Raising the context bias parameter
Pcontext for nodes increases the ease with which activation
spreads to active nodes; raising the gating bias parameter
for relations increases the ease with which activation
spreads along links whose relations are active.

When the bias is set to zero, context-directed spreading
activation devolves to traditional unbiased spreading
activation with fan-out, such as proposed by Anderson
(1983). The base parameters Pbase and Rbase determine the
properties of this process. If the base parameters are set to
zero, essentially the only activation that can propagate is
context-based: activation can only spread to nodes with
some existing degree of activation, and only along links
whose relations are active. In practice, intermediate values
are chosen for both the base and bias parameters, allowing
both context-directed and traditional spreading activation.

1 This equation is actually simplified; there are a number of

additional parameters to the context-directed spreading activation
process (such as the total number of propagating nodes and the
degree of fan-out limitation on spreading activation) that are
required by details in the experience-based agency theory which
are beyond the scope of this paper.

Figure 9. The Life History of a Retrieval in Nicole.

