Contexts as means to decompose Information Bases and represent relativized Information

Renate Motschnig-Pitrik

Department of Computer Science and Business Informatics

University of Vienna

Rathausstrasse 19/9

1010 Vienna, Austria

email: motschnig@ifs.univie.ac.at

1
The context for the discussion of contexts

In software development, abstraction mechanisms are known to be indispensable means to deal with complexity. While classification, generalization, and part-whole relationships have conquered well-respected positions in conceptual models, so far the viewpoint abstraction has received considerably less attention. Nevertheless, several modeling techniques employ some notion of the viewpoint abstraction. The latter is characterized to allow one to emphasize some aspects of some real-world situation while ignoring others. Previous research compared the manifestations of the viewpoint abstraction in software development, AI, and databases in order to investigate its features and propose a set of requirements on a powerful viewpoint mechanism [Motschnig-Pitrik95]. One result of this work is that a powerful viewpoint mechanism supports two complementary concepts we chose to refer to as contexts and perspective-objects [Motschnig-Pitrik96]. In a nutshell, perspective-objects describe real-world objects as viewed from a particular situation in the real world (e.g. a particular user's view or a specific task, etc.), whereas contexts can be interpreted as containers for all objects that are relevant in the particular real-world situation. Thus, contexts are the denotations of real-world situations in an information base.

To provide a concrete example, we advise the reader to think about contexts as encapsulated, interconnected fragments, each containing of a set of perspective-objects expressed in some information model. For example, an object-oriented (OO) IB capturing information on some enterprise, may include one context that encapsulates all objects relevant to the sales department, a second context representing all objects of interest to the R&D department, and a third context containing all objects relevant to accounting. Typically, the third context would encompass the personnel of all departments, but associate them with different state- and behavior information than, say, the R&D department context. Also, the individual contexts typically would be associated with different access rights. For example, accountants would be allowed to access all units in the accounting context but would be restricted, for example, just to read certain information from the individual department's contexts.

The remainder of this position paper is structured to respond to (most of) the six "W" questions that can be asked to characterize the notion of a context. The focus thereby is on the "what" in so far, as a particular representation for contexts is proposed [Mylopoulos95], [Motschnig-Pitrik99].

2
Adressing the six "W" questions

2.1
WHAT is a context?

In our generic framework on contexts [Mylopoulos95], [Motschnig-Pitrik00] we propose that a context be a "first-class citizen" in any modeling notation, e.g. an object in object-oriented notations. This allows one to associate contexts with properties and behavior as is the case with ordinary objects. Further, we associate contexts with the following five features:

Contents: Each context is associated with a set of objects. It is assumed that objects provide an information-base-wide unique identification of their referent conceptual entities as well as a context dependent name and representation of their referents in terms of perspective objects. Although only a single perspective-object of some object may be visible within one context at one point in time, nested contexts may contain further perspectives of that unit. Also, information on a conceptual entity need not necessarily be captured in any 'base context', but rather may be scattered across contexts, as long as the correspondence between each perspective and the conceptual entity it represents is maintained.

Lexicon: The lexicon is an association table realizing the feature of relativized naming and providing means for relativized transaction execution. Note that perspective-objects modeling the same conceptual entity may have different names with respect to different contexts and, conversely, the same name may refer to different object identifiers in different contexts.

Authorization. Each context is associated with a predicate which determines whether user u is authorized to execute transaction t within that context. The authorization model proposed for contexts is content-based and relies on implication hierarchies for authorization domains (in particular for users and objects). Authorization is expressed in the form of predicates. The approach taken here, however, differs from current models in two major respects. Firstly, we chose to specify authorizations for domains of transactions rather than for system-defined operations. Secondly, authorization is associated with contexts as units of authorization. This allows one to achieve a flexible grain-size of authorization objects such that authorizations can be defined for any meaningful constellation of objects encapsulated within a context.

Change propagation. The functions propagateFrom and propagateTo select for each context c and context-user-transaction triple (c, u, t) a predicate which determines the incoming/outgoing change propagation links and associated constraints. The need for change propagation, in general, arises in all applications where contexts have a non-empty intersection and want to communicate over 'shared' objects, or want to keep objects in their intersection consistent, thus realizing a common interface.

Propagation of changes between two contexts is determined by mutual consent of the contexts involved as well as their respective authorization rules. One of the strengths of our proposal is that it separates the encapsulation of objects in a context, from change propagation to/from that context.

Owners. Each context is assigned one or more owners. By default, a context's owner is the user who initiated the creation of the context and who is authorized to perform any operation or transaction on his/her context.

Using an object-oriented notation, the structure of contexts can be specified as shown in Figure 1.
CLASS Context

contents: OidSet
 {associates the context with a set of unique object identifiers, oid's}

lexicon: OidReferentnamePairSet

 {associates each oid of the context's contents with a name for the entity referred to}

authorP: AuthorizationPredicate

{associates the context with an authorization predicate, based on users and transactions}

propagateFrom, PropagateTo: PropagationPredicate

 {associates each context with a set of change propagation links, based on the partner

 context(s), users, and transactions}

ownwers: OwnerSet
Figure 1: The structure of a context using an object-oriented notation

Furthermore, as discussed in [Mylopoulos95] and in [Motschnig-Pitrik99], contexts come equipped with a set of high-level operations for the construction of contexts. [Motschnig-Pitrik00], in particular, argues that operations on contexts need to be kept generic in order to be adaptable to accommodate various situation dependent conflict resolution strategies.

2.2
WHOSE context is important to whom, or what?

The fact what context effects other contexts is specified in terms of channels for change propagation. Given that two contexts c1 and c2 share perspective-objects, changes to a perspective-object, say in c1, can be propagated to c2 if c1 chooses to publish the changes and c2 chooses to receive changes from c1. In this way, overlapping contexts can communicate.

2.3
WHERE can an awareness of context be exploited?

In general, many large applications require the decomposition of an information base into possibly overlapping contexts. For example, the contents of a distributed, heterogeneous information system might be partitioned into several overlapping databases developed by different groups at different times; or, software designers may want to partition a software system under development into components they work on individually, to be merged once their respective tasks are done; likewise a single-database information system might have its database split into several views so that particular groups of users only have access to parts of the database relevant to their respective work. Mechanisms for partitioning and coping with a fragmented information base have appeared in many different guises and forms, including (database) views, multidatabases, (software, CAD) versions, workspaces, (knowledge base) partitions and contexts, (programming language) scopes and scope rules, (hypertext) perspectives etc. A coherent framework encompassing mechanisms that support all or most of these notions, however, is still missing.

2.4
WHEN is context useful?

The major motivation for using contexts is to deal with complexity in a systematic way. An essential feature is the fact that contexts provide means to focus on aspects that are relevant in a particular situation while ignoring others. An explicit notion of context is necessary in order to be able to characterize contexts and to reason about them.

Context is further useful to provide a basis for a powerful authorization mechanism with a flexible grain-size of authorization units.

2.5
WHY are contexts useful?

 Large information bases that are used by several different users and applications accommodate the demands of their users more effectively, if they can be split into contexts. The latter allow one to focus attention on specific concerns such as topics, tasks, or user-views in that they support context-specific naming and representation of conceptual entities, relativised transaction execution, operations for context construction and manipulation, authorization, and change propagation.

Humans need contexts since they can process and hence understand only a limited portion of information at a time. Computer applications profit from contexts since processing resources can be used more effectively and the combinatorial explosion can be tamed.

2.6
HOW can we implement a generic infrastructure for contexts?

A proposal on a generic framework for the modeling of contexts appears in [Motschnig-Pitrik00]. Some ideas on the implementation of contexts in an object-oriented environment are given in [Motschnig-Pitrik96].

References:

[Motschnig-Pitrik95] R. Motschnig-Pitrik, An Integrating View on the Viewing Abstraction: Contexts and Perspectives in Software Development, AI, and Databases, Journal of Systems Integration, Kluwer, 5(1), (April 1995) 23-60.

[Motschnig-Pitrik96] R. Motschnig-Pitrik and J. Mylopoulos, Semantics, Features, and Applications of the Viewpoint Abstraction, in: Proc. of CAiSE'96, 8th Internat. Conference on Advanced Information Systems Engineering, Springer LNCS 1080 (June 1996) 514-539.

[Motschnig-Pitrik96b] R. Motschnig-Pitrik, Requirements and Comparison of View Mechanisms for Object-Oriented Databases, Information Systems, 21(3), (1996) 229-252.

[Motschnig-Pitrik99] R. Motschnig-Pitrik, Contexts and Views in Object-Oriented Languages, in: P. Bouquet, P. Brezillon and L. Serafini, eds., 2nd International and Interdisciplinary Conf. on Modeling and Using Context, CONTEXT'99, Lecture Notes in Artificial Intelligence, LNAI No 1688, Springer Verlag, (September 1999).

[Motschnig-Pitrik00] R. Motschnig-Pitrik, A generic framework for the modeling of contexts and its applications; Data & Knowledge Engineering 32, (2000) 145-180.

[Mylopoulos95] J. Mylopoulos and R. Motschnig-Pitrik, Partitioning Information Bases with Contexts, in: Proc. of the 3rd International Conference on Cooperative Information Systems (Vienna, May 1995) 44-54.

