
Providing Architectural Suppor t for
Building Context-Aware Applications

A Dissertation Proposal
Presented To

The Faculty of the Division of Graduate Studies

By

Anind K. Dey

In Partial Fulfill ment
of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

College of Computing
Georgia Institute of Technology

August 1999



ii

Contents
Abstract  1

1 Introduction: Motivation for Context-Aware Computing  1

2 What is Context  3
2.1 Context  3
2.2 Context-Aware  4

3 Motivation for Our Research: Why Context-Aware Applications are
Difficult to Build  5

3.1 Design Process  5
3.1.1 Using the Design Process  6

3.2 Essential and Accidental Activities  6
3.2.1 Specification   7
3.2.2 Acquisition   7
3.2.3 Delivery   7
3.2.4 Reception   7
3.2.5 Action  8

3.3 Resulting Problems  8
3.3.1 General Lack of Context-Aware Applications  8
3.3.2 Lack of Variety of Sensors Used  8
3.3.3 Lack of Variety of Types of Context Used  9
3.3.4 Inabili ty to Evolve Applications  9

3.4 Overview of the Difficulty in Building Context-Aware Applications 10

4 Related Work  10
4.1 Tight Coupling  10

4.1.1 Manipulative User Interfaces  11
4.1.2 Tilti ng Interfaces  11
4.1.3 Cyberguide  11

4.2 Use of Sensor Abstractions  11
4.2.1 Active Badge  12
4.2.2 Reactive Room  12

4.3 Beyond Sensor Abstractions  12
4.3.1 AROMA  12
4.3.2 metaDesk  12
4.3.3 Limbo  12
4.3.4 NETMAN  13
4.3.5 Open Agent Architecture  13
4.3.6 Audio Aura  13

4.4 Context-Aware Architectures  13
4.4.1 Stick-e Notes  13
4.4.2 CyberDesk  14
4.4.3 Schilit ’s System Architecture  14
4.4.4 CALAIS  15

4.5 Proposed Systems  15
4.5.1 Situated Computing Service  15
4.5.2 Context Information Service  15

4.6 Overview of Related Work  16



iii

5 Architecture Features  16
5.1 Requirements  16

5.1.1 Support for the Distribution of Context  and Sensing 16
5.1.2 Support Event Management 17
5.1.3 Support Independence and Availabili ty of Components that Collect Context 17
5.1.4 Support for the Interpretation of Context 17

5.2 Useful Features  17
5.2.1 Support for the Storing of Context History 18
5.2.2 Support for the Aggregation of Context Information 18
5.2.3 Support for Transparent Communications 18
5.2.4 Support for Resource Discovery 18
5.2.5 Support for the Using and Building of Abstractions 19
5.2.6 Support for Flexibili ty  19
5.2.7 Use of Language and Platform-Independent Mechanisms 19

5.3 Revisiting the Design Process  20
5.3.1 Specification  20
5.3.2 Acquisition  20
5.3.3 Delivery  20
5.3.4 Reception  20
5.3.5 Action   20

5.4 Revisiting Problems Due to Ad Hoc Development 20
5.4.1 Lack of Context-Aware Applications 21
5.4.2 Lack of Variety of Sensors 21
5.4.3 Lack of Variety of Context Types 21
5.4.4 Inabili ty to Evolve Applications 21

5.5 Overview of Architecture Features  21

6 Research Goals  22
6.1 Thesis Statement  22
6.2 Research Goals  22

6.2.1 Investigation of Context  22
6.2.2 Implementation of Architecture  23
6.2.3 Advanced Applications and Research  24

6.3 Expected Contributions  26

7 Timetable for Completion  26

Bibliography  27



1

ABSTRACT

Computers generally do not have access to situational information or context. Context can from users and
from the environment. By providing access to context, we can improve the abili ty of computers to react to
changes in the environment and to support us in changing situations. In this thesis proposal we provide
further motivation for the use of context. We provide a definition of context and context-awareness and
discuss some important features of both. We show that because context-aware applications are usuall y built
in an ad hoc manner, they are diff icult to build and evolve. We identify a novel and simple design process
for building context-aware applications and discuss the necessary features of an architecture that supports
the building process. We present our thesis statement:

By identifying, implementing and supporting the right abstractions and services for
handling context, we can construct a framework that makes it easier to design, build and
evolve context-aware applications.

We describe the work that we have completed in proving this thesis statement and the work remaining. We
present the goals of our research and present our expected contributions in the understanding of context,
supporting the building and evolving of context-aware applications and providing a framework for
investigating complex research issues in context-aware computing. Finall y, we provide a timeline for
completing this thesis research.

1 INTRODUCTION: Motivation for Context-Aware Computing

Humans are quite successful in conveying ideas to each other and reacting appropriately. This is due to
many factors: e.g. the richness of the language they share, the common understanding of how the world
works, and an implicit understanding of everyday situations. When humans talk with humans, they are able
to use implicit situational information, or context, to increase the conversational bandwidth. Unfortunately
this abil ity to convey ideas does not transfer well to humans interacting with computers. Computers do not
understand our language, do not understand how the world works and have no implicit understanding of
situations. In traditional interactive computing, users have an impoverished mechanism for providing input
to computers, using a keyboard and mouse. We translate what we want to accomplish into specific minutiae
on how to accomplish the task, and then use the keyboard and mouse to articulate these details to the
computer so that it can execute our commands. This is nothing like our interaction with other humans.
Consequently, computers are not currently enabled to take full advantage of the context of the human-
computer dialogue. By improving the computer’s access to context, we increase the richness of
communication in human-computer interaction and make it possible to produce more useful computational
services.

Why is interacting with computers so different than interacting with humans? There are three problems,
dealing with the three parts of the interaction: input, understanding of the input, and output. Computers
cannot process and understand information as humans can. They cannot do more than what programmers
have defined them to do and that limits their abili ty to understand our language and our activities. Our input
to computers has to be very explicit so that they can handle it and determine what to do with it. After
handling the input, computers display some form of output. They are much better at displaying their current
state and providing feedback in ways that we understand. They are better at displaying output than handling
input because they are able to leverage off of human abiliti es. A key reason for this is that humans have to
provide input in a very sparse, non-conventional language whereas computers can provide output using rich
images. Programmers have been striving to present information in the most intuitive ways to users, and the
users have the abili ty to interpret a variety of information. Then arguably, the difficulty in interacting with
computers stems mainly from the impoverished means of providing information to computers and the lack
of computer understanding of this input. So, what can we do to improve our interaction with computers on
these two fronts?

On the understanding issue, there is an entire body of research dedicated to improving computer
understanding. Obviously, this is a far-reaching and difficult goal to achieve and will take time. The



2

research we are proposing does not address computer understanding but attempts to improve human-
computer interaction by providing richer input to computers.

Many research fields are attempting to address this input deficiency but they step mainly from 2 basic
directions:

• improving the language that humans can use to interact with computers,
• increasing the amount of situational information, or context, that is made available to

computers

The first approach tries to improve human-computer interaction by allowing the human to communicate in
a much more natural way. This type of communication is still very explicit where the computer only knows
what the user tells it. With natural input techniques like speech and gestures, no other information besides
the explicit input is available to the computer. As we know from human-human interactions, situational
information such as facial expressions, emotions, past and future events, the existence of other people in the
room, relationships to these other people, etc., is crucial to understanding what is occurring. The process of
building this shared understanding is called grounding [Clark91]. Since both participants in the interaction
share this situational information, there is no need to make it explicit. However, this need for explicitness
does exist in human-computer interactions, because the computer does not share this implicit situational
information or context.

The two types of techniques (use of more natural input and use of context) are quite complementary.  They
are both trying to increase the richness of input from humans to computers. The first technique is making it
easier to input explicit information and the second technique is allowing the use of unused implicit
information that can be vital to understanding the explicit information. It is this second technique that we
are primarily interested in. We are attempting to use context as an implicit cue to enrich the impoverished
interaction from humans to computers.

So how do application developers provide the context to the computers, or make those applications aware
and responsive to the full context of human-computer interaction and human-environmental interaction?
We could require users explicitly to express all i nformation everything relevant to a given situation.
However, the goal of context-aware computing, applications that use context, should be to make interacting
with computers easier. Forcing users consciously to increase the amount of information they have to input
is making this interaction more difficult and tedious. Furthermore, it is likely that most users will not know
which information is potentially relevant and, therefore, will not know what information to provide.

We want to make it easier for users to interact with computers, not harder. Weiser coined the term
“ubiquitous computing” to describe computing that is invisible in use [Weiser91], and the term “calm
technology” to describe an approach to ubiquitous computing, where computing moves back and forth
between the center and periphery of the user’s attention [Weiser96]. Here, the idea is to make interacting
with computers and the environment easier, allowing users to not have to think consciously about using the
computers. To this end, our approach to context-aware application development is to collect implicit
contextual information through automated means, make it easily available to a computer’s run-time
environment and let the application designer decide what information is relevant and how to deal with it.
This is the better approach, for it removes the need for users to make all information explicit and it puts the
decisions about what is relevant into the designer’s hands. The application designer should have spent
considerably more time analyzing the situations under which their application will be executed and can
more appropriately determine what information could be relevant and how to react to it.

The need for context is even greater when we move into non-traditional, off-the-desktop computing.
Mobile computing and ubiquitous computing have given users the expectation that they can access
information and services whenever and wherever they are. With computers being used in such a wide
variety of situations, interesting new problems arise and the need for context is clear. Users are trying to
obtain different information from the same services in different situations. Context can be used to help
determine what information or services to make available or to bring to the forefront for users.  The
increased availability of commercial, off-the-shelf sensing technologies is making it more viable to sense
context in a variety of environments. The prevalence of powerful, networked computers makes it possible



3

to use these technologies and distribute the context to multiple applications, in a somewhat ubiquitous
fashion. Mobile computing allows users to move throughout an environment while carrying their
computing power with them. Combining this with wireless communications allows users to have access to
information and services not available on their portable computing device. The increase in mobili ty creates
situations where the user’s context, such as her location and the people and objects around her, is more
dynamic. With ubiquitous computing, users move throughout an environment and interact with computer-
enhanced objects within that environment. This also allows them to have access to remote information and
services. With a wide range of possible user situations, we need to have a way for the services to adapt
appropriately, in order to best support the human-computer and human-environment interactions.

Applications that use context, whether on a desktop or in a mobile or ubiquitous computing environment,
are called context-aware. These types of applications are becoming more prevalent and can be found in the
areas of wearable computing, mobile computing, robotics, adaptive and intell igent user interfaces,
augmented reali ty, adaptive computing, intelligent environments and context-sensitive interfaces. It is not
surprising that in most of these areas, the user is mobile and her context is changing rapidly.

We have motivated the need for context, both in improving the input abili ty of humans when interacting
with computers in traditional settings and also in dynamic settings where the context of use is potentially
changing rapidly. In the next section, we will provide a better definition of context and discuss our efforts
in achieving a better understanding of context.

2 WHAT IS CONTEXT?

Realizing the need for context is only the first step towards using it effectively. Most researchers have a
general idea about what context is and use that general idea to guide their use of it. However, a vague
notion of context is not sufficient; in order to effectively use context, we must attain a better understanding
of what context is. A better understanding of context will enable application designers to choose what
context to use in their applications and provide insights into the types of data that need to be supported and
the abstractions and mechanisms required to support context-aware computing. We have completed an
extensive survey on the field of context-aware computing. From this survey, we produced new definitions
for context and context-awareness [Dey99b]. We also attempted to create categories of context and context-
aware features. In this section, we will present the definitions and important features.

2.1 Context
Following is our definition of context.

Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and application themselves.

Context-aware applications look at the who’ s, where’ s, when’s and what’s (that is, what the user is doing)
of entities and use this information to determine why a situation is occurring. An application does not
actually determine why a situation is occurring, but the designer of the application does. The designer uses
incoming context to determine why a situation is occurring and uses this to encode some action in the
application. For example, in a context-aware tour guide, a user carrying a handheld computer approaches
some interesting site resulting in information relevant to the site being displayed on the computer. In this
situation, the designer has encoded the understanding that when a user approaches a particular site (the
‘ incoming context’ ), it means that the user is interested in the site (the ‘why’) and the application should
display some relevant information (the ‘action’).

There are certain types of context that are, in practice, more important than others. These are location,
identity, activity and time. Location, identity, time, and activity are the primary context types for
characterizing the situation of a particular entity. These context types not only answer the questions of who,
what, when, and where, but also act as indices into other sources of contextual information. For example,
given a person’s identity, we can acquire many pieces of related information such as phone numbers,



4

addresses, email addresses, birthdate, list of friends, relationships to other people in the environment, etc.
With an entity’s location, we can determine what other objects or people are near the entity and what
activity is occurring near the entity. From these examples, it should be evident that the primary pieces of
context for one entity can be used as indices to find secondary context (e.g., the email address) for that
same entity as well as primary context for other related entities (e.g., other people in the same location).

In this initial categorization, we have a simple two-tiered system. The four primary pieces of context
already identified comprise the first level. All the other types of context are on the second level. The
secondary pieces of context share a common characteristic: they can be indexed by primary context
because they are attributes of the entity with primary context. For example, a user’s phone number is a
piece of secondary context and it can be obtained by using the user’s identity (primary context) as an index
into an information space like a phone directory. There are some situations in which multiple pieces of
primary context are required to index into an information space. For example, the forecasted weather is
context in an outdoor tour guide that uses the information to schedule a tour for users. To obtain the
forecasted weather, both the location (primary context) for the forecast and the date of the desired forecast
(primary context) are required.

This first attempt at a categorization of context is clearly incomplete. It does not include hierarchical or
containment information and we have found examples where the primary-secondary distinction is quite
blurred. An example of hierarchical or containment information for location is a point in a room. That point
can be defined in terms of coordinates within the room, by the room itself, the floor of the building the
room is in, the building, the city, etc [Schilit 94b]. It is not clear how our categorization helps to support this
notion of hierarchical knowledge. An example of primary-secondary blurring is with a person’s identity. Is
a person identified by their name, a phone number, or an email address? Which of these is primary context
and which is secondary context. Each of these identity pieces can be used to derive the other. We will
continue our effort to attain a better understanding of context and how it is used and to identify the
orthogonal dimensions of context.

2.2 Context-Aware
We have identified a novel classification for the different ways in which context is used, that is, the
different context-aware features. Following is our definition of context-awareness.

A system is context-aware if it  uses context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task.

The context-aware features we have identified are
1) presentation of information and services to a user;
2) automatic execution of a service; and
3) tagging of context to information for later retrieval.

An example of the first feature is a mobile computer that dynamically updates a list of closest printers as its
user moves through a building. An example of the second feature is when the user prints a document and it
is printed on the closest printer to the user. An example of the third feature is when an application records
the names of the documents that the user printed, the times when they were printed and the printer used in
each case. The user can than retrieve this information later to help him determine where the printouts are
that he forgot to pick up.

Our definition of context-aware has provided us with a way to conclude whether an application is context-
aware or not. This has been useful in determining what types of applications we want to support. Our
categorization of context-aware features provides us with two main benefits. The first is that it further
specifies the types of applications that we must provide support for. The second benefit is that it shows us
the types of features that we should be thinking about when building our own context-aware applications.



5

3 MOTIVATION FOR OUR RESEARCH: Why Context-Aware Applications are
Diff icult to Build

In the first section, we described why context-aware computing is an interesting and relevant field of
research in computer science. In the second section, we identified definitions and features of context and
context-awareness to provide a better understanding of the scope of the applications that we would like to
support. In this section, we will discuss why these applications have traditionally been so difficult to build.

What has hindered applications from making greater use of context and from being context-aware? A major
problem has been the lack of uniform support for building and executing these types of applications. Most
context-aware applications have been built in an ad hoc or per-application manner, heavily influenced by
the underlying technology used to acquire the context [Nelson98]. This results in a lack of generali ty,
requiring each new application to be built from the ground up. To understand this diff iculty, we need to
examine the design process for building these applications.

3.1 Design Process
We have identified a design process for building context-aware applications. We believe that the diff iculty
in building context-aware applications has been the lack of infrastructure-level support for this design
process. The design process (adapted from [Abowd99]) is as follows:

1 Specification: Specify the problem being addressed and a high-level solution
1a Specify the context-aware behaviors to implement
1b Determine what context is required for these behaviors

2 Acquisition: Determine what hardware or sensors are available to provide that context.
2a Install the sensor on the platform it requires.
2b Understand exactly what kind of data the sensor provides.
2c If no application programming interface (API) is available, write software that

speaks the protocol used by the sensor.
2d If there is an API, learn to use the API to communicate with the sensor.
2e Determine how to query the sensor and how to be notified when changes occur.
2f Interpret the context, if applicable.

3 Delivery: Provide methods to support the delivery of context to one or more, possibly
remote, applications.

4 Reception: Work with the context.
4a Receive or request the context.
4b Convert it to a useable form through interpretation
4c Analyze the information to determine usefulness.

5 Action: If context is useful, perform context-aware behavior.
5a Analyze the context treating it as an independent variable or by combining it

with other information collected in the past or present.
5b Choose context-aware behavior to perform

We will show that for these first four steps, there are general infrastructure-level supporting mechanisms
that are required by all but the most trivial context-aware applications. The last step is application/service-
specific and we may not be able to identify or apply general mechanisms to support them. It is important to
note that the goal of a context-aware application designer is to provide context-aware services. The
designer does not want to worry about the initial steps, but instead would like to concentrate on the actual
context-aware behaviors. Furthermore, it is these initial steps that make building context-aware applications
diff icult and time-consuming.



6

3.1.1 Using the Design Process
To ill ustrate the design process, we will discuss how an In Out Board application would have been
developed without any supporting mechanisms. Here, the In Out Board application is in a remote location
from the sensors being used. In the first step of the design process, specification, the developer specifies the
context-aware behavior to implement. In this case the behavior being implemented is to display whether
occupants of a building are in or out of the building and when they were last seen (step 1a). Also, the
developer determines what context is needed. In this case, the relevant context is location, identity and time
(step 1b). The second step, acquisition, is where the developer deals directly with the sensors. Sensors can
be hardware or software-based, providing both real-world context such as location and identity, and virtual
context such as the name of the last file a user read. Java iButtonsTM [DS98] are chosen to provide the
location and identity context. An iButtonTM is a microprocessor that contains a unique identity. This identity
can be read when the iButtonTM is docked with a reader. A reader is installed on a PC, at the entrance to the
research lab (step 2a). The reader combined with the iButton provides an abstract identity – rather than
providing a name which is what the developer wants, the iButton provides a 16 character hexadecimal
value (step 2b). The location context is simply the location of the installed reader, and time context is
determined from the PC being used. The iButtonTM and reader come with an API, so the developer writes
supporting code that reads the abstract identity when an iButtonTM is docked with a reader (step 2b/c). This
code must support both querying and notification of events (step 2e), where, informally, an event is a
timely difference that makes a difference [Whitehead99]. Querying allows an application to determine
current status and notification allows an application to maintain its knowledge of status over a period of
time. The final step in acquisition is to interpret the context, if possible and applicable. While the abstract
identity does need interpretation into an actual user name, the interpretation is usually left to the
application.

The third step, delivery, deals with making context available to a remote application. Here, the developer
must design and implement a communications protocol for allowing applications to access the acquired
context. The protocol must provide support for both querying and notification schemes and must be
connected to the code that actually acquires the context. Finally, a communications mechanism must be
developed to support the protocol, allowing the application to actually communicate with the sensor (and
associated code).

In the fourth step, reception, the developer begins to work on the application side of the problem, asking
the sensor for context and performing some initial analysis. The In Out Board needs to acquire current state
information for who is in and who is out of the building, so it queries the sensor. It wants to maintain
accurate state information, so it also subscribes to the iButtonTM asking to be notified of relevant changes
(step 4a). To receive the context, the application must adhere to the same protocol and communications
mechanism that the iButtonTM uses (from step 3). The communications is written to specificall y deal with
the iButtonTM and accompanying code. Once the application receives context information (location of the
reader, abstract identity and time of docking), it must convert the abstract identity to a usable form (step
4b). It can use a simple hash table that has an associated user name for each abstract identity. After this
interpretation, it analyzes the information to see if the context is useful. In this case, it means whether the
iButtonTM user was a registered user of the In Out Board (step 4c). If so, the application can use the context;
otherwise, it discards the context and waits for new context to arrive.

In the fifth and final step, action, the developer actually uses the context to implement and perform some
context-aware behavior. The application must determine if the context it received was for a user arriving or
leaving the building. When new useful context arrives for a given user, that user’s state is toggled from in
to out, or vice-versa (step 5a). Finally, the developer can act on the context, and display the user’s new state
on the In Out Board (step 5b).

3.2 Essential and Accidental Activities
In his famous essay on software engineering practices, Fred Brooks distinguished essential and accidental
activities in software development [Brooks87]. Essential activities are fundamental to constructing a piece
of software and include understanding a problem and modeling a solution for that problem. Accidental
tasks are ones that are only necessary because support is not available to handle or take care of them. If we
can reduce the design process for building context-aware applications to a set of essential activities, we can



7

ease the burden of building these types of applications. We will now discuss the design process in terms of
Brooks’ essential and accidental activities.

3.2.1 Specification
In step one, a context-aware application designer must specify and analyze the context-aware behaviors.
From this analysis, the designer will determine and specify the types of context she requires. This is an
essential activity, for without it, there can be no use of context. This step is the focal point of modeling and
designing context-aware applications, and typically impacts the rest of the application design.

3.2.2 Acquisition
In step two, the application designer determines what sensors, hardware or software, are available to
provide the specified context from step one. This step can be essential or accidental, depending on the
sensor chosen. If the sensor has been used before, then this step and all of its sub-steps are accidental.
These steps should already have been performed and the resulting solution(s) should be reusable by the
application designer.

If the sensor has not been used before, then all of the difficult sub-steps must be completed. Installation of a
sensor can be particularly troublesome when the platform required by the sensor does not match the
platforms available or being used by the application. It could require the use of distributed computation
and/or multiple types of computing platforms, both of which cause burdens to application programmers.
Acquiring data from a sensor is a time-consuming and difficult step. The designer must understand exactly
the type of data provided by the sensor, in order to determine what context information can be derived from
it. For example, a global positioning system (GPS) receiver and a smart card with accompanying reader
may both appear to provide location context. In fact, the GPS receiver does provide current and continuous
latitude and longitude location information. However, the smart card reader only indicates the presence of
an individual at a particular location for a particular instant in time. While both of these can be seen as
providing location information, they provide quite distinct information.

If an API is not available for the sensor, the application designer must determine how to communicate with
the sensor and acquire the necessary data. If an API is available, the designer usually has an easier job in
acquiring the sensor’s data. But she still has to ensure that there is functionali ty available to support both
querying of the sensor and notification by the sensor when data changes. After the context information has
been acquired, it must be converted into a useful form. This can either happen at the sensor level or at the
application level. If done at the sensor level, it relieves the application designer of the burden of
implementing it herself, and allows reusabili ty of the functionality by multiple applications. If performed at
the application level, the application can specify how the interpretation/conversion should be done. In
either case, this step is accidental. If the data were available in the form desired, this issue would not be a
concern to the application designer.

3.2.3 Delivery
Once in the correct format, the context information must be delivered to the application. This requires the
specification of a querying and notification protocol and communications protocol. This is more complex if
the application is not local to the sensor, because a mechanism that supports distributed communications
must also be developed. The delivery of context is an accidental step. The designer merely wants to acquire
the context and should not be concerned about these types of low-level details.

3.2.4 Reception
In the reception step, an application must first receive the context information. To receive the context, it
must know the location of the sensor so it can communicate with it. It can communicate using a querying or
a subscription mechanism. As explained in the previous sub-section, the application must use the same
communication protocols and mechanisms specified by the sensor(s) providing the context. Once received,
the context must be converted to a useful format, if applicable. Using the previous example of the GPS
receiver, an application may require the name of the street the user is on, however the receiver only
provides latitude and longitude information. The application must interpret this latitude and longitude
information into street-level information so that it can use the data. Finally, the application must analyze
the context to determine if it is useful. For example, an application may only want to be notified when a



8

user is located on a given subset of streets. The sensor, however, may provide all available context,
regardless of what the application can use. In this case, the application must analyze the context to
determine its usefulness. The reception step is accidental. Again, the designer most likely does not care
about the details of context reception and determining usefulness, and is concerned only with receiving
useful context.

3.2.5 Action
If the context is useful information, the application designer must provide functionality to further analyze
the context to determine what action to take. This ranges from analyzing the types of context received to
analyzing the actual values of the context. The action includes choosing a context-aware behavior to
perform as well as indicating how the behavior should be executed. This action step is application-specific
and is essential. It is or should be the main emphasis in building context-aware applications, actually acting
on the context.

3.3 Resulting Problems
Our previous assessment of context-aware software application building as “ad hoc” may appear to be
contradictory to the existence of a design process. It is, in fact, the implementation of the accidental steps of
the design process that is ad hoc, due to the diff iculties we expressed in each of the above steps. Pascoe
wrote that it is a hard and time-consuming task to create software that can work with variety of software to
capture context, translate it to meaningful format, manipulate and compare it usefully, and present to user
in meaningful way [Pascoe98]. In general, context is handled in an improvised fashion. Application
developers choose whichever technique is easiest to implement, usually dictated by the sensors being used.
This comes at the expense of generali ty and reuse. As a result of this ad hoc implementation, a general
trend of tightly connecting applications and sensors has emerged that operates against the progression of
context-aware computing as a research field. This trend has led to four general problems:

• a general lack of context-aware applications
• a lack of variety of sensors;
• a lack of variety of context types; and,
• an inabil ity to evolve applications.

We will discuss each of these problems and how the ad hoc nature of application development has led to
them.

3.3.1 General Lack of Context-Aware Applications
Due to the manner in which context-aware applications are built, designers put little effort into making their
sensors reusable by other designers and applications. This has resulted in the lack of basic context-aware
applications. We believe that the abili ty to leverage off of the sensor work of others is fundamental to
building context-aware applications. Because many sensor solutions were not designed to be reused, they
are very difficult to integrate into existing applications that do not already use context, as well as being
diff icult to add to existing context-aware applications.

3.3.2 Lack of Var iety of Sensors Used
In our research in context-aware computing, we have found that there is a lack of variety in the sensors
used to acquire context. The reason for this is the difficulty in dealing with the sensors themselves. This
comes from our own experiences, the experiences of other researchers we have talked with, and the
anecdotal evidence from previously developed applications. Sensors are diff icult to deal with, as shown by
the number and difficulty of the sub-steps in Step 2 of the design process given above.

There is littl e guidance available to the application designer, other than the requirements of the application.
This results in a tight connection between the sensors and the application. The required steps are a burden
to the application programmer, and this has resulted in the lack of variety in the types of sensors used for
context-aware computing. We see evidence of this when we examine the research done by various research
groups.

Within a single research group, when reuse was planned for, the applications constructed always use the
same sensor technology. For example, at Xerox PARC the researchers started with Active Badges
[Want92], but built their own badge system with greater functionali ty – the ParcTab [Want95]. In all of



9

their context-aware work, they used the ParcTab as the main source of user identity and location
[Schilit 94a, Schilit 95, Mynatt98]. The wearable computing group at Oregon always uses an infrared
positioning system to determine location [Bauer98, Korteum98]. The Olivetti research group (now known
as AT&T Laboratories Cambridge) always uses Active Badges or ultrasonic Active Bats for determining
user identity and location [Richardson95, Harter94, Harter99, Adly97]. Why is there this reuse of sensors?
The answer is twofold. The first part of the answer is that it is convenient to reuse tools that have already
been developed. The second part of the answer is that it is often too prohibitive, in terms of time, to create
new sensing mechanisms.

This is exactly the behavior we expect and want when we are dealing with a particular context type. If there
is support for a particular type of sensor, we expect that application programmers will t ake advantage of
that support. The problem is when an application programmer wants to use a new type of context for which
there is no sensor support or when a combination of sensors is needed. The lack of this sensor support
usually results in the programmer not using that context type or combination of sensors. The diff iculty in
dealing with sensors has hurt the field of context-aware computing, limiting the amount and variety of
context used. Pascoe echoed this idea when he wrote that the plethora of sensing technologies actuall y
works against context-awareness. The prohibitively large development required for context-aware
computing has stifled more widespread adoption and experimentation [Pascoe98]. We could adapt to this
trend of using fewer sensors and investigate whether we can gather sufficient context from a single (or a
minimal set) of sensor(s) [Ward98]. However, this doesn’ t seem fruitful – the diversity of context that
application designers want to use can not be captured with a handful of sensors. Instead, we should provide
support to allow application designers to make use of new sensors.

3.3.3 Lack of Var iety of Types of Context Used
As introduced in the previous section, stemming from the lack of variety in sensors, we have the problem
of there being a lack of diversity in the types of context that are used in context-aware applications. The
lack of context limits applications by restricting their scope of operation. In general, most context-aware
applications use location as their primary source of context [Schmidt98, Dey99b]. Context-aware
applications are limited by the context they use. The lack of context types has resulted in the scarcity of
novel and interesting applications.

There is an additional problem that arises directly from the use of ad hoc design techniques. As stated
before, sensors have usually not been developed for reuse. Software is written for sensors on an individual
basis, with no common structure between them. When an application designer wants to use these sensors,
she finds that the task of integrating the application with these sensors is a heavyweight task, requiring
significant effort. This affects an application’s abili ty to use different types of context in combination with
each other. This results in fairly simplistic context-aware applications that use only one or a few pieces of
context at any one time.

3.3.4 Inabili ty to Evolve Applications
An additional problem that comes from the tight connection of applications to sensors is the static nature of
applications. Ironically, applications that are meant to change their behavior when context changes have
not shown the abili ty to adapt to changes in the context acquisition process. This has made applications
diff icult to evolve on two fronts in particular: movement of sensors and change in sensors or context.
When a sensor is moved to a new computing platform, the application can no longer communicate with it
unless it is told about the move. In practice, this is not something that occurs at runtime. Instead, an
application is shut down, the new location information is hardcoded into it, and then it is restarted. Let us
take the previously described hypothetical In Out Board (with no infrastructure support) as an example. If
the reader that acquires identity information were placed at the entrance to the building, as opposed to the
entrance to the laboratory, the application would have to be stopped, its code modified to use the sensor at
its new location and then restarted. This is a minor difficulty, but has the potential to be a maintenance
nightmare if several applications are deployed and hundreds or even thousands of sensors are moved. One
of our goals in this research is to produce a system that can deal with large numbers of applications,
services and sensors simultaneously.



10

When the sensor used to obtain a particular piece of context is replaced by a new sensor or augmented by
an additional sensor, the evolution problem is much more difficult. Because of the tight coupling of the
application to the sensors, an application often needs a major overhaul, if not a complete redesign, in this
situation. This also applies when the designer changes or adds to the context being used. We will revisit
the In Out Board application again. If a face recognition system were used to acquire identity rather than
an iButtonTM and reader, then a large portion of the application may need to be rewritten. The application
would have to be modified to use the communications protocol and communications and event
mechanisms dictated by the face recognition system. The portion of the application that performs
conversions on the sensed context and determines usefulness will also require rewriting. The difficulties in
adapting applications to context acquisition changes results in relatively static applications. This leads to
applications which are short-lived in duration, which is opposed to the view in ubiquitous computing
where computing services are available all the time (long-term consecutive use). The inabili ty to easily
evolve applications does not aid the progress of context-aware computing as a research field.

3.4 Overview of the Diff iculty in Building Context-Aware Applications
We have described the design process for context-aware computing, concentrating on the specification,
acquisition and delivery of context. We have shown that when these steps are reduced to what is essential
or necessary, we are left with the following simpler and novel design process:

1 Specification: Specify the problem being addressed and a high-level solution
1a Specify the context-aware behaviors to implement
1b Determine what context is required for these behaviors

2 Acquisition: Determine what hardware or sensors are available to provide that context
and install them.

3 Action: If context is useful, perform context-aware behavior.
3a Analyze the context treating it as an independent variable or by combining it

with other information collected in the past or present.
3b Choose context-aware behavior to perform

To help designers migrate to this reduced design process, we must provide infrastructure-level support In
addition, we have identified the negative trend of connecting application design too tightly to sensors used
that has resulted from the use of the longer, more complex design process. We have also identified four
basic problems that have emerged due to this trend: the general lack of context-aware applications, the lack
of variety in sensors used, the lack of variety in the types of context used and the inabil ity to evolve
context-aware applications. This analysis of the design process and the resulting problems has
demonstrated a gap in the research in context-aware computing. This has allowed us to focus our research
on infrastructure support and has lead to our thesis statement:

By identifying, implementing and supporting the right abstractions and services for
handling context, we can construct a framework that makes it easier to design, build and
evolve context-aware applications.

4 RELATED WORK
We will now describe previous attempts to provide support for both the original design process and the
simpler design process. We will discuss how each attempt has failed to support the design process and
failed to alleviate one or more of the four basic problems identified in the previous section.

4.1 Tight Coupling
In this section, we will provide examples of applications that have extremely tight coupling to the sensors
that provide context. In these examples, the sensors used to detect context were directly hardwired into the
applications themselves. In this situation, application designers are forced to write code that deals with the
sensor details, using whatever protocol the sensors dictate. There are two problems with this technique. The



11

first problem is that it makes the task of building a context-aware application very burdensome, by
requiring application builders to deal with the potentially complex acquisition of context. The second
problem with this technique is that it does not support good software engineering practices. The technique
does not enforce separation of concerns between application semantics and the low-level details of context
acquisition from individual sensors. This leads to a loss of generality, making the sensors diff icult to reuse
in other applications and diff icult to use simultaneously in multiple applications.

4.1.1 Manipulative User Interfaces
In the manipulative user interfaces work [Harrison98], handheld computing devices were made to react to
real-world physical manipulations. For example, to flip between cards in a virtual Rolodex, a user tilted the
handheld device toward or away from himself. This is similar to the real world action of turning the knobs
on a Rolodex. To turn the page in a virtual book, the user “ flicked” the upper right or left of the computing
device. This is similar to the real world action of grabbing the top of a page and turning it. A final example
is a virtual notebook that justified its displayed text to the left or the right, depending on the hand used to
grasp it. This was done so the grasping hand would not obscure any text. While this has no direct real world
counterpart, it is a good example of how context can be used to augment or enhance activities. Here,
sensors were connected to the handheld device via the serial port. The application developers had to write
code for each sensor to read data from the serial port and parse the protocol used by each sensor. The
context acquisition was performed directly by the application, with minimal separation from the application
semantics.

4.1.2 Til ting Interfaces
In the similar tilti ng interfaces work [Rekimoto96], the tilt of a handheld computing device was used to
control the display of a menu or a map. Here, the sensors were connected via a serial port to a second, more
powerful, desktop machine, which was responsible for generating the resulting image to display. The image
was sent to the handheld device for display. The entire application essentially resided on the desktop
machine with no separation of application semantics and context acquisition. One interesting aspect of this
application is that the sensors provided tilt i nformation in a different coordinate system than the application
required. The application was therefore required to perform the necessary transformation before it could act
on the context.

4.1.3 Cyberguide
The Cyberguide system provided a context-aware tour guide to visitors to a “Demo Day” at a research
laboratory [Abowd97a, Long96]. The tour guide is the most commonly developed context-aware
application. Visitors were given handheld computing devices. The device displayed a map of the
laboratory, highlighting interesting sites to visit and making available more information on those sites.  As
a visitor moved throughout the laboratory, the display recentered itself on the new location and provided
information on the current site.   The Cyberguide system suffered from the use of a hardwired infrared
positioning system. In fact, in the original system, the sensors used to provide positioning information were
also used to provide communications abili ty. This tight coupling of the application and the location
information made it difficult to make changes to the application. In particular, when the sensors were
changed, it required almost a complete rewrite of the application. As well , due to the static mapping used to
map infrared sensors to demonstrations, when a demonstration changed location, the application had to be
reloaded with this new information. The use of static configurations had a detrimental impact on evolution
of the application.

4.2 Use of Sensor Abstractions
In this section, we will discuss systems that have used a sensor abstraction to separate the details of dealing
with the sensor from the application. The sensor abstraction eases the development of context-aware
applications by allowing applications to deal with the context they are interested in, and not the sensor
specific-details. However, these systems suffer from two additional problems. They provide no support for
notification nor any support or guidelines for context acquisition. Therefore, applications that use these
systems must be proactive, requesting context information when needed via a querying mechanism. The
onus is on the application to determine when there are changes to the context and when those changes are
interesting. The second problem is that these servers are developed independently, for each sensor or sensor
type. Each server maintains a different interface for an application to interact with. This requires the
application to deal with each server in a different way, much like dealing with different sensors. This still



12

impacts an application’s abilit y to separate application semantics from context acquisition. This results in
limited use of sensors, context types, and the inabilit y to evolve applications.

4.2.1 Active Badge
The original Active Badge call -forwarding application is perhaps the first application to be described as
being context-aware. In this application, users wore Active Badges [Want92], infrared transmitters that
transmitted an identity code. As users moved throughout their building, a database was being dynamically
updated with information about each user’s current location, the nearest phone extension, and the
likelihood of f inding someone at that location (based on age of the available data). When a phone call was
received for a particular user, the receptionist used the database to forward the call to the last known
location of that user. In this work, a server was designed to poll the Active Badge sensor network
distributed throughout the building and maintain current location information. Servers like this abstract the
details of the sensors from the application. Applications that use these servers simply poll the servers for
the context information that they collect. This technique addresses both of the problems outlined in the
previous section. It relieves application developers from the burden of dealing with the individual sensor
details. The use of servers separates the application semantics from the low-level sensor details, making it
easier for application designers to build context-aware applications and allowing multiple applications to
use a single server.

4.2.2 Reactive Room
In the Reactive Room project, a room used for video conferencing was made aware of the context of both
users and objects in the room for the purpose of relieving the user of the burden of controlli ng the objects
[Cooperstock97]. For example, when a figure is placed underneath a document camera, the resulting image
is displayed on a local monitor as well as on remote monitors for remote users. Similarly, when a digital
whiteboard pen is picked up from its holster, the whiteboard is determine to be in use and its image is
displayed both on local and remote monitors. If there are no remote users, then no remote view is
generated. Similar to the Active Badge work, a daemon, or server, is used to detect the “awareness” of
activity around a specific device. The daemon abstracts the information it acquires to a usable form for
applications. For example, when the document camera daemon determines that a document is placed
underneath it, the context information that is made available is whether it has an image to be displayed,
rather than providing the unprocessed video signal.  This requires the application to deal with each daemon
in a distinct fashion, affecting both evolution and the use of new sensors and context types.

4.3 Beyond Sensor Abstractions
In this section, we discuss systems that not only support sensor abstractions, but also support additional
mechanisms such as notification, storage, or interpretation. The problems with these systems is that they do
not provide support for the entire design process.

4.3.1 AROMA
The AROMA project attempted to provide peripheral awareness of remote colleagues through the use of
abstract information [Pederson97]. Its object-oriented architecture used the concepts of sensor abstraction
and interpretation. It had a minimal notion of storage, keeping only the last n values in a circular buffer.
Playing the role of the application were synthesizers that take the abstract awareness information and
display it.  It did not provide any support for adding new sensors or context types, although sensor
abstraction made it easier to replace sensors.

4.3.2 metaDesk
The metaDesk system was a platform for demonstrating tangible user interfaces [Ullmer97]. Instead of
using graphical user interface widgets to interact with the system, users used physical icons to manipulate
information in the virtual world. The system used sensor proxies to separate the details of individual
sensors from the application. This system architecture supported distribution and a namespaces mechanism
to allow simple runtime evolution of applications. Only a polli ng mechanism was provided and
interpretation was left to individual applications.

4.3.3 L imbo
Limbo is an agent-based system that uses quality of service information to manage communication
channels between mobile fieldworkers [Davies97]. Agents place quality of service information such as



13

bandwidth, connectivity, error rates, and power consumption, as well as location information into tuple
spaces. Services that require particular bit rates and connectivity instantiate agents to obtain a satisfactory
communications channel. These agents collect quality of service information from the tuple spaces and use
this information to choose a communications channel [Friday96]. Other agents place (and remove) service-
related information into (and from) the tuple spaces. These spaces provide an abstraction of the sensor
details, only providing access to the sensor data. This technique supports distributed sensing, limited
interpretation and limited storage.

4.3.4 NETMAN
The NETMAN system is a collaborative wearable application that supports the maintenance of computer
networks in the field [Korteum98]. It uses location, object identities and network traff ic context to provide
relevant information to the field worker and the assisting remote network expert. The system uses sensor
proxies to abstract the details of the sensors from the application and also handles the delivery of context
through a subscription-based mechanism. There is no support for acquiring sensor information, making it
diff icult to add new sensors. As well , interpretation is left to the application using the context.

4.3.5 Open Agent Architecture
The Open Agent Architecture is an agent-based system that supports task coordination and execution
[Cohen94]. While it has been mostly used for the integration of multimodal input, it is applicable to
context-aware computing. In this system, agents represent sensors and services. When a sensor has data
available, the agent representing it places the data in a centralized blackboard. When an application needs
to handle some user input, the agent representing it translates the input and places the results on the
blackboard. Applications indicate what information they can use through their agents. When useful data
appears on the blackboard, the relevant applications’ agents are notified and these agents pass the data to
their respective applications. The blackboard provides a level of indirection between the applications and
sensors, effectively hiding the details of the sensors. The architecture supports automatic interpretation,
querying and notification of information, and distributed computation. It suffers from being built to only
support a single application at a time and not being able to handle runtime changes to the architecture (e.g.
agents being instantiated or kill ed during application execution). It was not intended for long-term
consecutive use nor was it meant to handle a large number of applications, services, and sensors.

4.3.6 Audio Aura
In the Audio Aura system, location and identity context was used to provide awareness about physical and
virtual information, using serendipitous background audio [Mynatt98]. For example, when a user enters a
social area, they receive an audio cue indicating the total number of new email messages they have
received and the number from specific people. Also, when a user walks by a colleague’s empty office, they
hear a cue that indicates how long the colleague has been away for. A server is used that abstracts location
and identity context from the underlying sensors (Active Badges and keyboard activity) being used. A goal
of this system was to put as much of the system functionali ty in the server to allow very thin clients. The
server supported storage of context information to maintain a history and supported a powerful notification
mechanism. The notification mechanism allowed clients to specify the conditions under which they wanted
to be notified. However the use of the notification mechanism required knowledge of how the context was
actually stored.

4.4 Context-Aware Architectures
In this section, we discuss architectures that have been specifically developed to support context-aware
applications. These architectures were designed to be applicable to a range of context-aware applications
and problems, but, in fact, deal with only a portion of the context-aware application problem space.

4.4.1 Stick-e Notes
The Stick-e notes system is a general framework for supporting a certain class of context-aware
applications [Brown96]. Whereas our research is looking at supporting the acquisition and delivery of
context, this research focuses on how to support application designers in actually using the context to
perform context-aware behaviors. The goal of this work is to allow non-programmers to easily author
context-aware services. It provides a general mechanism for indicating what context an application
designer wants to use and provides simple semantics for writing rules to be triggered when the right



14

combination of context is achieved. For example, to build a tour guide application with this architecture, an
author would write individual rules, in the form of stick-e notes. An example note to represent the rule
“When the user is located between the location coordinates (1,4) and (3,5) and is oriented between 150 and
210 degrees during the month of December, provide information about the cathedral” , follows:

<note>
<required>
<at> (1,4) .. (3,5)
<facing> 150 .. 210
<during> December

<body>
The large floodlit building at the bottom of the hill is cathedral. [Brown97]

Each note such as this one, represents a rule that is to be fired when the indicated context requirements are
met. A group of notes or rules are collected together to form a stick-e document. The application consists of
the document and the stick-e note architecture.

The approach, while interesting, appears to be quite limited due to the decision to support non-
programmers. The semantics for writing rules is limited to simple boolean ANDs and can not handle
continuous or even frequently changing discrete data. It is not meant for programmers to integrate into their
applications. It provides a central mechanism for determining when the clauses in a given rule have been
met. While no information is provided on how this mechanism acquires its context, the mechanism does
hide the details of the acquisition from applications.

4.4.2 CyberDesk
In our previous research on context-aware computing, we built an architecture called CyberDesk [Dey97,
Abowd97b, Dey98a, Dey99a]. This architecture was built to automatically integrate web-based services
based on virtual context. The virtual context was the personal information the user was interacting with on-
screen including email addresses, mailing addresses, dates, names, etc. An example application is when a
user is looking at her schedule for the day and sees that she has a meeting in the afternoon with an
acquaintance. She highlights that person’s name, spurring the CyberDesk architecture into action. The
architecture attempts to convert the selected text into useful pieces of information. It is able to see the text
as simple text, a person’s name, and an email address. It obtains the last piece of information by
automatically running a web-based service that convert names to email addresses. With this information, it
offers the user a number of services including: searching for the text using a web-based search engine,
looking up the name in her contact manager, looking up a relevant phone number using the web, and
sending email to the acquaintance.

While it was limited in the types of context it could handle, it contained many of the mechanisms that we
believe are necessary for a general context-aware architecture. The architecture provided support for the
entire simpler design process identified in Section three. Applications simply specified what context types
they were interested in, and were notified when those context types were available. The modular
architecture handled automatic interpretation, supported the abstraction of context information and
aggregation/combination of context information. We moved away from this architecture because it did not
support multiple simultaneous applications, used a centralized mechanism, and did not support querying or
storage of context. We determined these shortcomings when we attempted to use it to build an intell igent
environment application [Dey98b].

4.4.3 Schili t’ s System Architecture
In his Ph.D. thesis, Schilit presented a system architecture that supported context-aware mobile computing
[Schilit 95]. This work has been very influential to our own research, helping us to identify the important
features of context and context-awareness and to identify some of the diff icult problems in building
context-aware applications. Schilit’s work focused on making context-aware computing applications
possible to build. From our survey of context-aware computing, we have seen that designers are indeed
now capable of building context-aware applications, thanks in a large part to Schilit’ s work. Our work,
instead, focuses on making these applications easier to build. This difference in focus begins to delineate



15

where our research differs. Schil it’ s architecture supported the gathering of context about devices and
users. He had three main components in his system: device agents that maintain status and capabiliti es of
devices; user agents that maintain user preferences; and, active maps that maintain the location information
of devices and users. The architecture did not support or provide guidelines for the acquisition of context.
Instead device and user agents were built on an individual basis, tailored to the set of sensors that each
used. This makes it very difficult to evolve existing applications.

This work has a limited notion of context and does not include time or activity information.  To add the use
of other types of context, the user and device agents would have to be rewritten, making it difficult to add
new sensors and context. The architecture supports the delivery of context through eff icient querying and
notification mechanisms. For reception, the architecture supports a limited notion of discovery, allowing
applications to find components that they are interested in. However, applications must explicitly locate
these components before they can query or subscribe to them for context information. This is an accidental
step that our simpler design process removes. Interpretation of context is not supported requiring
applications to provide their own support. Finally, the lack of time information combined with the lack of
context storage, makes it impossible for applications to acquire previous context information. This limits
the amount of analysis an application can perform on context which is an integral part of performing
context-aware actions.

4.4.4 CALAIS
CALAIS, the Context And Location Aware Information Service, was another architecture that was
designed to support context-aware applications [Nelson98]. This work was performed to solve two
problems: the ad hoc nature of sensor use and the lack of a fine-grained location information management
system. An abstraction was developed to hide the details of sensors from context-aware applications, but
there was very lit tle support to aid developers in adding new sensors to the architecture. Additionally, the
architecture did not support storage of context or interpretation of context, leaving application developers to
provide their own on an individual basis. CALAIS supported the use of distributed context sensing and
provided query and notification mechanisms. An interesting feature in this work was the use of composite
events, being able to subscribe to a combination of events. For example, an application could request to be
notified when event B occurred after event A occurred with no intervening events. This is a powerful
mechanism that makes the acquisition and analysis of context easier for application developers.

4.5 Proposed Systems
In this section, we present two more architectures for supporting the building and execution of context-
aware applications. These architectures have merely been proposed with very little or no implementation.

4.5.1 Situated Computing Service
The proposed Situated Computing Service has an architecture that is similar to CyberDesk for supporting
context-aware applications [Hull97]. It insulates applications from sensors used to acquire context. A
Situated Computing Service is a single server that is responsible for both context acquisition and
abstraction. It provides both querying and notification mechanisms for accessing relevant information. A
single prototype server has been constructed as proof of concept, using only a single sensor type, so its
success is diff icult to gauge. The Situated Computing Service provides no support for acquiring sensor
information, only delivering it.

4.5.2 Context Information Service
The Context Information Service (CIS) is another proposed architecture for supporting context-aware
applications [Pascoe98]. It has yet to be implemented at any level, but contains some interesting features. It
supports the interpretation of context and the choosing of a sensor to provide context information based on
a quali ty of service guarantee. In contrast to the Situated Computing Service, it promotes a tight connection
between applications and the underlying sensors, taking an application-dependent approach to system
building. The CIS maintains an object-oriented model of the world where each real-world object is
represented by an object that has a set of predefined states. Objects can be linked to each other through
relationships such as “close to” . For example, the set of nearby printers would be specified by a “close to”
relationship with a user, a given range, and “printers” as the candidate object. The set would be



16

dynamically updated as the user moves through an environment. There is no indication how any of these
proposed features will be implemented.

4.6 Overview of Related Work
In this section, we have presented previous work that is relevant to providing architectural-level support for
building context-aware computing. We presented systems that have extremely tight coupling between the
applications and sensors. These systems are hard to develop due to the requirements of dealing directly
with sensors and are hard to evolve because the application semantics are not separated from the sensor
details. We presented systems that used sensor abstractions to separate details of the sensors from
applications. These systems are difficult to extend to the general problem of context-aware application
building because there is no standard abstraction used, with each sensor having its own interface. An
application, while not dealing directly with sensor details, must still deal individually with each distinct
sensor interface. Next we presented systems that support additional mechanisms beyond sensor abstraction,
including context notification, storage and interpretation. These systems provide only a subset of the
required mechanisms for building context-aware applications. Finall y, we presented architectures that were
designed to support the building process. These architectures are limited to dealing with a portion of the
process or are merely speculative.

5 ARCHITECTURE FEATURES

In Section four, we presented previous work in the area of architectural support for context-aware
computing. While no one system provided a complete solution for supporting our reduced design process,
each offered at least a partial solution. The major goal of this research is to allow context-aware application
developers to more easily build applications and to support them in building more complex applications
than they have been able to build so far. In this section, we will present the features for an architecture that
will both support the design process and provide runtime support for multiple simultaneously executing
context-aware applications.  The identification of these features stem from our own work in context-aware
computing as well as from a survey we have performed on the field. We will present the features in two
parts. First, we will present the set of minimal features required by an architecture for supporting the design
and execution of context-aware applications. Then, we will present architectural features that, while not
required, are useful for supporting the reduced design process and reducing the tight connectivity typically
found between applications and sensors.

5.1 Requirements
Following is the minimal set of requirements for an architecture to support the design and execution of
context-aware applications. All but the most trivial context-aware applications will require the following
features:

• support for distribution of context and sensing;
• support for event management;
• support independence and availabilit y of components that collect context; and,
• support for the interpretation of context.

We see many of these features in the systems presented in the related work. We will now discuss these
features.

5.1.1 Suppor t for the Distr ibution of Context and Sensing
Traditional user input comes from the keyboard and mouse. These devices are connected directly to the
computer they are being used with. When dealing with context, the devices used to sense context most
likely are not attached to the same computer running an application that will react to that context. For
example, an indoor infrared positioning system may consist of many infrared emitters and detectors in a
building. The sensors might be physically distributed and cannot all be directly connected to a single
machine. In addition, multiple applications may require use of that location information and these
applications may run on multiple computing devices. As environments and computers are becoming more
instrumented, more context can be sensed, but this context will be coming from multiple, distributed
machines connected via a computer network. Support for the distribution of sensing and context is our first
high-level requirement.



17

5.1.2 Suppor t Event Management
In our review of related work, we discussed systems that supported event management, either through the
use of querying mechanisms, notification mechanisms, or both to acquire context from sensors. It is not a
requirement that both be supported because one can be used to implement the other. For reasons of
flexibilit y, it is to an application’s advantage that both be available [Rodden98]. Querying a sensor for
context is appropriate for one-time context needs. But the sole use of querying requires that applications be
proactive when requesting context information from sensors. Once it receives the context, the application
must then determine whether the context has changed and whether those changes are interesting or useful
to it. The notification or publish/subscribe mechanism is appropriate for repetitive context needs, where an
application may want to set conditions on when it wants to be notified.

5.1.3 Suppor t Independence and Availabili ty of Components that Collect Context
With GUI applications, user interface components such as buttons and menus are instantiated, controlled
and used by only a single application (with the exception of some groupware applications). In contrast,
context-aware applications should not instantiate individual components that provide sensor data, but must
be able to access existing ones, when they require. Furthermore, multiple applications may need to access
the same piece of context. This leads to a requirement that the components that acquire context must be
executing independently from the applications that use them. Because they run independently of
applications, there is a need for them to be persistent, available all the time. It is not known a priori when
applications will require certain context information, consequently, the components must be running
perpetually to allow applications to contact them when needed.  Take the call -forwarding example from the
Active Badge research [Want92]. When a phone call was received, an application tried to forward the call
to the phone nearest the intended recipient. The application could not locate the user if the Badge server
was not active. If the Badge server were instantiated and controlled by a single application, other
applications could not use the context it provides.

5.1.4 Suppor t for the Interpretation of Context
There is a need to extend the notification and querying mechanisms to allow applications to retrieve context
from distributed computers. There may be multiple layers that context data goes through before it reaches
an application, due to the need for additional abstraction. For example, an application wants to be notified
when meetings occur. At the lowest level, location information is interpreted to determine where various
users are and identity information is used to check co-location. At the next level, this information is
combined with sound level information to determine if a meeting is taking place. From an application
designer’s perspective, the use of these multiple layers must be transparent. In order to support this
transparency, context must often be interpreted before it can be used by an application. An application may
not be interested in the low-level information, and may only want to know when a meeting starts. In order
for the interpretation to be easily reusable by multiple applications, it needs to be provided by the
architecture. Otherwise, each application would have to re-implement the necessary implementation. We
developed a mechanism to perform transparent recursive interpretation in our previous work on
CyberDesk. For example, as discussed in the related work section, the CyberDesk infrastructure converts
selected text to a name and then to an email address.

5.2 Useful Features
Following is a set of additional architectural features that, while not required, simplify the design of
context-aware applications. They are:

• support the storing of context history;
• support for the aggregation of context information;
• support for transparent communications;
• support for resource discovery;
• support for using and building of abstractions;
• support for flexibilit y; and,
• use of language and platform-independent mechanisms.

We will now discuss each in turn.



18

5.2.1 Suppor t for the Stor ing of Context History
A useful feature of context acquisition components linked to the need for constant availabilit y is the desire
to maintain historical information. User input widgets maintain littl e, if any, historical information. For
example, a file selection dialog box keeps track of only the most recent files that have been selected and
allows a user to select those easily. In general though, if a more complete history is required, it is left up to
the application to implement it. In comparison, a context widget [Salber99], a component that collects
context information, should maintain a history of all the context it obtains. A context widget may collect
context when no applications are interested in that particular context information. Therefore, there are no
applications available to store that context. However, there may be an application in the future that requires
the history of that context. For example, an application may need the location history for a user, in order to
predict his future location. For this reason, context widgets should store their context.

5.2.2 Suppor t for the Aggregation of Context Information
To facilit ate the building of context-aware applications, our architecture should support the aggregation of
context about entities in the environment. It is often the case that an application requires multiple pieces of
information about a single entity. With the architecture described so far, an application would have to
communicate with several different sensors to collect the necessary context about an interesting entities.
This adds complexity to the design and negatively impacts maintainabili ty. For example, an application
may have a context-aware behavior to execute when the following conditions are met: an individual is
happy, located in his kitchen, and is making dinner. With no support for aggregation, an application has to
use a combination of subscriptions and queries on different sensors to determine when the conditions are
met. This is unnecessarily complex and is difficult to modify if changes are required. An architectural
component that supports aggregation is responsible for collecting all the context about a given entity. With
aggregation, our application would only have to communicate with the single component responsible for
the individual entity that it is interested in. For example, imagine an extension to the In Out Board that
supported the use of multiple readers installed in multiple buildings. The In Out Board for a particular
building is not interested where within a building a dock occurred, only in which building it occurred.
Rather than communicate with each individual reader, the application could request notifications from the
aggregator for each building, simplifying the application development.

5.2.3 Suppor t for Transparent Communications
In the previous sub-section on requirements, we presented a requirement to handle distributed context
information. A useful feature is to make the communications between distributed sensors and applications
transparent to both parties. This simplifies the design and building of both sensors and applications,
relieving the designer of having to build a communications framework. Without it, the designer would have
to design and implement a communications protocol and design and implement an encoding scheme (and
accompanying decoder) for passing context information.

5.2.4 Suppor t for Resource Discovery
In order for an application to communicate with a sensor (or its proxy), it must know where the sensor is
located and how to communicate with it (protocol and mechanisms to use). For distributed sensors, this
means knowing both the hostname and port of the computer the sensor is running on. To be able to
effectively hide these details from the application, the architecture needs to support a form of resource
discovery [Schwartz92]. With a resource discovery mechanism, when an application is started, it could
specify the type of context information required. The mechanism would be responsible for finding any
applicable components and for providing the application with ways to access them. For example, in the In
Out Board application, rather than hardcoding the location of the iButtonTM reader being used, the developer
can indicate that the application is to be notified whenever any user of the In Out Board docks inside the
building.

An additional useful feature would be to extend this abilit y to aggregation components to help
automatically find context relevant to the particular entity involved, and for use with interpreters to allow
automatic interpretation of context. For the aggregator, this feature would save the application designer
from having to explicitly state what sensor information was relevant. For example, a component that is
responsible for aggregating all the context about a particular building X could specify to the resource
discovery mechanism that it was interested in any information about ‘building X’ and it would simply
receive it. For components that need interpreted information, this feature would automatically provide any



19

needed interpretation, saving the designer from having to explicitly request it. For example, in the In Out
Board application, the application is interested in knowing in and out status of users, not that they docked
in the building. With resource discovery, the application could indicate that it was interested in in/out
status, and have the interpretation from user docking to this status automatically performed. This discussion
assumes, of course, that the interpretation is available from the architecture.

5.2.5 Suppor t for the Using and Building of Abstractions
So far, we have identified three important conceptual building blocks: acquisition of context from sensors,
interpretation and aggregation. The architecture should contain components that implement each one of
these building blocks or abstractions. To make it easy for applications to take advantage of these
abstractions, each abstraction should support a standard interface. This will allow applications (and other
components) to communicate with all aggregators the same way, all interpreters the same way, and all
context acquirers the same way.

But there is a second important part to this useful feature and that is providing support for the building of
components that implement these abstractions. In most of our previous discussions, we have assumed that
the necessary components were available. If we needed a component that provides identity, or an
interpreter that converts docking events to in/out status, or an aggregator that collects all the location
information for a building, we assumed that such a component already existed and we used it. But what
happens if such a component does not exist? Then, it is left up to the application designer to implement the
functionali ty either within the application or as a separate component. Clearly, we prefer the second of
these alternatives. Implementing the functionali ty as a separate component allows reuse by other
applications and other application designers. To encourage the choice of the second alternative, we need to
provide support so that the building of these components is actually easier than implementation within the
application. By providing standard interfaces for each of the building blocks, we can provide this support.

For example, we have described required and useful features that all components should have. These
include transparent communications for distributed components, resource discovery, availabil ity and
independent execution. In addition, for the acquisition of context, the necessary features are context storage
and support for event management. For the interpretation abstraction, the obvious feature is support for
interpretation. For the aggregation abstraction, the necessary features include those for the abstraction of
sensor data into context as well as aggregation. What this means is that when a designer wants to build one
of these components, the relevant features are implemented and automatically available for the designer to
use. This leaves the designer with the much simpler task of designing only the task-specific pieces of the
component. For example, to build an aggregation component that represents all the context about an
building, the designer should only have to provide the building’s identity. All other details should be taken
care of for the designer.

5.2.6 Suppor t for Flexibili ty
We need to provide default implementations for each of the features we have discussed so far. To support
maximum flexibili ty, designers should be able to easily replace the default implementations with their own.
This eases the integration of the architecture into existing applications and eases maintainability, by
allowing designers to use implementations that they are familiar with and supporting consistency across the
application. For example, if an application uses a particular message format for communicating with
distributed objects, the designer may find that application development is easier if the default context
architecture message format is replaced with this distributed object message format. Each of the required
and useful features should have easily replaceable/pluggable implementations.

5.2.7 Use of Language and Platform-Independent Mechanisms
Another feature that is useful for integrating the context architecture into existing applications is the use of
programming language and computer platform-independent mechanisms. By having few requirements on
the support the architecture requires from programming languages and platforms, we can more easily re-
implement the architecture on any desired platform in any desired programming language. This allows
designers to work on the platforms and with languages that are convenient for them. This aids in building
new applications as well as in adding context to previously non-context-aware applications. There is an
additional reason for being able to implement the architecture on multiple heterogeneous platforms.



20

Because sensors will typically be distributed in the environment running on remote platforms, there is the
real possibili ty that the platforms will not be all of the same type. If the architecture is available on multiple
platforms, we will easily be able to support the interoperabili ty of components running on different
platforms, written in different programming languages.

5.3 Revisiting the Design Process
In Section three, we presented a design process for building context-aware applications and showed how
we could reduce the design process by removing accidental activities. In this section, we have been
presenting the requirements and useful features for an architecture to support the building of context-aware
applications. We will now describe how an architecture that supports these features will allow a designer to
use the simpler design process.

5.3.1 Specification
Specification of what context an application requires is an essential step and can not be reduced. However,
via resource discovery, an application designer can quickly determine what context is available for use in
the chosen environment.

5.3.2 Acquisition
If a sensor has not been used before, the acquisition of context is a necessary step. Installation of the sensor
is supported by allowing the sensor to be installed on almost any platform and used with a number of
programming languages. The writing of the code to actually acquire context is simpli fied by the provision
of a general interface to implement. The interpretation abstraction allows the conversion of the sensor data
into a more usable form. The extensions with resource discovery, described earlier, allow the interpretation
to occur automatically with no work required on the part of the application designer. Context storage,
communications, and event management mechanisms are already provided for the designer. She only needs
to integrate the sensor-specific details, such as obtaining data from the sensor, with these general
mechanisms already available. If a sensor has been used before with such an architecture, the sensor can be
reused with minimal effort on the designer’s part.

5.3.3 Delivery
The entire activity of delivering context is accidental. Many features of the architecture work in concert to
allow this step to be removed. The storage of context and the provision of querying and notification
mechanisms allow applications to retrieve both current and historical context on a one-time or continuous
basis, under the conditions specified by the application. Support for distribution and transparent
communications mechanisms allow context to be sent between sensors and applications without the
designer having to worry about either side.

5.3.4 Reception
Reception of context is also an accidental step. The architecture-level features can be used to remove this
step. Resource discovery allows applications to automatically access the context they require. Independent
execution of the architectural components combined with resource discovery lets applications use both
sensors that were available when the application was started and sensors that were made available after the
application was started.  As described in the delivery sub-section, application designers do not have to deal
with distribution or communication details to obtain context. Querying and notification mechanisms allow
applications to retrieve the context they require under the conditions they specify. If the
notification/subscription mechanisms are powerful enough, there is no need to analyze the information to
determine usefulness. Conditions set when creating a subscription should contain all the information
necessary to determine usefulness.

5.3.5 Action
Action is an application-specific and essential step. The features discussed in this section provide no
assistance with this step.

5.4 Revisiting Problems Due to Ad Hoc Development
In Section three, we presented four problems that resulted from the use of ad hoc techniques in building
context-aware applications. We will show how the architecture features presented in this section can be
used to address these problems.



21

5.4.1 Lack of Context-Aware Applications
The two reasons given for the lack of context-aware applications were the inabili ty to reuse sensors and the
diff iculty in integrating sensors into applications. Providing guidance to application designers on how to
build sensor components supports reuse. The use of simple abstractions with common interfaces and
support for the details that designers do not want to deal with (communications, distribution, storage, etc.)
helps with this guidance. The automatic handling of these features also aids in integrating the architecture
with existing applications. As well , the fact that applications do not have to worry about instantiating
sensors, due to their independent and persistent execution, eases integration difficulties. Furthermore, by
letting application designers replace default implementations of features with their own implementations
allows the designers to leverage off of their own knowledge and experiences. Finally, the interoperabilit y of
components and applications written in different programming languages and on different platforms makes
it much easier for applications to leverage off of existing infrastructure.

5.4.2 Lack of Var iety of Sensors
While we want to support reuse of sensors, we do not want reuse to exist at the exclusion of other sensors
and sensor types. By handling many of the “ low-level” details involved in sensor development, such as
communications, storage, notification and querying mechanisms, and distribution, we can simplify the
design process for adding and using new sensors.

5.4.3 Lack of Var iety of Context Types
By making it easier to use new sensors, we are making it easier to use new types of context in applications.
In addition, the abili ty to aggregate and interpret context allows us to derive higher levels of context
information from the low-level context usuall y acquired directly from sensors. The use of a wider variety of
context types leads to more complex and more interesting context-aware applications.

5.4.4 Inabili ty to Evolve Applications
The three diff iculties in evolving context-aware applications are dealing with moving sensors, changing
sensors and changing context. By using components that execute independently of the application, we can
easily move or reconfigure these components without changing the application. The use of resource
discovery keeps the movement transparent to the application, requiring no changes. When sensors are
removed that do not impact the application, the same argument applies. If f or some reason, a sensor that
provides an important piece of context is removed, the architecture will use resource discovery to try and
find another sensor that can provide the same information. If one can not be found, the application is
notified. When sensors are added that provide context the application has asked for, this context
information is automatically provided to the application. This abilit y is supported through a combination of
the event management mechanisms and resource discovery. Finally, if a designer wants to use additional
context in an application, he simply needs to specify what context he requires and under what conditions.
The architecture takes care of the details.

5.5 Overview of Architecture Features
In this section, we have presented a set of features that are necessary in any architecture that supports the
building of context-aware applications. We presented reasons why these features were required. These
features are:

• support for distribution of context;
• support event management mechanisms;
• support independence and availabilit y of components that collect context; and,
• support for the interpretation of context.

To this list, we presented a set of features that would be useful in such an architecture, to make the design
or applications easier. These useful features are:

• support the storing of context history;
• support for the aggregation of context information;
• support for transparent communications;
• support for resource discovery;
• support for using and building abstractions (context acquirers, interpreters, and aggregators);



22

• support for flexibilit y; and,
• use of language and platform-independent mechanisms.

We discussed how these two sets of features, required and useful, can be used to reduce the design process
to a set of essential steps and how they help in allowing designers to more easily build and evolve more
complex context-aware applications.

6 Research Goals

In this thesis proposal, we have demonstrated the value of context in interactive computing. We presented
definitions of context and context-awareness and showed how they impact our research in context-aware
computing. Next, we described why building context-aware applications is a difficult process and identified
a new simpler design process for building these applications. We reviewed previous context-aware
applications and architectures and described their shortcomings in terms of this new design process. Next,
we identified a set of required and useful features which an architecture that supports context-aware
applications should support. We then described how these features support the use of the new design
process. In this section, we will analyze our thesis statement that has been the focus of our research and
detail our research goals and expected contributions.

6.1 Thesis Statement
Our thesis statement and the focus of our research in context-aware computing is:

By identifying, implementing and supporting the right abstractions and services for
handling context, we can construct a framework that makes it easier to design, build and
evolve context-aware applications.

We will now decompose this general thesis statement into its underlying hypotheses. Through a detailed
study of context-aware computing and from our experience in building context-aware applications, we will
be able to identify useful abstractions for dealing with context. In doing so, we will also gain a better
understanding of what context is important and how we can represent it. Through the implementation of
these abstractions and some underlying support, we will have a framework that helps application designers
to build context-aware applications. In particular, the framework will enable designers to both easily build
and evolve applications. On the building side, designers will be able to easily build new applications that
use context, including complex context-aware applications that are currently seen as difficult to build. On
the evolution side, designers will easily be able to add the use of context to existing applications, to change
the context that applications use, and to build applications that can transparently adapt to changes in the
sensors they use. A final hypothesis is that the framework will contain lightweight integration mechanisms
and will be flexible enough to allow application designers to readily use it.

6.2 Research Goals
Our research has three main pieces. The first is an in-depth investigation of context and context-aware
applications to enable us to identify the necessary mechanisms required for context-aware computing and
to define a taxonomy of context. The second part is the actual implementation of the identified mechanisms
in an architecture. This includes building to support flexibilit y and lightweight integration. The third part is
to show that the architecture is extensible and can be used as an open research platform. This includes using
it to experiment with new mechanisms and implementations for dealing with particular problems (privacy,
security, uncertainty in data and group context, for example) in context-aware computing and to build new
types of context-aware applications that were difficult to build before. We will discuss each of the three
pieces, highlighting our goals and remaining work.

6.2.1 Investigation of Context
We detailed the results of our investigation of context in Section two. Our goal was to gain a better
understanding of what context was and how it is used. This understanding will help us to choose what
context to use in our applications and has provided insights into the types of data that need to be supported
and the abstractions and mechanisms required to support context-aware computing.



23

In one sense, we have been quite successful. We have used our survey of context-aware computing to
identify the current design process for building context-aware applications and to determine which of its
activities were accidental and which were essential.  This led to our new, simpler design process.
Furthermore, our investigation of context helped us identify the context acquisition, interpretation, and
aggregation abstractions, and the required and useful features for an architecture that supports context-
aware applications.

However, we have not been so successful in using our understanding to generate a taxonomy of context.
After several failed attempts (each ending in fruitful exercise to model the entire world), we believe the
correct research path is to identify the orthogonal dimensions of context, such as spatial relationships (in
front of, on top of, etc.) and hierarchy, temporal granularity (before, after, past and future), and entity
granularity (group information), for example. An understanding of the dimensions of context will enable us
to identify additional mechanisms for dealing with context (such as a geometry model for dealing with
spatial relationships [Brumit99, Nelson98]) and identify context types that have not been widely used in
context-aware applications (such as group context). This identification of the orthogonal dimensions of
context has yet to start.

6.2.2 Implementation of the Architecture
The second piece of our proposed research is the implementation of the abstractions and mechanisms we
identified and presented in Section five. This includes providing an implementation of the simpler design
process and providing a design document that il lustrates how designers should both think about building
context-aware applications and how they can use the architecture to actually build them. Our research goals
are to enable application designers to easil y build and evolve context-aware applications by following the
simpler design process. Additionally, we want to make the addition and removal of sensors transparent to
running applications and to make the implementation of context acquirers or widgets [Salber99], context
interpreters and context aggregators or servers a simple process.

We have already built a large portion of the architecture [Dey99c]. The main components and reusable
building blocks in this architecture are context widgets, context interpreters and context servers. Context
widgets implement the sensor abstraction, hiding the details of the sensor being used to acquire context.
Each context widget is responsible for a single piece of context. Context interpreters implement the
interpretation abstraction. Context servers implement the aggregation abstraction. They are context widgets
that are responsible for an entity’s entire context.

Through these components, all of the required features and most of the useful features have been
implemented. They share a common communications mechanism that supports access to components and
context on distributed computing devices. The communications protocol and language used is transparent
to the components. Each of these components is autonomous in execution. They are instantiated
independently of each other and execute in their own threads, supporting our requirement for
independence. They can be instantiated all on a single computing device or on multiple computing devices.
All of these components have the abili ty to query or subscribe to the context contained in context widgets
and servers. Context widgets and servers automaticall y provide context storage and support for querying
and subscriptions, so the designer does not have to deal with these issues.

We have multiple examples of context widgets and interpreters. We have built a few sample context
servers, but there are some outstanding technical issues that still need to be resolved. Support for resource
discovery has not yet been added to the architecture. This is the most complex feature and will require the
most time for implementation.

All the components were designed from the beginning to be extremely flexible. The communications
protocol and language can be replaced easily, as can the context storage mechanism. We currently use the
HyperText Transfer Protocol (HTTP) and the eXtensible Markup Language (XML) for our default
communications, and the mySQL database for storing context. We have not yet built alternatives and
actually replaced the defaults, although we believe this to be a simple task.  The components were designed
to use common mechanisms that can be found in many programming languages and implemented on many



24

platforms. For example, the default communications mechanism that uses HTTP and XML only requires
that a programming language support text parsing and TCP-IP communications, features common in most
languages and available on most platforms.

It is important to point out that the particular implementation choices we make (or have already made) are
not important. We could use existing off-the-shelf components like CORBA (Common Object Request
Broker Architecture) [OMG91] or Jini [Arnold99] or research solutions like Linda [Gelernter85] or the
Open Agent Architecture [Cohen94] to implement the abstractions, requirements and features we have
identified. These or other implementations can be added or replaced through the flexible design of the
architecture. What is important is our hypothesis that this collection of architecture features and
abstractions supports our simpler design process and makes it easy for application developers to build and
evolve their context-aware applications.

There are many features of the architecture that require validation. Some of the validation work has been
performed at this time, through the design and implementation of example applications. A simple
application such as the In Out Board can demonstrate the architecture’s support for the following features:

• support for distribution of context and sensing;
• support event management;
• support independence and availabilit y of components that collect context;
• support for the interpretation of context;
• support for transparent communications; and,
• support for using and building of abstractions.

A more complex application such as the Conference Assistant [Dey99d] (to be described in the next sub-
section) is required to demonstrate the application’s support for:

• support the storing of context history, and
• support for the aggregation of context information.

To demonstrate the final two features of the architecture, flexibili ty/pluggabili ty and the use of language
and platform-independent mechanisms, more work needs to be done. For the first feature, sample
applications that provide their own communications and storage implementations can be implemented. For
the second feature, an implementation of the architecture in a second programming language will suffice. A
partial implementation of the architecture has been performed in Frontier and C++, allowing applications to
be written in both of those languages. Currently, we (and others) are working on a full implementation of
the architecture in C++ and Squeak, to complement our original implementation in Java. We have already
demonstrated that the architecture executes on multiple platforms including UNIX, Windows 95/NT,
Windows CE, and Macintosh.

To validate the ease in which the design process can be followed, new applications built , old applications
evolved, and context components implemented, we intend to provide the architecture to other students
(through the Hackfest class and the Aware Home project [Kidd99]) to use. We would like to compare the
end products of multiple application developers building the same application with our design process, to
see whether we have made the process as simple as possible. We would also like to analyze the time and
the number of lines of code required to develop and implement new and evolving applications. Finally, we
will use anecdotal feedback to determine whether there is additional support we can provide to make use of
the architecture easier. We have some evidence that the architecture is easy to use. Members of our
research group have successfully used the architecture in a timely fashion to build and evolve some
context-aware applications.

6.2.3 Advanced Applications and Research
The third portion of a research is to investigate the architecture’s usefulness as a research platform that can
be used to examine difficult problems in context-aware computing and to build advanced applications. To
ill ustrate this, we propose to do a study of group context. Group context involves multiple entities whose
context is required simultaneously to perform some action. This area of context-aware computing has been
relatively untouched due to the diff iculty in building complex context-aware applications. We intend to



25

study existing research on group interactions to identify some generic mechanisms that are useful when
dealing with group context. If necessary, we will also perform an ethnographic study of one of the
following groups: C2000 research group, CNS, a family in a home setting. We will implement the
identified mechanisms on top of the general context mechanisms already provided in the architecture.
There are two goals for our investigation of group context. The first is to show how the architecture can be
used to as an open framework on which detailed explorations of advanced topics in context-aware
computing can be performed. The second goal is to demonstrate that the architecture simpli fies the design
of complex context-aware applications such as those involving group context.

We have built a number of simple applications with the architecture. In [Salber99], we discussed an In Out
Board, an Information Display, and an informal meeting capture system. The In Out Board keeps track of
occupants of a building, determining whether they are in or out of the building and when they were last
seen. It uses identity, time and location context. A web version additionally uses the location of the person
viewing the board to modify the display. Viewers on the Georgia Tech campus are shown all of the
information, whereas viewers off -campus are shown only in/out status with no time information. The
Information Display is an application that displays information relevant to the user that approaches it. It
uses identity, location, and personal “profile” context. The informal meeting capture system, DUMMBO
[Brotherton98], is an whiteboard that can capture what is written on it and the audio signal created around
it. When multiple people are around DUMMBO, it begins the recording process. When those people leave,
the recording process is stopped. At a later time, the identities of these people and the time of the recording
could be used to retrieve the captured information, as a form of context-based retrieval [Lamming94].
DUMMBO uses identity, time, and location information.

In addition to these applications, we have built a context-aware mail ing list that has knowledge of who is in
a particular building. When users enter the building, they are added to the mail ing list, and when they leave
the building, they are removed from the list. This allows other users to send an email message to a single
consistent email address and have it be received by a dynamically changing group of people, the current
occupants of the building. This application uses only identity and location as context.

A more advanced or complex application that we have built is a prototype context-aware tour guide
application. When a user starts this application, she is asked for a list of personal interests. These interests
are used to generate a set of interesting sites to visit on the tour. When the user visits a site, she is shown
information relevant to that site. She can indicate her level of interest with the site, and this dynamic
information is used to update the list of potentially interesting and unvisited sites. After the tour is over, a
trip report is emailed to the user. This contains information about each site the user visited, including name
of the site, description of the site, time of visit, web address to obtain more information from, and the user’s
level of interest in the site. This tour guide application uses location, identity, time, and personal
preferences as context.

Our most complex application is the prototype Conference Assistant [Dey99d]. This application aids a
conference attendee in determining what presentations to see at a conference, locating her colleagues and
taking notes on presentations. When a user arrives at a conference, he is given a Personal Digital Assistant
(PDA), and asked to enter a list of research interests and the names of his colleagues. The PDA then
displays a schedule for the conference, highlighting the presentations that are potentially interesting to the
user (based on his interests) and indicating the locations of his colleagues, if known. When the user enters a
presentation room, the PDA displays the title of the presentation, the name of the presenter, and a
thumbnail image of the current PowerPoint slide or web page being presented. As the presentation
continues, the display is updated accordingly. The user can enter notes on the current or previous slides and
indicate his level of interest in the presentation. The level of interest information is shared with his
colleagues, just as theirs is displayed to him. In the case where the user is attending a presentation that is
not interesting to him, this information is useful for determining which presentation he may want to move
to. After the conference, the user can use context-based retrieval to retrieve information about the
conference, including his personal notes on the presentations he attended, as well as any presented
information. The user can retrieve this information using the following as indices: keyword, user or
colleague attendance, user or colleague question, or research interests. This application would be diff icult
to build without the context-aware architecture.  It uses similar context (identity, location, time, personal



26

preferences and presented information) as the other described applications, but what makes it complex is
the amount of context used, the dynamic nature of the context, and the likelihood of simultaneous context
updates.

We will continue to build complex applications such as these. In particular, we aim to build applications
that push on many dimensions of scale including time (available 24 hours a day, 7 days a week), space
(available in multiple locations), and number of people (simultaneous use by multiple people). For this
reason, we chose to investigate group context. We have not yet begun our study of group context, but we
have identified one general mechanism that we will need to support. This mechanism supports comparison
between multiple entities. One common feature in group applications is to create a sub-grouping based on a
common piece of information. For example, the people in a given room form an informal group, as do the
people who share a common interest. A general comparison mechanism will ease the development of group
context applications that use this type of feature. We believe that in our study of group context, we will find
additional general mechanisms to support.

6.3 Expected Contr ibutions
There are three expected contributions of this research, one for each of the proposed pieces of research
discussed in the previous sub-section. The first is contribution is an intellectual one. By providing both the
orthogonal dimensions of context and a design process for building context-aware applications, our
research will give application designers a better understanding of context and a novel methodology for
using context. The identification of the minimal set of requirements for context-aware infrastructures will
inform other infrastructure builders in building their own solutions.

The second contribution of our research is to lower the threshold for application designers trying to build
context-aware applications. The goal is to provide an architectural framework that will allow application
designers to rapidly prototype context-aware applications. This framework is the supporting
implementation that allows our design process to succeed. The functionali ty and support requirements have
that will be implemented in our architecture handles the time-consuming and mundane low-level details in
context-aware computing, allowing application designers to concentrate on the more interesting high-level
details involved with actually acquiring and acting on context. The architecture will use lightweight
integration mechanisms allowing for the easy addition of context to non-context-aware applications.

The third contribution of our research is to raise the ceili ng in terms of what researchers can accomplish in
context-aware computing. The context architecture will allow researchers to more easily investigate
problems that were seen as difficult before. These problems include both architectural issues and
application issues. For example, on the architecture side, an interesting issue that can now be pursued is the
use of uncertain context information and how to deal with it in a generic fashion. The architecture with its
required set of supporting mechanisms will provide the necessary building blocks to allow others to
implement a number of higher-level features for dealing with context. On the application side, the context
architecture will allow designers to build new types of applications that were previously seen as difficult to
build. This includes context-aware applications that scale along several dimensions, such as multiple
locations, multiple people, always available, with simultaneous and independent activity.

7 Timetable for Completion

In this section, we will provide a timeline for completing the remaining work that was outlined in the
previous section.

Task Complete By

Part 1: Investigation of Context
Identification of the orthogonal dimensions of context March 2000

Part 2: Implementation of the Architecture
Implementation of resource discovery October 1999



27

Validation of flexibili ty/pluggabili ty October 1999
Validation of language-independent mechanisms December 1999
Provide architecture to students with plans for testing ease of use September 1999
Study ease of use March 2000

Part 3: Advanced Applications and Research
Investigation of group context March 2000
Implementation of example group context applications September 2000

Part 4: Dissertation
Defense of Research December 2000
Submission of Thesis March 2001

Bibliography

Abowd97a: Gregory D. Abowd, Chris G. Atkeson, Jason Hong, Sue Long, Rob Kooper & Mike
Pinkerton, Cyberguide: A mobile context-aware tour guide, ACM Wireless Networks,
3(5), 1997, pp. 421-433. (cited on page 11)

Abowd97b: Gregory D. Abowd, Anind K. Dey & Andy Wood, Applying dynamic integration as a
software infrastructure for context-aware computing, Georgia Tech Technical Report,
GIT-GVU-97-18, September 1997. (cited on page 14)

Abowd99: Gregory D. Abowd, Anind K. Dey, Jason Brotherton & Robert J. Orr, Context-awareness
in wearable and ubiquitous computing, Virtual Reali ty 3, 1999, pp. 200-211. (cited on
page 15)

Adly97: Noha Adly, Pete Steggles & Andy Harter, SPIRIT: A resource database for mobile users,
in Proceedings of the  CHI ’97 Workshop on Ubiquitous Computing, March 1997. (cited
on page 9)

Arnold99: Ken Arnold, Bryan O’Sulivan, Robert W. Scheifler, Jim Waldo & Ann Wolrath, The Jini
specification, 1st edition, Addison-Wesley Publishing Company, June 1999. (cited on
page 24)

Bauer98: Martin Bauer, Timo Heiber, Gerd Korteum & Zary Segall , A collaborative wearable
system with remote sensing, in Proceedings of 2nd International Symposium on Wearable
Computers, ISWC ’98, October 1998, pp. 10-17. (cited on page 9)

Brooks87: F.P. Brooks, No silver bullet: Essence and accidents of software engineering, IEEE
Computer, 20(4), April 1987, pp. 10-19. (cited on page 6)

Brotherton98: Jason A. Brotherton, Gregory D. Abowd & Khai N. Truong, Supporting capture and
access interfaces for informal and opportunistic meetings, Georgia Tech Technical
Report, GIT-GVU-99-06, December 1998. (cited on page 25)

Brown96:  Peter J. Brown.  The stick-e document: A framework for creating context-aware
applications, in Proceedings of EP ’96. (cited on page 13)

Brown97: Peter J. Brown, John D. Bovey & Xian Chen, Context-aware applications: From the
laboratory to the marketplace, IEEE Personal Communications, 4(5), October 1997, pp.
58-64. (cited on page 14)



28

Brumitt99: Barry Brumitt, John Krumm, Brian Meyers & Steven Shafter, EasyLiving: Ubiquitous
computing and the role of geometry, Position paper for the Inter-Agency Workshop on
Research Issues for Smart Environments, July 25-26, 1999. (cited on page 23)

Clark91: H.H. Clark & S.E. Brennan, Grounding in communication, in L.B. Resnick, J. Levine, &
S.D. Teasley (editors.), Perspectives on socially shared cognition, Washington, DC. 1991.
(cited on page 2)

Cohen94: Phili p R. Cohen, Adam Cheyer, Michelle Wang & Soon Cheol Baeg, An open agent
architecture, in Proceedings of AAAI Symposium Series on Software Agents, March
1994, pp. 1-8. (cited on pages 13, 24)

Cooperstock97: Jeremy Cooperstock, Sidney Fels, Willi am Buxton & K. Smith, Reactive environments:
Throwing away your keyboard and mouse, Communications of the ACM 40(9), 1997, pp.
65-73. (cited on page 12)

Davies97: Nigel Davies, S.P. Wade Adrian Friday & G.S. Blair, Limbo: A tuple space based
platform for adaptive mobile applications, in Proceedings of International Conference on
Open Distributed Processing/Distributed Platforms, ICODP/ICDP '97, May 1997. (cited
on page 12)

Dey97: Anind K. Dey, Gregory D. Abowd, Mike Pinkerton & Andy Wood, CyberDesk: A
framework for providing self-integrating ubiquitous software services, Georgia Tech
Technical Report, GIT-GVU-97-10, April 1997. Presented as a demonstration in the
Proceedings of User Interface Software and Technology, UIST ’97, November 1997, pp.
75-76. (cited on page 14)

Dey98a: Anind K. Dey, Gregory D. Abowd & Andy Wood, CyberDesk: A framework for
providing self-integrating context-aware services, in Proceedings of Intell igent User
Interfaces, IUI ’98, January 1998, pp. 47-54. (cited on page 14)

Dey98b: Anind K. Dey, Context-aware computing: The CyberDesk Project, in Proceedings of
AAAI Spring Symposium on Intelligent Environments, AAAI Technical Report SS-98-
02, March 1998, pp. 51-54. (cited on page 14)

Dey99a: Anind K. Dey, Gregory D. Abowd & Andy Wood, CyberDesk: A framework for
providing self-integrating context-aware services, Knowledge-Based Systems 11, 1999,
pp. 3-13. (cited on page 14)

Dey99b: Anind K. Dey & Gregory D. Abowd, Towards a better understanding of context and
context-awareness, Georgia Tech Technical Report, GIT-GVU-99-22, June 1999. (cited
on pages 3, 9)

Dey99c: Anind K. Dey, Daniel Salber, Masayasu Futakawa & Gregory D. Abowd. An architecture
to support context-aware applications, Georgia Tech Technical Report, GIT-GVU-99-23,
June 1999. (cited on page 23)

Dey99d: Anind K. Dey, Masayasu Futakawa, Daniel Salber & Gregory D, Abowd. The
Conference Assistant: Combining context-awareness with wearable computing, To be
presented at the 3rd International Symposium on Wearable Computers, ISWC ’98,
October 1999. (cited on pages 24, 25)

DS98: Java iButtonsTM manufactured by Dallas Semiconductor Incorporated, web page
available at http://www.ibutton.com. (cited on page 6)



29

Friday96: Adrian J. Friday, Infrastructure support for adaptive mobile applications, Ph.D. Thesis,
Lancaster University, September 1996. (cited on page 13)

Gelernter85: David Gelernter, Generative communication in Linda, ACM Transactions on
Programming Languages and Systems 2(1), January 1985, pp. 80-112. (cited on page 24)

Harrison98: Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos Mochon & Roy Want,
Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces, in
Proceedings of Conference on Human Factors in Computing Systems, CHI ’98, April
1998, pp. 17-24. (cited on page 11)

Harter94: Andy Harter & Andy Hopper, A distributed location system for the Active Off ice, IEEE
Network 8(1), January 1994, pp. 62-70. (cited on page 9)

Harter99: Andy Harter, Andy Hopper, Pete Steggles, Andy Ward & Paul Webster, The anatomy of
a context-aware application, to be presented at MobiCom ’99, August 1999. (cited on
page 9)

Hull97: Richard Hull , Phili p Neaves & James Bedford-Roberts, Towards situated computing, in
Proceedings of 1st International Symposium on Wearable Computers, ISWC ’97, October
1997. (cited on page 15)

Kidd99: Cory K. Kidd, Robert J. Orr, Gregory D. Abowd, Christopher G. Atkeson, Irfan A. Essa,
Blair MacIntyre, Elizabeth Mynatt, Thad E. Starner & Wendy Newstetter, The Aware
Home: A living laboratory for ubiquitous computing research, in Proceedings of the 2nd

International Workshop on Cooperative Buildings, CoBuild ’99, October 1999. (cited on
page 24)

Korteum98: Gerd Korteum, Zary Segall & Martin Bauer, Context-aware, adaptive wearable
computers as remote interfaces to ‘ intell igent’ environments, in Proceedings of 2nd

International Symposium on Wearable Computers, ISWC ’98, October 1998, pp. 58-65.
(cited on pages 9, 13)

Lamming94: Lamming, Brown, Carter, Eldridge, Flynn, Robinson, & Sellen, The design of a human
memory prosthesis, Computer Journal 37(3), 1994, pp. 153-163. (cited on page 25)

Long96: Sue Long, Rob Kooper, Gregory D. Abowd & Christopher G. Atkeson, Rapid
prototyping of mobile context-aware applications: The Cyberguide case study, in
Proceedings of the 2nd ACM International Conference on Mobile Computing and
Networking, MobiCom ’96, November 1996. (cited on page 11)

Mynatt98: Elizabeth D. Mynatt, Maribeth Back, Roy Want, Michael Baer & Jason B. Elli s,
Designing Audio Aura, in Proceedings of Conference on Human Factors in Computing
Systems, CHI ’98, April 1998, pp. 566-573. (cited on pages 9, 13)

Nelson98: Giles J. Nelson, Context-aware and location systems, Ph.D. Thesis, University of
Cambridge, January 1998. (cited on pages 5, 15, 23)

OMG91: Object Management Group, The common object request broker: Architecture and
specification, Revision 1.1, OMG Document Number 91.12.1, December 1991. (cited on
page 24)

Pascoe98: Jason Pascoe, Adding generic contextual capabiliti es to wearable computers, in
Proceedings of 2nd International Symposium on Wearable Computers, ISWC ’98,
October 1998, pp. 92-99. (cited on page 8, 9 ,15)



30

Pederson97: E.R. Pederson & T. Sokoler, AROMA: Abstract representation of presence supporting
mutual awareness, in Proceedings of Conference on Human Factors in Computing
Systems, CHI ’97, March 1997, pp. 51–58. (cited on page 12)

Rekimoto96: Jun Rekimoto. Tilti ng operations for small screen interfaces, in Proceedings of User
Interface Software and Technology, UIST ’96, November 1996, pp. 167-168. (cited on
page 11)

Richardson95: Tristan Richardson, Teleporting – Mobile X sessions, in Proceedings of the 9th X
Technical Conference, January 1995. (cited on page 9)

Rodden98: Tom Rodden, Keith Cheverst, Nigel Davies & Alan Dix, Exploiting context in HCI
design for mobile systems, in Proceedings of Workshop on Human Computer Interaction
with Mobile Devices, HCIMD ’98, May 1998. (cited on page 17)

Salber99: Daniel Salber, Anind K. Dey & Gregory D. Abowd, The Context Toolkit: Aiding the
development of context-enabled applications, in Proceedings of Conference on Human
Factors in Computing Systems, CHI ’99, May 1999, pp. 434-441. (cited on page 18, 23,
25)

Schil it94a: Willi am N. Schilit , Norman I. Adams & Roy Want, Context-aware computing
applications, in Proceedings of the 1st International Workshop on Mobile Computing
Systems and Applications, December 1994, pp. 85-90. (cited on page 9)

Schil it94b: Willi am N. Schilit & Marvin Theimer, Disseminating Active Map information to mobile
hosts, IEEE Network, 8(5), September/October 1994, pp. 22-32. (cited on page 4)

Schil it95: Willi am N. Schilit , System architecture for context-aware mobile computing, Ph.D.
Thesis, Columbia University, May 1995. (cited on pages 9, 14)

Schmidt98: Albrecht Schmidt, Michael Beigl & Hans-Werner Gellersen, There is more to context
than location, in Proceedings of Interactive Applications of Mobile Computing, IMC’98,
November 1998. (cited on page 9)

Schwartz92: M.F Schwartz et al., A comparison of internet resource discovery approaches, Computing
Systems, Fall 1992, pp. 461-493. (cited on page 18)

Ullmer97: Brygg Ullmer & Hiroshi Ishii ., The metaDESK: Models and prototypes for tangible user
interfaces, in Proceedings of User Interface Software and Technology, UIST ’97, October
1997. (cited on page 12)

Want92: Roy Want, Andy Hopper, Veronica Falcao & Jonathan Gibbons.  The Active Badge
location system, ACM Transactions on Information Systems 10(1), January 1992, pp.
91–102. (cited on pages 8, 12, 17)

Want95: Roy Want, Bill N. Schilit , Norman I. Adams, Rich Gold, Karin Petersen, David
Goldberg, John R. Elli s & Mark Weiser, An overview of the PARCTab ubiquitous
computing experiment, IEEE Personal Communications, 2(6), December 1995, pp. 28-
43. (cited on page 8)

Ward98: Andrew M.R. Ward, Sensor-driven computing, Ph.D. Thesis, University of Cambridge,
August 1998. (cited on page 9)

Weiser91: Mark Weiser.  The computer for the 21st century, Scientific American 265(3), September
1991, pp. 94-104. (cited on page 2)



31

Weiser96: Mark Weiser & John S. Brown.  Designing calm technology, PowerGrid Journal 1.01,
July 1996. (cited on page 2)

Whitehead99: E. James Whitehead, Jr., Rohit Khare, Richard N. Taylor, David S. Rosenblum &
Michael M. Gorlick. Architectures, protocols, and trust for info-immersed active
networks, Position paper for the Inter-Agency Workshop on Research Issues for Smart
Environments, July 25-26, 1999. (cited on page 6)


