Providing Architectural Support for
Building Context-Aware Applications

A Dissertation Propaosal
Presented To
The Faculty of the Division d Graduate Studies

By

Anind K. Dey

In Partial Fulfill ment
of the Requirements for the Degree of
Doctor of Philosophy in Computer Science

Coll ege of Computing
Georgia Institute of Tedndogy
August 1999

Contents

Abstract
1 Introduction: Motivation for Context-Aware Computing

2 What is Context
2.1 Context
2.2 Context-Aware

3 Motivation for Our Research: Why Context-Aware Applications are

Difficult to Build
3.1 Design Process
3.1.1 Using the Design Process
3.2 Esential and Acddental Activities
3.2.1 Spedficdion
3.2.2 Acquisition
3.2.3 Delivery
3.2.4 Receotion
3.2.5Action
3.3 Resulting Problems
3.3.1 General Ladk of Context-Aware Applicaions
3.3.2 Lack of Variety of Sensors Used
3.3.3 Lack of Variety of Types of Context Used
3.3.4 Inability to Evolve Applications
3.4 Overview of the Difficulty in Building Context-Aware Applications

4 Related Work
4.1 Tight Coupling
4.1.1 Manipulative User Interfaces
4.1.2 Tilti ng Interfaces
4.1.3 Cyberguide
4.2 Use of Sensor Abstradions
4.2.1 Active Badge
4.2.2 Readive Room
4.3 Beyond Sensor Abstradions
4.3.1 AROMA
4.3.2 metaDesk
4.3.3 Limbo
4.3.4NETMAN
4.3.5 Open Agent Architedure
4.3.6 Audio Aura
4.4 Context-Aware Architedures
4.4.1 Stick-e Notes
4.4.2 CyberDesk
4.4.3 Schilit’s System Architedure
444 CALAIS
4.5 Proposed Systems
4.5.1 Situated Computing Service
4.5.2 Context Information Service
4.6 Overview of Related Work

A wWw

Boowowwoowo~N~N~N~No oo

5 Architecture Features
5.1 Requirements
5.1.1 Support for the Distribution of Context and Sensing
5.1.2 Support Event Management
5.1.3 Support Independence and Avail abili ty of Components that Coll ed Context
5.1.4 Support for the Interpretation of Context
5.2 Useful Features
5.2.1 Support for the Storing of Context History
5.2.2 Support for the Aggregation of Context Information
5.2.3 Support for Transparent Communicaions
5.2.4 Support for Resource Discovery
5.2.5 Support for the Using and Buil ding of Abstradions
5.2.6 Support for Flexibility
5.2.7 Use of Language and Platform-1ndependent Mechanisms
5.3 Revisiting the Design Process
5.3.1 Spedficaion
5.3.2 Acquisition
5.3.3 Delivery
5.3.4 Receotion
5.3.5 Action
5.4 Revisiting Problems Due to Ad Hoc Development
5.4.1 Lack of Context-Aware Applications
5.4.2 Lack of Variety of Sensors
5.4.3 Lack of Variety of Context Types
5.4.4 Inability to Evolve Applicaions
5.5 Overview of Architedure Feaures

6 Research Goals
6.1 Thesis Statement
6.2 Research Goals
6.2.1 Investigation of Context
6.2.2 Implementation of Architecdure
6.2.3 Advanced Applications and Reseach
6.3 Expeded Contributions

7 Timetable for Completion

Bibliography

16
16
16
17
17
17
17
18
18
18
18
19
19
19
20
20
20
20
20
20
20
21
21
21
21
21

22
22
22
22
23
24
26

26

27

ABSTRACT

Computers generally do not have acessto situational information or context. Context can from users and
from the ewironment. By providing accessto context, we can improve the aility of computers to read to
changes in the ewironment and to suppart us in changing situations. In this thesis propaosal we provide
further motivation for the use of context. We provide adefinition of context and context-awareness and
discuss me important feaures of both. We show that becaise mntext-aware gplications are usually built
in an ad ha manner, they are difficult to build and evolve. We identify a novel and simple design process
for building context-aware gplications and dscussthe necessary feaures of an architedure that supparts
the buil ding process We present our thesis gatement:

By identifying, implementing and supporting the right abstractions and services for

handing contex, we an construct a framework that makes it easier to design, build and

ewlve ontext-aware applications.
We describe the work that we have completed in proving this thesis satement and the work remaining. We
present the goals of our reseach and present our expeded contributions in the understanding of context,
supparting the building and evolving of context-aware gplicaions and providing a framework for
investigating complex reseach issues in context-aware computing. Finaly, we provide atimeline for
completing thisthesis reseach.

1INTRODUCTION: Motivation for Context-Aware Computing

Humans are quite successful in conveying ideas to ead other and reading appropriately. This is due to
many fadors: e.g. the richness of the language they share, the cmmmon urderstanding of how the world
works, and an impli cit understanding of everyday situations. When humans talk with humans, they are ale
to use implicit situational information, or contex, to increase the mnversational bandwidth. Unfortunately
this ability to convey ideas does not transfer well to humans interading with computers. Computers do not
understand our language, do not understand how the world works and have no implicit understanding of
situations. In traditional interadive cmputing, users have an impoverished mechanism for providing input
to computers, using a keyboard and mouse. We trandate what we want to acaomplish into spedfic minutiae
on how to acomplish the task, and then use the keyboard and mouse to articulate these details to the
computer so that it can exeaute our commands. This is nothing like our interadion with other humans.
Consequently, computers are not currently enabled to take full advantage of the context of the human-
computer dialogue. By improving the cmputer's access to context, we increase the richness of
communication in human-computer interadion and make it possble to produce more useful computational
Services.

Why is interading with computers © dfferent than interading with humans? There ae three problems,
deding with the three parts of the interadion: input, understanding of the input, and output. Computers
cannot processand understand information as humans can. They cannot do more than what programmers
have defined them to doand that limits their ability to understand our language and our adivities. Our input
to computers has to be very explicit so that they can handle it and determine what to do with it. After
handling the input, computers display some form of output. They are much better at displaying their current
state and providing feedbadk in ways that we understand. They are better at displaying output than handling
input because they are ale to leverage off of human abiliti es. A key reason for thisis that humans have to
provide input in a very sparse, non-conventional language whereas computers can provide output using rich
images. Programmers have been striving to present information in the most intuitive ways to users, and the
users have the aility to interpret a variety of information. Then arguably, the difficulty in interacing with
computers stems mainly from the impoverished means of providing information to computers and the ladk
of computer understanding of this input. So, what can we do to improve our interaciion with computers on
these two fronts?

On the understanding issue, there is an entire body of reseach dedicaed to improving computer
understanding. Obvioudly, this is a far-reading and dfficult goal to achieve and will take time. The

reseach we ae proposing does not address computer understanding but attempts to improve human-
computer interacion by providing richer input to computers.

Many reseach fields are dtempting to address this input deficiency but they step mainly from 2 basic
diredions:
» improving the language that humans can use to interad with computers,
* increasing the amount of situational information, or contex, that is made available to
computers

The first approach tries to improve human-computer interacion by allowing the human to communicae in
a much more natural way. This type of communicationis gill very explicit where the cmputer only knows
what the user tells it. With natural input techniques like speed and gestures, no ather information besides
the explicit input is available to the computer. As we know from human-human interadions, situational
information such as fadal expressons, emotions, past and future events, the existence of other peoplein the
room, relationships to these other people, etc., is crucial to understanding what is occurring. The processof
buil ding this shared understanding is cdled grounding [Clark91]. Since both participants in the interadion
share this situational information, there is no need to make it explicit. However, this neal for explicitness
does exist in human-computer interadions, becaise the computer does not share this implicit situational
information or context.

The two types of techniques (use of more natural input and use of context) are quite cmplementary. They
are bath trying to increase the richness of input from humans to computers. The first technique is making it
easier to input explicit information and the second technique is alowing the use of unused implicit
information that can be vital to understanding the explicit information. It is this oond technique that we
are primarily interested in. We ae dtempting to use @ntext as an implicit cue to enrich the impoverished
interadion from humans to computers.

So how do application developers provide the mntext to the computers, or make those gplications aware
and responsive to the full context of human-computer interadion and human-environmental interadion?
We ould require users explicitly to express all information everything relevant to a given situation.
However, the goal of contex-aware computing, applications that use context, should be to make interading
with computers easier. Forcing users conscioudly to increase the amount of information they have to input
is making this interacion more difficult and tedious. Furthermore, it is likely that most users will not know
which information is potentially relevant and, therefore, will not know what information to provide.

We want to make it easier for users to interad with computers, not harder. Weiser coined the term
“ubiquitous computing” to describe cmputing that is invisible in use [Weiser91], and the term “cdm
technology” to describe an approach to ubiquitous computing, where cmputing moves badk and forth
between the center and periphery of the user’'s attention [Weiser96]. Here, the ideais to make interading
with computers and the environment easier, allowing wsers to not have to think consciously about using the
computers. To this end, our approach to context-aware gplicaion development is to colled implicit
contextual information through automated means, make it easily available to a computer’s run-time
environment and let the goplication designer dedde what information is relevant and how to ded with it.
Thisisthe better approad, for it removes the need for users to make dl information explicit and it puts the
dedsions about what is relevant into the designer’s hands. The gplicaion designer should have spent
considerably more time analyzing the situations under which their applicaion will be exeauted and can
more gpropriately determine what information could be relevant and how to read to it.

The neead for context is even geaer when we move into non-traditional, off-the-desktop computing.
Mobile cmputing and ubiquitous computing have given users the expedation that they can access
information and services whenever and wherever they are. With computers being used in such a wide
variety of situations, interesting rew problems arise and the need for context is clea. Users are trying to
obtain different information from the same services in different situations. Context can be used to help
determine what information or services to make available or to bring to the forefront for users. The
increased avail ability of commercial, off-the-shelf sensing technologies is making it more viable to sense
context in a variety of environments. The prevalence of powerful, networked computers makes it passble

to use these technologies and dstribute the cntext to multiple goplications, in a somewhat ubiquitous
fashion. Mobhile computing allows users to move throughout an environment while carying their
computing power with them. Combining this with wirelesscommunications all ows users to have accss to
information and services not avail able on their portable cmputing device The increase in mobili ty creaes
situations where the user’s context, such as her locdion and the people and oljeds around her, is more
dynamic. With ubiquitous computing, users move throughout an environment and interad with computer-
enhanced oljeds within that environment. This also all ows them to have accss to remote information and
services. With a wide range of posshle user situations, we neel to have a way for the services to adapt
appropriately, in order to best support the human-computer and human-environment interadions.

Applications that use mntext, whether on a desktop a in a mohile or ubiquitous computing environment,
are cdled context-aware. These types of applications are becoming more prevalent and can be found in the
aress of weaable computing, mobile mmputing, robdics, adaptive and intelligent user interfaces,
augmented redity, adaptive cmmputing, intelligent environments and context-sensitive interfaces. It is not
surprising that in most of these aeas, the user is mobile and her context is changing rapidly.

We have motivated the need for context, bath in improving the input ability of humans when interading
with computers in traditional settings and also in dynamic settings where the mntext of use is potentially
changing rapidly. In the next sedion, we will provide abetter definition of context and discuss our efforts
in achieving a better understanding of context.

2 WHAT ISCONTEXT?

Redizing the need for context is only the first step towards using it effedively. Most reseachers have a
genera idea dout what context is and use that general ideato guide their use of it. However, a vague
notion of context is not sufficient; in order to effedively use cntext, we must attain a better understanding
of what context is. A better understanding of context will enable gplicaion designers to choose what
context to use in their applicaions and provide insights into the types of data that need to be supparted and
the astradions and mechanisms required to suppat context-aware mmputing. We have completed an
extensive survey on the field of context-aware computing. From this survey, we produced new definitions
for context and context-awareness [Dey99h]. We dso attempted to creae cdegories of context and context-
aware features. In this dion, we will present the definitions and important fegures.

2.1 Context
Following is our definition of context.

Contex is any information that can be used to characterize the situation d an entity. An
entity isa person, place or objed that is considered relevant to the interaction between a
user and an application, including the user and appli cation themselves.

Context-aware gplicaions look at the who's, where's, when's and what’s (that is, what the user is doing)
of entities and use this information to determine why a situation is occurring. An applicaion does not
adually determine why a situation is occurring, but the designer of the gplication does. The designer uses
incoming context to determine why a situation is occurring and uses this to encode some adion in the
applicaion. For example, in a mntext-aware tour guide, a user carrying a handheld computer approaches
some interesting site resulting in information relevant to the site being displayed on the computer. In this
situation, the designer has encoded the understanding that when a user approaches a particular site (the
‘incoming context’), it means that the user is interested in the site (the ‘why’) and the gplicaion should
display some relevant information (the ‘adion’).

There ae certain types of context that are, in pradice, more important than others. These ae location,
identity, activity and time. Locaion, identity, time, and adivity are the primary context types for
charaderizing the situation of a particular entity. These context types not only answer the questions of who,
what, when, and where, but also ad as indices into ather sources of contextual information. For example,
given a person's identity, we @n aaqquire many pieces of related information such as phone numbers,

addresses, email addresses, birthdate, list of friends, relationships to ather people in the environment, etc.
With an entity’s locaion, we @an determine what other objeds or people ae nea the eitity and what
adivity is occurring nea the entity. From these examples, it should be evident that the primary pieces of
context for one entity can be used as indices to find seconday context (e.g., the email addresg for that
same entity as well as primary context for other related entiti es (e.g., other people in the same location).

In this initial categorization, we have asimple two-tiered system. The four primary pieces of context
already identified comprise the first level. All the other types of context are on the second level. The
semndary pieces of context share a @mmon charaderistic: they can be indexed by primary context
because they are atributes of the entity with primary context. For example, a user’s phone number is a
pieceof seandary context and it can be obtained by using the user’s identity (primary context) as an index
into an information spacelike aphone direcory. There ae some situations in which multiple pieces of
primary context are required to index into an information space For example, the forecasted wedher is
context in an outdoar tour guide that uses the information to schedule atour for users. To obtain the
forecasted weather, both the location (primary context) for the forecast and the date of the desired forecast
(primary context) are required.

This first attempt at a cdegorizaion of context is clealy incomplete. It does not include hierarchicd or
containment information and we have found examples where the primary-secmndary distinction is quite
blurred. An example of hierarchicad or containment information for locdion isa point in aroom. That point
can be defined in terms of coordinates within the room, by the room itself, the floor of the building the
roomisin, the buil ding, the dty, etc [Schilit 94k]. It is not clea how our caegorizaion helps to suppart this
notion of hierarchicd knowledge. An example of primary-secondary blurring is with a person’s identity. Is
a person identified by their name, a phone number, or an email address? Which of these is primary context
and which is sondary context. Each of these identity pieces can be used to derive the other. We will
continue our effort to attain a better understanding of context and how it is used and to identify the
orthogonal dimensions of context.

2.2 Context-Aware
We have identified a novel classificaion for the different ways in which context is used, that is, the
different context-aware feaures. Following is our definition of context-awareness

A system is context-aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on the user’ s task.

The mntext-aware fedures we have identified are
1) presentation of information and services to a user;
2) automatic exeation of aservice and
3) taggngof context to information for later retrieval.

An example of the first feaure is a mohile mmputer that dynamicdly updates alist of closest printers asits
user moves through a building. An example of the second fedure is when the user prints a document and it
is printed on the dosest printer to the user. An example of the third feaure is when an application recrds
the names of the documents that the user printed, the times when they were printed and the printer used in
ead case. The user can than retrieve this information later to help him determine where the printouts are
that he forgot to pick up.

Our definition of context-aware has provided us with a way to conclude whether an applicaion is context-
aware or not. This has been useful in determining what types of applicaions we want to suppart. Our
caegorizaion of context-aware feaures provides us with two main benefits. The first is that it further
spedfies the types of applications that we must provide suppart for. The second benefit is that it shows us
the types of features that we shoud be thinking about when buil ding our own context-aware gpli cations.

3 MOTIVATION FOR OUR RESEARCH: Why Context-Aware Applications are
Difficult to Build

In the first section, we described why context-aware @wmputing is an interesting and relevant field of
research in computer science In the second sedion, we identified definitions and feaures of context and
context-awarenessto provide abetter understanding of the scope of the goplications that we would like to
suppart. In this sdion, we will discusswhy these gpli cations have traditionally been so dfficult to build.

What has hindered appli cations from making greaer use of context and from being context-aware? A major
problem has been the lack of uniform suppart for building and executing these types of applications. Most
context-aware gplicaions have been built in an ad ha or per-applicaion manner, heavily influenced by
the underlying technology used to aaquire the mntext [Nelson98]. This results in a ladk of generality,
requiring each new applicaion to be built from the ground up. To understand this difficulty, we need to
examine the design processfor buil ding these gplicaions.

3.1 Design Process

We have identified a design processfor building context-aware applicalions. We believe that the difficulty
in bulding context-aware gplicaions has been the lack of infrastructure-level support for this design
process The design process(adapted from [Abowd99]) is as foll ows:

1 Spedfication: Spedfy the problem being addressed and a high-level solution
la Spedfy the cntext-aware behaviors to implement
1b Determine what context isrequired for these behaviors

2 Acquisition: Determine what hardware or sensors are avail able to provide that context.
2a Install the sensor onthe platform it requires.
2b Understand exadly what kind of data the sensor provides.
2c If no applicaion programming interface (API) is avail able, write software that
speaks the protocol used by the sensor.
2d If thereisan AP, lean to use the API to communicate with the sensor.
2e Determine how to query the sensor and how to be natified when changes occur.
2f Interpret the context, if applicable.
3 Dedlivery: Provide methods to support the delivery of context to ore or more, possbly
remote, applications.
4 Reception: Work with the context.
da Receve or request the context.
4b Convert it to ausedble form through interpretation
4c Analyzetheinformation to determine usefulness
5 Action: If context is useful, perform context-aware behavior.
5a Analyze the ontext treding it as an independent variable or by combining it
with ather information colleded in the past or present.
5b Choose mntext-aware behavior to perform

We will show that for these first four steps, there ae genera infrastructure-level supparting mechanisms
that are required by all but the most trivial context-aware gplicaions. The last step is applicaion/service-
spedfic and we may not be ale to identify or apply general mechanisms to suppart them. It isimportant to
note that the goal of a mntext-aware gplication designer is to provide ontext-aware services. The
designer does not want to worry abou the initial steps, but instead would like to concentrate on the adual
context-aware behaviors. Furthermore, it isthese initial steps that make buil ding context-aware gplications
difficult and time-consuming.

3.1.1 Using the Design Process

To illustrate the design process we will discuss how an In Out Board applicaion would have been
developed without any supparting mechanisms. Here, the In Out Board applicaion is in a remote location
from the sensors being used. In the first step of the design process spedfi cation, the developer spedfies the
context-aware behavior to implement. In this case the behavior being implemented is to display whether
occupants of a building are in or out of the building and when they were last seen (step 1a). Also, the
developer determines what context is needed. In this case, the relevant context is location, identity and time
(step 1b. The second step, acquisition, is where the developer deds diredly with the sensors. Sensors can
be hardware or software-based, providing both red-world context such as location and identity, and virtual
context such as the name of the last file auser read. Java iButtons™ [DS98] are dhosen to provide the
location and identity context. An iButton™ is a microprocesr that contains a unique identity. This identity
can be read when the iButton™ is docked with areader. A reader isinstalled on a PC, at the entranceto the
reseach lab (step 2a). The reader combined with the iButton provides an abstrad identity — rather than
providing a name which is what the developer wants, the iButton provides a 16 charader hexadeamal
value (step 2b). The locaion context is sSmply the locaion of the installed reader, and time @ntext is
determined from the PC being used. The iButton™ and reader come with an API, so the developer writes
supparting code that reads the astrac identity when an iButton™ is docked with a reader (step 2b/c). This
code must suppart both querying and notificaion of events (step 2e), where, informaly, an event is a
timely difference that makes a difference [Whitehead99. Querying allows an applicaion to determine
current status and notification alows an application to maintain its knowledge of status over a period d
time. The final step in aqquisition is to interpret the mntext, if possble and applicable. While the éstrad
identity does need interpretation into an adual user name, the interpretation is usualy left to the
applicaion.

The third step, delivery, deds with making context available to a remote gplicaion. Here, the developer
must design and implement a cmmunications protocol for allowing applications to access the aguired
context. The protocol must provide suppat for both querying and notification schemes and must be
conneded to the @mde that acually aayuires the mntext. Finally, a @mmunicaions mechanism must be
developed to suppart the protocol, allowing the gplicaion to adually communicae with the sensor (and
associated code).

In the fourth step, reception, the developer begins to work on the gplicaion side of the problem, asking
the sensor for context and performing some initial analysis. The In Out Board needs to acquire aurrent state
information for who is in and who is out of the building, so it queries the sensor. It wants to maintain
acarate state information, so it also subscribes to the iButton™ asking to be notified of relevant changes
(step 4a). To recave the context, the gplicaion must adhere to the same protocol and communicaions
mechanism that the iButton™ uses (from step 3). The mmmunications is written to spedficaly ded with
the iButton™ and acammpanying code. Once the gplicaion recéves context information (locaion of the
reader, abstrad identity and time of docking), it must convert the astrad identity to a usable form (step
4b). It can use asimple hash table that has an associated user name for ead abstrad identity. After this
interpretation, it analyzes the information to seeif the cntext is useful. In this case, it means whether the
iButton™ user was a registered user of the In Out Board (step 4c). If so, the gplicaion can use the mntext;
otherwise, it discards the antext and waits for new context to arrive.

In the fifth and final step, action, the developer adually uses the context to implement and perform some
context-aware behavior. The gplication must determine if the mntext it receéved was for a user arriving or
leaving the building. When new useful context arrives for a given user, that user’s state is toggled from in
to out, or vice-versa (step 54). Finally, the developer can ad on the context, and display the user’s new state
on the In Out Board (step 5b).

3.2 Essential and Accddental Activities

In his famous essay on software engineeing pradices, Fred Brooks distinguished essential and acddental
adivities in software development [Brooks87]. Esentia adivities are fundamental to constructing a piece
of software and include understanding a problem and modeling a solution for that problem. Acddental
tasks are ones that are only necessary because suppart is not avail able to handle or take cae of them. If we
can reduce the design processfor buil ding context-aware gplicationsto a set of essential adivities, we can

ease the burden of building these types of applications. We will now discuss the design processin terms of
Brooks esential and acddental adivities.

3.2.1 Spedfication
In step one, a mntext-aware gplicaion designer must spedfy and analyze the context-aware behaviors.
From this analysis, the designer will determine and spedfy the types of context she requires. This is an
essential adivity, for without it, there can be no use of context. This dep isthe focd point of modeling and
designing context-aware gplicaions, and typicdly impads the rest of the gplication design.

3.2.2 Acquisition
In step two, the gplicaion designer determines what sensors, hardware or software, are available to
provide the spedfied context from step one. This gep can be essential or acddental, depending on the
sensor chosen. If the sensor has been used before, then this g¢ep and all of its sub-steps are acédental.
These steps dhould already have been performed and the resulting solution(s) should be reusable by the
applicaion designer.

If the sensor has not been used before, then all of the difficult sub-steps must be completed. Install ation of a
sensor can be particularly troublesome when the platform required by the sensor does not match the
platforms avail able or being wsed by the gplication. It could require the use of distributed computation
and/or multiple types of computing platforms, both of which cause burdens to applicaion programmers.
Acquiring data from a sensor is a time-consuming and dfficult step. The designer must understand exadly
the type of data provided by the sensor, in order to determine what context information can be derived from
it. For example, a global paositioning system (GPS) receéver and a smart card with accompanying reader
may both appea to provide locaion context. In fadt, the GPS recaver does provide aurrent and continuous
latitude and longitude locaion information. However, the smart card reader only indicaes the presence of
an individual at a particular locaion for a particular instant in time. While both of these can be seen as
providing locaion information, they provide quite distinct information.

If an API isnot avail able for the sensor, the gplication designer must determine how to communicae with
the sensor and aayuire the necessary data. If an APl is avail able, the designer usually has an easier job in
aqquiring the sensor’s data. But she still has to ensure that there is functionality avail able to suppart both
guerying of the sensor and notification by the sensor when data changes. After the context information has
been aqquired, it must be converted into a useful form. This can either happen at the sensor level or at the
applicaion level. If done & the sensor level, it relieves the gplicaion designer of the burden of
implementing it herself, and all ows reusabili ty of the functionality by multiple gplications. If performed at
the gplicaion level, the gplicaion can spedfy how the interpretation/conversion should be done. In
either case, this gep is acddental. If the data were available in the form desired, this issue would not be a
concern to the goplicdion designer.

3.2.3 Délivery
Oncein the oorred format, the mntext information must be delivered to the gplication. This requires the
spedfication of a querying and notification protocol and communications protocol. Thisis more mmplex if
the goplicaion is not locd to the sensor, becaise amechanism that supparts distributed communications
must also be developed. The delivery of context is an acddental step. The designer merely wants to acquire
the context and should not be mncerned about these types of low-level detalils.

3.2.4 Reception
In the reception step, an applicaion must first recave the context information. To recave the mntext, it
must know the locaion of the sensor so it can communicae with it. It can communicate using a querying or
a subscription mechanism. As explained in the previous sub-section, the gplication must use the same
communicdion protocols and mechanisms gpedfied by the sensor(s) providing the antext. Once receved,
the mntext must be mnverted to a useful format, if applicable. Using the previous example of the GPS
recaever, an applicaion may require the name of the stred the user is on, however the recaver only
provides latitude and longitude information. The gplicaion must interpret this latitude and longitude
information into stred-level information so that it can use the data. Finally, the gplicaion must analyze
the context to determine if it is useful. For example, an applicaion may only want to be notified when a

user is located on a given subset of streds. The sensor, however, may provide dl available mntext,
regardless of what the gplicaion can wse. In this case, the gplicaion must analyze the cntext to
determine its usefulness. The reception step is acddental. Again, the designer most likely does not care
about the details of context reception and determining usefulness and is concerned only with receving
useful context.

3.2.5Action
If the cntext is useful information, the goplicaion designer must provide functionality to further analyze
the context to determine what adion to take. This ranges from analyzing the types of context receved to
analyzing the adual values of the antext. The adion includes choosing a cntext-aware behavior to
perform as well as indicating how the behavior should be executed. This adion step is application-spedfic
and isessential. It is or should be the main emphasis in buil ding context-aware gplicaions, acualy acting
on the mntext.

3.3 Resulting Problems
Our previous assessment of context-aware software gplication building as “ad ha” may appea to be
contradictory to the existence of adesign process It is, in fad, the implementation of the acédental steps of
the design processthat is ad ha:, due to the difficulties we expressed in ead of the @ove steps. Pascoe
wrote that it is a hard and time-consuming task to creae software that can work with variety of software to
cgpture mntext, trandate it to meaningful format, manipulate and compare it usefully, and present to user
in meaningful way [Pascoe98]. In general, context is handled in an improvised fashion. Application
developers choose whichever technique is easiest to implement, usually dictated by the sensors being wsed.
This comes at the expense of generdlity and reuse. As a result of this ad hac implementation, a general
trend of tightly conneding applicaions and sensors has emerged that operates against the progresson of
context-aware computing as areseach field. Thistrend has led to four general problems:

» ageneral lack of context-aware gplicaions

» aladk of variety of sensors;

» aladk of variety of context types; and,

* aninability to evolve gplicdions.
We will discuss ead of these problems and how the ad ha nature of application development has led to
them.

3.3.1 General Lack of Context-Aware Applications
Due to the manner in which context-aware gplicaions are built, designers put little effort into making their
sensors reusable by other designers and applications. This has resulted in the lack of basic context-aware
applicaions. We believe that the adility to leverage off of the sensor work of others is fundamental to
building context-aware gplicaions. Becaise many sensor solutions were not designed to be reused, they
are very difficult to integrate into existing applications that do not already use mntext, as well as being
difficult to add to existing context-aware gplicaions.

3.3.2 Lack of Variety of Sensors Used
In our reseach in context-aware acmputing, we have found that there is a lack of variety in the sensors
used to aacquire context. The reason for this is the difficulty in deding with the sensors themselves. This
comes from our own experiences, the experiences of other reseachers we have talked with, and the
aneadatal evidence from previously developed applicaions. Sensors are difficult to ded with, as shown by
the number and difficulty of the sub-stepsin Step 2 d the design processgiven above.

There islittl e guidance avail able to the gplication designer, other than the requirements of the gplication.
This results in atight connedion between the sensors and the gplication. The required steps are aburden
to the gplicaion programmer, and this has resulted in the lack of variety in the types of sensors used for
context-aware cmmputing. We see &idence of this when we examine the reseach done by various reseach
groups.

Within a single reseach group, when reuse was planned for, the gplications constructed always use the
same sensor technology. For example, at Xerox PARC the reseachers garted with Active Badges
[Want92], but built their own badge system with greaer functionality — the ParcTab [Want95]. In all of

their context-aware work, they used the ParcTab as the main source of user identity and location
[Schilit94a, Schilit95, Mynatt98]. The weaable computing group at Oregon aways uses an infrared
positioning system to determine location [Bauer98, Korteum98]. The Olivetti reseach group (now known
as AT&T Laboratories Cambridge) always uses Active Badges or ultrasonic Active Bats for determining
user identity and location [Richardson95, Harter94, Harter99, Adly97]. Why is there this reuse of sensors?
The answer is twofold. The first part of the answer is that it is convenient to reuse todls that have drealy
been developed. The second part of the answer isthat it is often too prohibitive, in terms of time, to creae
new sensing mechanisms.

Thisis exadly the behavior we exped and want when we ae deding with a particular context type. If there
is suppart for a particular type of sensor, we exped that applicaion programmers will take alvantage of
that suppart. The problem is when an application programmer wants to use anew type of context for which
there is no sensor suppart or when a cmbination of sensors is needed. The ladk of this nsor suppart
usually results in the programmer not using that context type or combination of sensors. The difficulty in
deding with sensors has hurt the field of context-aware cmputing, limiting the amount and variety of
context used. Pascoe edoed this idea when he wrote that the plethora of sensing technologies adually
works against context-awareness. The prohibitively large development required for context-aware
computing has gifled more widespread adoption and experimentation [Pascoe98]. We could adapt to this
trend of using fewer sensors and investigate whether we can gather sufficient context from a single (or a
minimal set) of sensor(s) [Ward98]. However, this doesn't sean fruitful — the diversity of context that
appli cation designers want to use can not be catured with a handful of sensors. Instead, we should provide
suppart to all ow appli cation designers to make use of new sensors.

3.3.3 Lack of Variety of Typesof Context Used
As introduced in the previous ®dion, stemming from the lad of variety in sensors, we have the problem
of there being a lad of diversity in the types of context that are used in context-aware gplications. The
ladk of context limits applicaions by restricting their scope of operation. In general, most context-aware
applicaions use locaion as their primary source of context [Schmidt98, Dey99h. Context-aware
applicaions are limited by the cntext they use. The ladk of context types has resulted in the scarcity of
novel and interesting appli cations.

There is an additional problem that arises diredly from the use of ad ha design techniques. As gated
before, sensors have usually not been developed for reuse. Software is written for sensors on an individual
basis, with no common structure between them. When an application designer wants to use these sensors,
she finds that the task of integrating the gplication with these sensors is a heavyweight task, requiring
significant effort. This affeds an applicaion’s ability to use different types of context in combination with
ead other. Thisresultsin fairly simplistic context-aware gplications that use only one or a few pieces of
context at any onetime.

3.3.4 Inability to Evolve Applications

An additional problem that comes from the tight connedion of applicaionsto sensorsis the static nature of
applications. Ironicdly, applications that are meant to change their behavior when context changes have
not shown the adility to adapt to changes in the mntext acquisition process This has made gplications
difficult to evolve on two fronts in particular: movement of sensors and change in sensors or context.
When a sensor is moved to a new computing platform, the gplicaion can no longer communicae with it
unlessit is told about the move. In pradice, this is not something that occurs at runtime. Instead, an
application is shut down, the new location information is hardcoded into it, and then it is restarted. Let us
take the previously described hypatheticd In Out Board (with no infrastructure suppart) as an example. If
the reader that acquires identity information were placed at the entrance to the buil ding, as oppased to the
entrance to the laboratory, the gplication would have to be stopped, its code modified to use the sensor at
its new locaion and then restarted. This is a minor difficulty, but has the potential to be amaintenance
nightmare if several applicdions are deployed and hundreds or even thousands of sensors are moved. One
of our goas in this reseach is to produce asystem that can ded with large humbers of applicaions,
services and sensors smultaneously.

When the sensor used to oltain a particular pieceof context is replaced by a new sensor or augmented by
an additional sensor, the evolution problem is much more difficult. Because of the tight coupling of the
application to the sensors, an applicdion often needs a major overhaul, if not a cmmplete redesign, in this
situation. This also applies when the designer changes or adds to the mntext being used. We will revisit
the In Out Board application again. If a facerecgnition system were used to acquire identity rather than
an iButton™ and reader, then a large portion of the gplicaion may need to be rewritten. The gplicaion
would have to be modified to use the communicaions protocol and communicaions and event
mechanisms dictated by the face recognition system. The portion of the gplicaion that performs
conversions on the sensed context and determines usefulness will also require rewriting. The difficultiesin
adapting applications to context aaquisition changes results in relatively static goplicaions. This leas to
applicatiions which are short-lived in duration, which is oppcsed to the view in ubiquitous computing
where aomputing services are available dl the time (longterm consecutive use). The inability to easily
evolve gplicaions does not aid the progressof context-aware mwmputing as areseach field.

3.4 Overview of the Difficulty in Building Context-Aware Applications

We have described the design process for context-aware mmputing, concentrating on the spedfication,
aqquisition and delivery of context. We have shown that when these steps are reduced to what is essential
or necessry, we ae left with the following simpler and novel design process

1 Spedfication: Spedfy the problem being addressed and a high-level solution
la Spedfy the cntext-aware behaviors to implement
1b Determine what context isrequired for these behaviors

2 Acquisition: Determine what hardware or sensors are avail able to provide that context
and install them.

3 Action: If context is useful, perform context-aware behavior.
3a Analyze the ontext treding it as an independent variable or by combining it
with ather information colleded in the past or present.
3b Choocse mntext-aware behavior to perform

To help designers migrate to this reduced design process we must provide infrastructure-level suppart In
addition, we have identified the negative trend of conneding application design too tightly to sensors used
that has resulted from the use of the longer, more complex design process We have dso identified four
basic problems that have emerged due to this trend: the general lack of context-aware gplicaions, the ladk
of variety in sensors used, the ladk of variety in the types of context used and the inability to evolve
context-aware gplicaions. This analysis of the design process and the resulting problems has
demonstrated a gap in the reseach in context-aware computing. This has allowed us to focus our reseach
on infrastructure suppart and has lead to our thesis gatement:

By identifying, implementing and supporting the right abstractions and services for
handing contex, we can construct a framework that makes it easier to design, build and
ewlve ontext-aware applications.

4 RELATED WORK

We will now describe previous attempts to provide suppart for both the original design process and the
simpler design process We will discuss how ead attempt has failed to suppart the design process and
failed to all eviate one or more of the four basic problems identified in the previous sdion.

4.1 Tight Coupling

In this sdion, we will provide examples of applications that have extremely tight couging to the sensors
that provide context. In these examples, the sensors used to deted context were diredly hardwired into the
applicaions themselves. In this stuation, application designers are forced to write code that deds with the
sensor detail s, using whatever protocol the sensors dictate. There ae two problems with this technique. The

10

first problem is that it makes the task of building a context-aware gplicaion very burdensome, by
requiring applicaion bulders to ded with the potentially complex aoqquisition d context. The second
problem with this technique is that it does not support good software engineeing pradices. The technique
does not enforce separation of concerns between appli cation semantics and the low-level detail s of context
aqquisition from individual sensors. This leals to alossof generality, making the sensors difficult to reuse
in ather applications and dfficult to use simultaneously in multi ple gplications.

4.1.1 Manipulative User Interfaces

In the manipulative user interfaces work [Harrison98], handheld computing devices were made to read to
red-world physicd manipulations. For example, to flip between cards in a virtual Rolodex, a user tilted the
handheld device toward or away from himself. Thisis gmilar to the red world adion of turning the knobs
on aRolodex. To turn the page in a virtual book, the user “flicked” the upper right or left of the mmputing
device Thisis smilar to the red world adion of grabbing the top of a page and turning it. A final example
is avirtual notebook that justified its displayed text to the left or the right, depending onthe hand used to
grasp it. Thiswas dore so the grasping hand would not obscure any text. Whil e thishas no dred red world
counterpart, it is a good example of how context can be used to augment or enhance adivities. Here,
sensors were onreded to the handheld device via the serial port. The applicaion developers had to write
code for eat sensor to read data from the serial port and perse the protocol used by eat sensor. The
context aaquisition was performed diredly by the applicaion, with minimal separation from the goplication
semantics.

4.1.2 Tilting Interfaces

In the similar tilti ng interfaces work [Rekimoto96], the tilt of a handheld computing device was used to
control the display of amenu or amap. Here, the sensors were conreded via aserial port to a second, more
powerful, desktop machine, which was resporsible for generating the resulting image to display. The image
was ent to the handheld device for display. The entire gplication esentially resided on the desktop
madahine with no separation d appli cation semantics and context acquisition. One interesting asped of this
applicaionisthat the sensors provided tilt i nformation in a diff erent coordinate system than the application
required. The appli caion was therefore required to perform the necessary transformation before it could act
onthe mntext.

4.1.3 Cyberguide

The Cyberguide system provided a mntext-aware tour guide to visitors to a “Demo Day” at a reseach
laboratory [Abowd97a, Long96]. The tour guide is the most commonly developed context-aware
applicaion. Visitors were given handheld computing devices. The device displayed a map of the
laboratory, highlighting interesting sites to visit and making avail able more information on those sites. As
a visitor moved throughout the laboratory, the display recantered itself on the new locaion and provided
information on the current site. The Cyberguide system suffered from the use of a hardwired infrared
positioning system. In fad, in the origina system, the sensors used to provide pasitioning information were
also used to provide communications ability. This tight coupling of the gplicaion and the location
information made it difficult to make canges to the gplication. In particular, when the sensors were
changed, it required almost a complete rewrite of the gplication. As well, due to the static mapping wsed to
map infrared sensors to demonstrations, when a demonstration changed locdion, the gplication had to be
reloaded with this new information. The use of static configurations had a detrimental impad on evolution
of the gplication.

4.2 Use of Sensor Abstractions

In this dion, we will discuss ystems that have used a sensor abstradion to separate the detail s of deding
with the sensor from the goplicaion. The sensor abstradion eases the development of context-aware
applicaions by alowing applicaions to ded with the mntext they are interested in, and nd the sensor
spedfic-detail s. However, these systems suffer from two additional problems. They provide no support for
natification nor any support or guidelines for context acquisition. Therefore, applicaions that use these
systems must be proadive, requesting context information when needed via aquerying mechanism. The
onus is on the applicaion to determine when there ae danges to the context and when those dhanges are
interesting. The second problem is that these servers are developed independently, for ead sensor or sensor
type. Each server maintains a different interface for an applicdion to interad with. This requires the
applicaionto ded with each server in a different way, much like deding with dfferent sensors. This dill

11

impads an applicaion’s ability to separate gplicaion semantics from context acquisition. This results in
limited use of sensors, context types, and the inability to evolve gplications.

4.2.1 Active Badge

The original Active Badge cdl-forwarding application is perhaps the first application to be described as
being context-aware. In this applicaion, users wore Active Badges [Want92], infrared transmitters that
transmitted an identity code. As users moved throughou their building, a database was being dynamicdly
updated with information about ead user's current locaion, the neaest phore extension, and the
likelihoodof finding someone & that location (based onage of the avail able data). When a phone cdl was
receved for a particular user, the receptionist used the database to forward the cdl to the last known
locdion d that user. In this work, a server was designed to poll the Active Badge sensor network
distributed throughout the building and maintain current locaion information. Servers like this abstrad the
detail s of the sensors from the gplicaion. Applications that use these servers smply pdl the servers for
the mntext information that they colled. This technique aldresses both of the problems outlined in the
previous ®dion. It relieves applicaion developers from the burden of deding with the individual sensor
details. The use of servers eparates the goplication semantics from the low-level sensor detail s, making it
eaier for applicaion designers to buld context-aware applications and alowing multiple gplicaions to
use asingle server.

4.2.2 Reactive Room

In the Reactive Room projed, aroom used for video conferencing was made aware of the cntext of bath
users and oljeds in the room for the purpose of relieving the user of the burden of controlli ng the objeds
[Cooperstock97]. For example, when afigure is placad underneath a document camera, the resulting image
is displayed on a locd monitor as well as on remote monitors for remote users. Similarly, when a digital
whiteboard pen is picked up from its holster, the whiteboard is determine to be in use and its image is
displayed bah on locd and remote monitors. If there ae no remote users, then no remote view is
generated. Similar to the Active Badge work, a daemon, or server, is used to deted the “awareness’ of
adivity around a spedfic device The daemon abstrads the information it aajuires to a usable form for
applicaions. For example, when the document camera daemon determines that a document is placed
underneath it, the context information that is made available is whether it has an image to be displayed,
rather than providing the unprocessed video signal. This requires the gplication to ded with ead daemon
in adistinct fashion, affeding both evolution and the use of new sensors and context types.

4.3 Beyond Sensor Abstractions

In this dion, we discuss systems that not only suppart sensor abstradions, but also suppart additional
medhanisms such as notificaion, storage, or interpretation. The problems with these systemsiis that they do
not provide suppart for the entire design process

4.3.1 AROMA
The AROMA projed attempted to provide peripheral awareness of remote coll eagues through the use of
abstrad information [Pederson97]. Its objed-oriented architedure used the concepts of sensor abstradion
and interpretation. It had a minimal nation of storage, kegping only the last n values in a drcular buffer.
Playing the role of the applicaion were synthesizers that take the astrad awareness information and
display it. It did na provide awy support for adding new sensors or context types, although sensor
abstradion made it easier to replacesensors.

4.3.2 metaDesk
The metaDesk system was a platform for demonstrating tangible user interfaces [Ullmer97]. Instead of
using gaphicd user interface widgets to interad with the system, users used physicd icons to manipulate
information in the virtual world. The system used sensor proxies to separate the details of individual
sensors from the applicaion. This g/stem architedure supported distribution and a namespaces mechanism
to adlow smple runtime evolution d applicaions. Only a polling mechanism was provided and
interpretation was left to individual applications.

4.3.3Limbo

Limbo is an agent-based system that uses quality of service information to manage cmmunication
channels between mobile fieldworkers [Davies97]. Agents place quality of service information such as

12

bandwidth, conredivity, error rates, and powver consumption, as well as locaion information into tuple
spaces. Services that require particular bit rates and connedivity instantiate ayents to obtain a satisfactory
communicaions channel. These agents colled quality of serviceinformation from the tuple spaces and wse
thisinformation to choose a @mmunicaions channel [Friday96]. Other agents place(and remove) service-
related information into (and from) the tuple spaces. These spaces provide an abstradion of the sensor
details, only providing access to the sensor data. This technique supports distributed sensing, limited
interpretation and limited storage.

4.34NETMAN
The NETMAN system is a @llaborative weaable goplication that supports the maintenance of computer
networks in the field [Korteum98]. It uses locdion, objed identities and retwork traffic context to provide
relevant information to the field worker and the asssting remote network expert. The system uses €nsor
proxies to abstrad the detail s of the sensors from the application and also handles the delivery of context
through a subscription-based mechanism. There is no support for acquiring sensor information, making it
difficult to add new sensors. Aswell, interpretation is left to the gplicaion wsing the context.

4.3.5 Open Agent Architedure

The Open Agent Architedure is an agent-based system that supparts task coordination and exeaution
[Cohen94]. While it has been mostly used for the integration of multimodal input, it is applicable to
context-aware cmputing. In this system, agents represent sensors and services. When a sensor has data
avail able, the agent representing it places the data in a centralized bladkboard. When an applicdion neals
to handle some user input, the agent representing it trandates the input and places the results on the
bladkboard. Applicaions indicae what information they can use through their agents. When useful data
appeas on the bladkboard, the relevant applicaions’ agents are notified and these gents passthe data to
their respedive gplicaions. The bladkboard provides a level of indiredion between the gplications and
sensors, effedively hiding the details of the sensors. The achitedure supparts automatic interpretation,
guerying and natification of information, and dstributed computation. It suffers from being built to only
suppart asingle gplicaion at atime and not being able to handle runtime changes to the achitecure (e.g.
agents being instantiated or killed during applicaion exeaution). It was not intended for long-term
conseautive use nor was it meant to handle alarge number of applicdions, services, and sensors.

4.3.6 Audio Aura

In the Audio Aura system, location and identity context was used to provide awarenessabout physicd and
virtual information, using serendipitous background audio [Mynatt98]. For example, when a user enters a
social areg they receve an audio cue indicaing the total number of new email messges they have
receved and the number from spedfic people. Also, when a user walks by a olleague’ s empty office they
hea a ae that indicates how long the wlleague has been away for. A server is used that abstrads location
and identity context from the underlying sensors (Active Badges and keyboard adivity) being used. A goal
of this system was to put as much of the system functionality in the server to allow very thin clients. The
server supparted storage of context information to maintain a history and supparted a powerful notification
medhanism. The notification mechanism all owed clients to spedfy the anditions under which they wanted
to be notified. However the use of the notification mechanism required knowledge of how the context was
adualy stored.

4.4 Context-Aware Architedures

In this sdion, we discuss architedures that have been spedficdly developed to suppat context-aware
applicaions. These achitecures were designed to be gplicable to a range of context-aware gplicaions
and problems, but, in fad, ded with only a portion of the context-aware gpli cation problem space

4.4.1 Stick-e Notes
The Stick-e notes system is a general framework for supparting a cetain class of context-aware
applicaions [Brown96]. Whereas our reseach is looking at suppating the aquisition and delivery of
context, this reseach focuses on how to suppat applicaion designers in adually using the mntext to
perform context-aware behaviors. The goa of this work is to alow non-programmers to easily author
context-aware services. It provides a general mechanism for indicating what context an applicaion
designer wants to use and provides smple semantics for writing rules to be triggered when the right

13

combination of context is achieved. For example, to huild atour guide gplication with this architecture, an
author would write individual rules, in the form of stick-e notes. An example note to represent the rule
“When the user islocated between the locaion coordinates (1,4) and (3,5) and is oriented between 150 and
210 degrees during the month of December, provide information about the cahedral”, foll ows:

<note>
<required>
<at>(1,4) .. (3,5)
<fadng> 150.. 210
<during> December
<body>
Thelarge floodit building at the bottom of the hill is cathedral. [Brown97]

Each note such as this one, represents a rule that isto be fired when the indicated context requirements are
met. A group of notes or rules are mlleded together to form a stick-e document. The gpli catiion consists of
the document and the stick-e note achitedure.

The @gproach, while interesting, appeas to be quite limited due to the dedsion to suppat non-
programmers. The semantics for writing rules is limited to simple bodean ANDs and can not handle
continuous or even frequently changing discrete data. It is not meant for programmers to integrate into their
applicaions. It provides a central mechanism for determining when the dauses in a given rule have been
met. While no information is provided on how this medhanism aaquires its context, the mechanism does
hide the details of the aquisition from applications.

4.4.2 CyberDesk

In our previous reseach on context-aware mmputing, we built an architedure cdled CyberDesk [Dey97,
Abowd97h Dey98a, Dey99a]. This architecture was built to automaticdly integrate web-based services
based on virtual context. The virtual context was the personal information the user was interading with on-
screen including email addresses, mailing addresses, dates, names, etc. An example gplicaion is when a
user is looking at her schedule for the day and sees that she has a meding in the afternoon with an
aqquaintance She highlights that person’s name, spurring the CyberDesk architedure into adion. The
architecure atempts to convert the seleded text into useful pieces of information. It is able to seethe text
as smple text, a person's name, and an email address It obtains the last piece of information by
automaticdly running a web-based service that convert names to email addresses. With this information, it
offers the user a number of services including: seaching for the text using a web-based seach engine,
looking up the name in her contad manager, looking Wy a relevant phone number using the web, and
sending email to the aguaintance.

While it was limited in the types of context it could handle, it contained many of the mechanisms that we
believe ae necessary for a general context-aware achitedure. The achitedure provided suppat for the
entire simpler design processidentified in Sedion three Applicaions smply spedfied what context types
they were interested in, and were notified when those mntext types were available. The modular
architedure handled automatic interpretation, supported the abstradion of context information and
aggregation/combination of context information. We moved away from this architecure becaise it did not
suppart multi ple simultaneous applications, used a ceantralized mechanism, and did not suppart querying or
storage of context. We determined these shortcomings when we attempted to use it to build an intelligent
environment application [Dey98H).

4.4.3 Schilit’ s System Architedure
In his Ph.D. thesis, Schilit presented a system architedure that supported context-aware mobile computing
[Schilit 95]. This work has been very influential to our own reseach, helping us to identify the important
feaures of context and context-awareness and to identify some of the difficult problems in building
context-aware gplications. Schilit’'s work focused on making context-aware computing applicaions
possble to build. From our survey of context-aware mmputing, we have seen that designers are indeel
now cgpable of building context-aware gplications, thanks in a large part to Schilit’s work. Our work,
instead, focuses on making these gplications easier to huild. This difference in focus begins to delineae

14

where our reseach differs. Schilit's architedure supparted the gathering of context about devices and
users. He had three main components in his system: device aents that maintain status and capabiliti es of
devices; user agents that maintain user preferences; and, adive maps that maintain the location information
of devices and users. The achitedure did not suppartt or provide guidelines for the aquisition of context.
Instead device and user agents were built on an individual basis, tailored to the set of sensors that each
used. This makesit very difficult to evolve existing applications.

Thiswork has alimited notion of context and dces not include time or adivity information. To add the use
of other types of context, the user and device agents would have to be rewritten, making it difficult to add
new sensors and context. The achitedure supparts the delivery of context through efficient querying and
notification mechanisms. For reception, the achitedure supparts a limited notion of discovery, alowing
applicaions to find components that they are interested in. However, applicaions must explicitly locae
these coomponents before they can query or subscribe to them for context information. This is an acddental
step that our simpler design process removes. Interpretation of context is not supparted requiring
applicaions to provide their own suppart. Finally, the lad of time information combined with the lack of
context storage, makes it impossible for applications to acuire previous context information. This limits
the amount of analysis an applicaion can perform on context which is an integral part of performing
context-aware adions.

444 CALAIS

CALAIS, the Context And Locaion Aware Information Service, was another architedure that was
designed to suppat context-aware gplicaions [Nelson98]. This work was performed to solve two
problems: the ad ha nature of sensor use and the lack of a fine-grained location information management
system. An abstradion was developed to hide the detail s of sensors from context-aware gplications, but
there was very little suppart to aid developers in adding rew sensors to the achitedure. Additionaly, the
architedure did not suppart storage of context or interpretation of context, leaving appli cation developers to
provide their own on an individual basis. CALAIS supparted the use of distributed context sensing and
provided query and notification mechanisms. An interesting feaure in this work was the use of composite
events, being able to subscribe to a cmbination of events. For example, an application could request to be
notified when event B occurred after event A occurred with no intervening events. This is a powerful
medanism that makes the aquisition and analysis of context easier for appli cation developers.

4.5 Proposed Systems
In this dion, we present two more achitectures for supparting the building and exeaution of context-
aware gplicaions. These achitecures have merely been propased with very little or no implementation.

4.5.1 Situated Computing Service

The proposed Situated Computing Service has an architecure that is smilar to CyberDesk for supporting
context-aware gplicaions [Hull97]. It insulates applicaions from sensors used to acuire context. A
Situated Computing Service is a single server that is resporsible for both context aayuisition and
abstradion. It provides both querying and ndificaion mechanisms for accessng relevant information. A
single prototype server has been constructed as proof of concept, using only a single sensor type, so its
successis difficult to gauge. The Situated Computing Service provides no support for acquiring sensor
information, only deliveringit.

4.5.2 Context Information Service
The Context Information Service (CIS) is another proposed architecure for suppating context-aware
appli cations [Pascoe9g]. It has yet to be implemented at any level, but contains sme interesting fedures. It
supparts the interpretation of context and the choasing of a sensor to provide cntext information based on
aquality of service guarantee In contrast to the Situated Computing Service, it promotes a tight connedion
between applications and the underlying sensors, taking an application-dependent approach to system
building. The CIS maintains an oljed-oriented model of the world where eat red-world objed is
represented by an objed that has a set of predefined states. Objeds can be linked to ead other through
relationships such as “close to”. For example, the set of neaby printers would be spedfied by a“close to”
relationship with a user, a given range, and “printers’ as the cadidate objed. The set would be

15

dynamicaly updated as the user moves through an environment. There is no indicaion how any of these
proposed feaures will be implemented.

4.6 Overview of Related Work

In this edion, we have presented previous work that is relevant to providing architedural-level suppart for
building context-aware computing. We presented systems that have extremely tight coupling between the
applicaions and sensors. These systems are hard to develop due to the requirements of deding diredly
with sensors and are hard to evolve becaise the gplication semantics are not separated from the sensor
details. We presented systems that used sensor abstradions to separate details of the sensors from
applicaions. These systems are difficult to extend to the general problem of context-aware gplication
building because there is no standard abstradion used, with each sensor having its own interface An
applicaion, while not deding diredly with sensor details, must till ded individualy with ead distinct
sensor interface Next we presented systems that suppart additional mechanisms beyond sensor abstradion,
including context notificaion, storage and interpretation. These systems provide only a subset of the
required mechanisms for buil ding context-aware gplications. Finally, we presented architedures that were
designed to suppart the building process These achitedures are limited to deding with a portion of the
processor are merely speculative.

5 ARCHITECTURE FEATURES

In Sedion four, we presented previous work in the aea of architedural suppat for context-aware
computing. While no one system provided a cmplete solution for supparting our reduced design process
ead offered at least a partial solution. The major goal of thisreseach isto alow context-aware gplication
developers to more eaily build applicaions and to suppat them in building more complex applicaions
than they have been able to build so far. In this section, we will present the feaures for an architedure that
will both suppart the design process and provide runtime suppart for multiple simultaneously executing
context-aware gplicaions. The identification of these feaures sem from our own work in context-aware
computing as well as from a survey we have performed on the field. We will present the feaures in two
parts. First, we will present the set of minimal feaures required by an architedure for supparting the design
and exeaution of context-aware gplicaions. Then, we will present architedural feaures that, while not
required, are useful for supparting the reduced design processand reducing the tight connedivity typically
found between appli caions and sensors.

5.1 Requirements
Following is the minimal set of requirements for an architedure to suppat the design and exeaution of
context-aware gplicaions. All but the most trivial context-aware gplications will require the following
fedures:

e suppat for distribution of context and sensing;

« suppat for event management;

e suppat independence and avail ability of componrents that colled context; and,

e suppat for the interpretation of context.
We see many o these fedures in the systems presented in the related work. We will now discuss these
fedures.

5.1.1 Support for the Distribution of Context and Sensing

Traditional user input comes from the keyboard and mouse. These devices are mnneded dredly to the
computer they are being wsed with. When deding with context, the devices used to sense @ntext most
likely are not attached to the same cmputer running an applicaion that will read to that context. For
example, an indoor infrared pasitioning system may consist of many infrared emitters and detedors in a
building. The sensors might be physicdly distributed and cannaot all be diredly conneded to a single
madiine. In addition, multiple applicaions may require use of that location information and these
applicaions may run on multi ple computing devices. As environments and computers are becoming more
instrumented, more ntext can be sensed, but this context will be coming from multiple, distributed
macahines conreded via acomputer network. Support for the distribution d sensing and context is our first
high-level requirement.

16

5.1.2 Support Event M anagement

In our review of related work, we discussed systems that suppated event management, either through the
use of querying mechanisms, natificaion mechanisms, or both to acquire context from sensors. It is not a
requirement that both be supported becaise one can be used to implement the other. For reasons of
flexibility, it is to an applicaion’s advantage that both be available [Rodden98]. Querying a sensor for
context is appropriate for one-time @ntext needs. But the sole use of querying requires that applications be
proadive when requesting context information from sensors. Once it receves the mntext, the applicaion
must then determine whether the mntext has changed and whether those cthanges are interesting a useful
to it. The notification a publish/subscribe mechanism is appropriate for repetitive mntext needs, where an
application may want to set conditions on when it wantsto be natified.

5.1.3 Support Independence and Availability of Componentsthat Colled Context

With GUI applicaions, user interface omponents aich as buttons and menus are instantiated, controlled
and wsed by only a single applicaion (with the exception of some groupware applications). In contrast,
context-aware gplicaions sioud na instantiate individual comporents that provide sensor data, but must
be ale to accessexisting ores, when they require. Furthermore, multiple goplicaions may need to access
the same pieceof context. This leals to a requirement that the components that acquire mntext must be
exeauting independently from the applicaions that use them. Because they run independently of
applications, there is a need for them to be persistent, available dl the time. It is not known a priori when
applicaions will require cetain context information, consequently, the comporents must be running
perpetually to alow applicaions to contad them when needed. Take the cdl-forwarding example from the
Active Badge reseach [Want92]. When a phore cdl was recaved, an application tried to forward the cdl
to the phone nearest the intended redpient. The gplication could not locée the user if the Badge server
was not adive. If the Badge server were instantiated and controlled by a single gplicaion, other
applicaions could na use the context it provides.

5.1.4 Support for the Interpretation of Context

Thereisanee to extend the notificaion and querying mechanismsto all ow appli caions to retrieve context
from distributed computers. There may be multiple layers that context data goes through before it reaches
an application, due to the need for additional abstradion. For example, an applicaion wants to be natified
when medings occur. At the lowest level, location information is interpreted to determine where various
users are and identity information is used to chedk co-locdion. At the next level, this information is
combined with sound level information to determine if a meding is taking dace From an application
designer’s perspedive, the use of these multiple layers must be transparent. In order to support this
transparency, context must often be interpreted before it can be used by an application. An application may
not be interested in the low-level information, and may only want to know when a meding starts. In order
for the interpretation to be eaily reusable by multiple gplicaions, it needs to be provided by the
architedure. Otherwise, eat applicaion would have to re-implement the necessary implementation. We
developed a medchanism to perform transparent reaursive interpretation in our previous work on
CyberDesk. For example, as discussed in the related work sedion, the CyberDesk infrastructure converts
seleded text to aname and then to an email address

5.2 Useful Features
Following is a set of additiona architedura feaures that, while not required, simplify the design of
context-aware goplicaions. They are:

» suppat the storing of context history;

» suppat for the aggregation o context information;

» suppat for transparent communicdions;

» suppat for resourcediscovery;

» suppat for using and building of abstradions;

» suppat for flexibility; and,

e useof language and platform-independent mechanisms.
Wewill now discussead in turn.

17

5.2.1 Support for the Storing of Context History

A useful feaure of context acquisition components linked to the need for constant avail ability is the desire
to maintain historicd information. User input widgets maintain littl e, if any, historicd information. For
example, afile seledion dalog box keeps tradk of only the most recent files that have been seleded and
allows a user to seled those eaily. In general though, if a more amplete history is required, it isleft up to
the gplicaion to implement it. In comparison, a context widget [Salber99], a component that colleds
context information, shoud maintain a history of all the context it obtains. A context widget may colled
context when no applicaions are interested in that particular context information. Therefore, there are no
appli caions avail able to store that context. However, there may be a applicaion in the future that requires
the history of that context. For example, an applicaion may need the locaion hstory for a user, in order to
predict his future location. For this reason, context widgets shoud store their context.

5.2.2 Support for the Aggregation of Context | nformation
To fadlit ate the building of context-aware gplicaions, our architecture should suppart the aggregation of
context about entiti es in the environment. It is often the cae that an applicaion requires multiple pieces of
information about a single entity. With the achitedure described so far, an applicaion would have to
communicae with several different sensors to colled the neaessary context about an interesting entities.
This adds complexity to the design and negatively impads maintainability. For example, an application
may have a ontext-aware behavior to exeaute when the following conditions are met: an individua is
happy, located in his kitchen, and is making dinner. With no suppart for aggregation, an application has to
use a ombination of subscriptions and queries on different sensors to determine when the @nditions are
met. This is unnecessarily complex and is difficult to modify if changes are required. An architedural
component that supparts aggregation is responsible for colleding all the context about a given entity. With
aggregation, our application would only have to communicae with the single cmmponent responsible for
the individual entity that it is interested in. For example, imagine an extension to the In Out Board that
supparted the use of multiple readers installed in multiple buildings. The In Out Board for a particular
building is not interested where within a building a dock occurred, only in which building it occurred.
Rather than communicae with each individual reader, the gplicaion could request notifications from the
aggregator for eadt building, simplifying the goplication devel opment.

5.2.3 Support for Transparent Communications
In the previous sub-sedion on requirements, we presented a requirement to handle distributed context
information. A useful feature is to make the communications between distributed sensors and appli caions
transparent to bah parties. This smplifies the design and building of both sensors and applicaions,
relieving the designer of having to huild a @mmunicaions framework. Without it, the designer would have
to design and implement a ommunications protocol and design and implement an encoding scheme (and
acompanying decoder) for passng context information.

5.2.4 Support for Resource Discovery

In order for an applicaion to communicate with a sensor (or its proxy), it must know where the sensor is
located and hav to communicate with it (protocol and medchanisms to use). For distributed sensors, this
means knowing bah the hosthame and port of the computer the sensor is running on. To be &le to
effedively hide these detail s from the applicaion, the achitedure needs to suppat a form of resource
discovery [Schwartz92]. With a resource discovery mechanism, when an application is darted, it could
spedfy the type of context information required. The mechanism would be responsible for finding any
applicable mmponents and for providing the application with ways to accessthem. For example, in the In
Out Board application, rather than hardcoding the location d the iButton™ reader being used, the developer
can indicate that the application is to be notified whenever any user of the In Out Board dacks inside the
building.

An additional useful feaure would be to extend this ability to aggregation comporents to help
automaticdly find context relevant to the particular entity involved, and for use with interpreters to all ow
automatic interpretation of context. For the aygregator, this feaure would save the gplicaion designer
from having to explicitly state what sensor information was relevant. For example, a component that is
resporsible for aggregating al the context abou a particular building X could spedfy to the resource
discovery mechanism that it was interested in any information abou ‘building X' and it would simply
receve it. For comporents that need interpreted information, this feaure would automaticdly provide aly

18

needed interpretation, saving the designer from having to explicitly request it. For example, in the In Out
Board applicaion, the gplication isinterested in knowing in and ou status of users, not that they docked
in the building. With resource discovery, the gplicaion could indicae that it was interested in infout
status, and have the interpretation from user docking to this datus automaticaly performed. This discusson
assumes, of course, that the interpretation is avail able from the achitedure.

5.2.5 Support for the Using and Building of Abstractions
So far, we have identified threeimportant conceptual buil ding blocks: acquisition of context from sensors,
interpretation and aggregation. The achitedure should contain components that implement ead one of
these building blocks or abstradions. To make it essy for applicaions to take alvantage of these
abstradions, eat abstradion should suppart a standard interface This will allow applicaions (and ather
components) to communicate with all aggregators the same way, all interpreters the same way, and all
context aaquirers the same way.

But there is a second important part to this useful feaure and that is providing suppartt for the building of
components that implement these astradions. In most of our previous discussions, we have assumed that
the necessary components were available. If we needed a cmponent that provides identity, or an
interpreter that converts docking events to in/out status, or an aggregator that colleds all the locaion
information for a building, we asumed that such a cmponent alrealy existed and we used it. But what
happens if such a component does not exist? Then, it isleft up to the gplication designer to implement the
functionality either within the gplicaion or as a separate cmponent. Clealy, we prefer the second of
these dternatives. Implementing the functionality as a separate component allows reuse by other
applicaions and ather application designers. To encourage the thoice of the second alternative, we need to
provide suppart so that the building of these mmponents is adually easier than implementation within the
applicaion. By providing standard interfaces for ead of the buil ding blocks, we @an provide this suppart.

For example, we have described required and useful feaures that all components dould have. These
include transparent communications for distributed components, resource discovery, availability and
independent exeaution. In addition, for the aquisition of context, the necessary features are antext storage
and suppat for event management. For the interpretation abstradion, the obvious feaure is suppat for
interpretation. For the aggregation abstradion, the necessary feaures include those for the astradion of
sensor data into context as well as aggregation. What this means is that when a designer wants to build one
of these components, the relevant feaures are implemented and automatically avail able for the designer to
use. This leaves the designer with the much simpler task of designing only the task-spedfic pieces of the
component. For example, to huild an aggregation component that represents al the context about an
buil ding, the designer should only have to provide the building's identity. All other details sould be taken
care of for the designer.

5.2.6 Support for Flexibility

We nedl to provide default implementations for ead of the features we have discussed so far. To suppart
maximum flexibili ty, designers should be &le to easily replacethe default implementations with their own.
This eases the integration of the achitedure into existing applicaions and eases maintainability, by
allowing designers to use implementations that they are familiar with and supparting consistency aaoss the
applicaion. For example, if an applicaion uses a particular message format for communicaing with
distributed oljeds, the designer may find that application development is easier if the default context
architecture message format is replaced with this distributed oljed message format. Each of the required
and useful features should have eaily replace#le/pluggable implementations.

5.2.7 Use of Language and Platfor m-Independent M echanisms
Another feaure that is useful for integrating the mntext architedure into existing applications is the use of
programming language and computer platform-independent mechanisms. By having few requirements on
the suppart the achitedure requires from programming languages and platforms, we can more eaily re-
implement the achitedure on any desired platform in any desired programming language. This alows
designers to work on the platforms and with languages that are cnvenient for them. This aids in building
new applications as well as in adding context to previously non-context-aware gplicaions. There is an
additional reason for being able to implement the achitecture on multiple heterogeneous platforms.

19

Because sensors will typicdly be distributed in the environment running on remote platforms, there is the
red posshility that the platforms will not be dl of the same type. If the achitedure is available on multiple
platforms, we will easily be &le to suppat the interoperability of components running on different
platforms, written in different programming languages.

5.3 Revisiting the Design Process

In Sedion threg we presented a design processfor building context-aware gplications and showed how
we ould reduce the design process by removing acddental adivities. In this sdion, we have been
presenting the requirements and useful feaures for an architedure to suppart the building of context-aware
applicaions. We will now describe how an architedure that supparts these feaures will allow a designer to
use the simpler design process

5.3.1 Spedfication
Spedficaion o what context an applicaion requiresis an esentia step and can not be reduced. However,
via resource discovery, an application designer can quickly determine what context is avail able for use in
the chasen environment.

5.3.2 Acquisition

If asensor has not been used before, the agjuisition o context is a necessary step. Install ation of the sensor
is suppated by allowing the sensor to be installed on amost any patform and wsed with a number of
programming languages. The writing of the code to adually aaquire cntext is smplified by the provision
of a general interfaceto implement. The interpretation abstradion al ows the @mnversion of the sensor data
into a more usable form. The extensions with resource discovery, described ealier, alow the interpretation
to occur automaticdly with no work required on the part of the gplicaion designer. Context storage,
communicaions, and event management mechanisms are dready provided for the designer. She only needs
to integrate the sensor-spedfic details, such as obtaining data from the sensor, with these general
medhanisms arealy avail able. If a sensor has been used before with such an architecure, the sensor can be
reused with minimal effort on the designer’ s part.

5.3.3 Délivery
The entire adivity of delivering context is acddental. Many feaures of the achitedure work in concert to
allow this gep to be removed. The storage of context and the provision d querying and ndification
medhanisms allow applications to retrieve both current and hstoricd context on a one-time or continuous
basis, under the condtions gedfied by the agplicaion. Support for distribution and transparent
communicaions mechanisms allow context to be sent between sensors and applications withou the
designer having to worry about either side.

5.3.4 Reception

Reception d context is also an acddental step. The achitedure-level feaures can be used to remove this
step. Resource discovery alows applications to automaticaly accessthe mntext they require. Independent
exeaution of the achitedural comporents combined with resource discovery lets applicaions use both
sensors that were avail able when the application was garted and sensors that were made avail able dter the
applicaionwas garted. As described in the delivery sub-sedion, applicaion designers do not have to ded
with distribution a communicdion detail s to oltain context. Querying and notificaiion mechanisms all ow
applicaions to retrieve the ontext they require under the nditions they spedfy. If the
natification/subscription mechanisms are powerful enough, there is no reed to analyze the information to
determine usefulness Condtions st when creaing a subscription should contain al the information
necessary to determine usefulness

5.3.5Action
Action is an application-spedfic and essential step. The feaures discussed in this edion provide no
asgstancewith this gep.

5.4 Revisiting Problems Due to Ad Hoc Development

In Sedion threg we presented four problems that resulted from the use of ad ha techniques in bulding
context-aware gplicaions. We will show how the achitedure feaures presented in this dion can be
used to addressthese problems.

20

5.4.1 Lack of Context-Aware Applications

The two reasons given for the ladk of context-aware gplications were the inabili ty to reuse sensors and the
difficulty in integrating sensors into applicaions. Providing guidance to applicaion designers on how to
build sensor components supparts reuse. The use of simple @stradions with common interfaces and
suppart for the detail s that designers do not want to ded with (communications, distribution, storage, etc.)
helps with this guidance The automatic handling of these feaures also aids in integrating the achitedure
with existing applications. As well, the faa that applicaions do not have to worry about instantiating
sensors, due to their independent and persistent exeaution, eases integration difficulties. Furthermore, by
letting applicaion designers replacedefault implementations of features with their own implementations
allows the designers to leverage off of their own knowledge and experiences. Finally, the interoperability of
components and appli cations written in different programming languages and on different platforms makes
it much easier for appli cations to leverage off of existing infrastructure.

5.4.2 Lack of Variety of Sensors
While we want to suppart reuse of sensors, we do not want reuse to exist at the exclusion of other sensors
and sensor types. By handling many of the “low-level” details involved in sensor development, such as
communicdions, storage, notification and querying mechanisms, and dstribution, we @n simplify the
design processfor adding and using new sensors.

5.4.3 Lack of Variety of Context Types
By making it easier to use new sensors, we ae making it easier to use new types of context in applications.
In addition, the aility to aggregate and interpret context allows us to derive higher levels of context
information from the low-level context usually aaquired diredly from sensors. The use of awider variety of
context types leads to more mmplex and more interesting context-aware gpli cations.

5.4.4 Inability to Evolve Applications

The three difficulties in evolving context-aware gplications are deding with moving sensors, changing
sensors and changing context. By using comporents that exeaute independently of the gplicaion, we can
eaily move or reconfigure these mmponents withou changing the application. The use of resource
discovery keeps the movement transparent to the gplication, requiring no changes. When sensors are
removed that do not impad the goplicdion, the same agument applies. If for some reason, a sensor that
provides an important pieceof context is removed, the achitedure will use resource discovery to try and
find another sensor that can provide the same information. If one can not be found, the gplicdion is
natified. When sensors are added that provide context the applicaion has asked for, this context
information is automaticdly provided to the applicaion. This ahility is sippated througha combination of
the event management mechanisms and resource discovery. Finadly, if a designer wants to use alditional
context in an applicaion, he simply neals to spedfy what context he requires and under what conditions.
The achitedure takes care of the detail s.

5.5 Overview of Architedure Features
In this edion, we have presented a set of fedures that are necessary in any architedure that supparts the
building of context-aware gplicaions. We presented reasons why these fedures were required. These
fedures are:

e suppat for distribution of context;

e suppat event management mechanisms;

e suppat independence and avail ability of componrents that colled context; and,

e suppat for the interpretation of context.

To thislist, we presented a set of feaures that would be useful in such an architedure, to make the design
or applicaions easier. These useful feaures are:

e suppat the storing of context history;

e suppat for the aggregation d context information;

e suppat for transparent communicdions;

» suppat for resourcediscovery;

» suppat for using and buil ding abstradions (context acquirers, interpreters, and aggregators);

21

e suppat for flexibility; and,
e useof language and platform-independent mechanisms.

We discussed how these two sets of feaures, required and useful, can be used to reduce the design process
to a set of esentia steps and how they help in allowing designers to more eaily build and evolve more
complex context-aware gpli cations.

6 Research Goals

In this thesis propaosal, we have demonstrated the value of context in interadive computing. We presented
definitions of context and context-awareness and showed how they impad our reseach in context-aware
computing. Next, we described why building context-aware gplicationsis adifficult processand identified
a new simpler design process for building these gplicaions. We reviewed previous context-aware
applicaions and architectures and described their shortcomings in terms of this new design process Next,
we identified a set of required and useful feaures which an architedure that supparts context-aware
applicaions should suppat. We then described how these features suppart the use of the new design
process In this dion, we will analyze our thesis gatement that has been the focus of our research and
detail our reseach goals and expeded contributions.

6.1 Thesis Statement
Our thesis gatement and the focus of our reseach in context-aware mmputing is:

By identifying, implementing and supporting the right abstractions and services for
handing contex, we an construct a framework that makes it easier to design, build and
ewlve ontext-aware applications.

We will now decompose this general thesis statement into its underlying hypotheses. Through a detail ed
study of context-aware cmmputing and from our experiencein buil ding context-aware gplications, we will
be ale to identify useful abstradions for deding with context. In doing so, we will aso gain a better
understanding of what context is important and how we @n represent it. Through the implementation of
these astradions and some underlying suppart, we will have aframework that helps appli cation designers
to build context-aware gplicaions. In particular, the framework will enable designers to bah easily build
and evolve gplicaions. On the building side, designers will be ale to easily build new applications that
use mntext, including complex context-aware gplicaions that are arrently seen as difficult to build. On
the evolution side, designers will easily be &le to add the use of context to existing applications, to change
the mntext that applicaions use, and to build applicaions that can transparently adapt to changes in the
sensors they use. A final hypothesisis that the framework will contain lightweight integration mechanisms
and will be flexible enough to all ow appli cation designersto readily useit.

6.2 Research Goals

Our reseach has three main pieces. The first is an in-depth investigation of context and context-aware
applicaions to enable us to identify the neaessary mechanisms required for context-aware mmputing and
to define ataxonomy of context. The second part isthe adual implementation of the identified mechanisms
in an architedure. Thisincludes building to suppart flexibility and lightweight integration. The third part is
to show that the achitedure is extensible and can be used as an open research platform. Thisincludes using
it to experiment with new mechanisms and implementations for deding with particular problems (privacy,
seaurity, uncertainty in data and group context, for example) in context-aware computing and to build new
types of context-aware gplications that were difficult to build before. We will discuss each of the three
pieces, highlighting our goals and remaining work.

6.2.1 Investigation of Context
We detailed the results of our investigation of context in Sedion two. Our goal was to gain a better
understanding of what context was and how it is used. This understanding will help us to choose what
context to use in our applicaions and has provided insights into the types of data that need to be supparted
and the abstractions and mechanisms required to suppart context-aware wmputing.

22

In one sense, we have been quite successful. We have used our survey of context-aware mmputing to
identify the aurrent design processfor building context-aware gplications and to determine which of its
adivities were acédental and which were eseential. This led to our new, simpler design process
Furthermore, our investigation of context helped us identify the context acquisition, interpretation, and
aggregation abstradions, and the required and useful feaures for an architedure that supparts context-
aware gplicaions.

However, we have not been so successful in using our understanding to generate ataxonomy of context.
After several failed attempts (each ending in fruitful exercise to model the entire world), we believe the
corred reseach path is to identify the orthogonal dimensions of context, such as gatia relationships (in
front of, on top d, etc.) and hierarchy, tempora granularity (before, after, past and future), and entity
granularity (group information), for example. An urderstanding of the dimensions of context will enable us
to identify additional medhanisms for deding with context (such as a geometry model for deding with
spatial relationships [Brumit99, Nelson98]) and identify context types that have not been widely used in
context-aware gplicaions (such as group context). This identification of the orthogonal dimensions of
context has yet to start.

6.2.2 Implementation of the Architecure

The second pieceof our proposed reseach is the implementation of the astradions and mechanisms we
identified and presented in Sedion five. This includes providing an implementation of the simpler design
processand providing a design document that illustrates how designers sould bah think about buil ding
context-aware goplicaions and how they can use the achitecure to acually build them. Our reseach goals
are to enable gplication designers to easily build and evolve mntext-aware gplicaions by following the
simpler design process Additionally, we want to make the aldition and removal of sensors transparent to
running applications and to make the implementation of context acquirers or widgets [Salber99], context
interpreters and context aggregators or servers a simple process

We have drealy built a large portion of the achitecure [Dey99c]. The main components and reusable
building blocks in this architedure ae cntext widgets, context interpreters and context servers. Context
widgets implement the sensor abstradion, hiding the detail s of the sensor being used to acquire antext.
Each context widget is responsible for a single piece of context. Context interpreters implement the
interpretation abstradion. Context servers implement the aggregation abstradion. They are mntext widgets
that are responsible for an entity’ s entire context.

Through these components, al of the required feaures and most of the useful feaures have been
implemented. They share a @mmon communications mechanism that supparts accessto components and
context on distributed computing devices. The mmmunicaions protocol and language used is transparent
to the components. Each of these cmponents is autonomous in execution. They are instantiated
independently of each other and exeaute in their own threals, suppating our requirement for
independence They can be instantiated all on a single cmputing device or on multiple computing devices.
All of these cmmponents have the avility to query or subscribe to the context contained in context widgets
and servers. Context widgets and servers automaticdly provide mntext storage and suppart for querying
and subscriptions, so the designer does not have to ded with these isaues.

We have multiple examples of context widgets and interpreters. We have built a few sample context
servers, but there ae some outstanding technicd issues that till need to be resolved. Suppart for resource
discovery has not yet been added to the achitedure. Thisis the most complex feaure and will require the
most time for implementation.

All the components were designed from the beginning to be extremely flexible. The communicaions
protocol and language can be replacel easily, as can the mntext storage mechanism. We aurrently use the
HyperText Transfer Protocol (HTTP) and the eXtensible Markup Language (XML) for our default
communicdions, and the mySQL database for storing context. We have not yet built aternatives and
acdualy replacal the defaults, although we believe thisto be asimple task. The cmmponents were designed
to use cmmmon mechanisms that can be found in many programming languages and implemented on many

23

platforms. For example, the default communications mechanism that uses HTTP and XML only requires
that a programming language suppart text parsing and TCP-IP communications, feaures common in most
languages and avail able on most platforms.

It isimportant to pdnt out that the particular implementation choices we make (or have dready made) are
not important. We muld use eisting off-the-shelf components like CORBA (Common Objed Request
Broker Architedure) [OMG91] or Jini [Arnold99 or reseach solutions like Linda [Gelernter85] or the
Open Agent Architedure [Cohen94] to implement the @stradions, requirements and fedures we have
identified. These or other implementations can be alded or replacad through the flexible design of the
architedure. What is important is our hypothesis that this colledion of architedure feaures and
abstradions supparts our simpler design processand makes it easy for applicaion developers to build and
evolve their context-aware gplicaions.

There ae many features of the achitecure that require validation. Some of the validation work has been
performed at this time, through the design and implementation of example gplicdions. A simple
application such as the In Out Board can demonstrate the achitedure’' s suppart for the foll owing feaures:

e suppat for distribution of context and sensing;

« suppat event management;

e suppat independence and avail ability of comporents that colled context;

e suppat for the interpretation of context;

e suppat for transparent communicéions; and,

e suppat for using and building of abstradions.

A more complex applicaion such as the Conference Assistant [Dey99d (to be described in the next sub-
sedion) isrequired to demonstrate the gplicaion's suppart for:

» suppat the storing of context history, and

» suppat for the aggregation o context information.

To demongtrate the final two feaures of the achitedure, flexibili ty/pluggability and the use of language
and patform-independent medhanisms, more work needs to be done. For the first feaure, sample
applicaions that provide their own communications and storage implementations can be implemented. For
the second feaure, an implementation of the achitecure in a second programming language will suffice A
partial implementation of the achitecure has been performed in Frontier and C++, all owing applicaions to
be written in both of those languages. Currently, we (and athers) are working on a full implementation of
the achitedure in C++ and Squedk, to complement our original implementation in Java. We have drealy
demonstrated that the achitedure executes on multiple platforms including UNIX, Windows 95/NT,
Windows CE, and Madntosh.

To validate the eae in which the design process can be foll owed, new applicaions built, old applications
evolved, and context components implemented, we intend to provide the achitedure to ather students
(through the Hadfest classand the Aware Home projed [Kidd99]) to use. We would like to compare the
end products of multiple gplicaion developers building the same gplicaion with our design process to
seewhether we have made the processas smple & possble. We would also like to analyze the time and
the number of lines of code required to develop and implement new and evolving applications. Finaly, we
will use aneadotal feadbadk to determine whether there is additional suppart we can provide to make use of
the achitedure eaier. We have some evidence that the achitedure is easy to use. Members of our
reseach goup have succesqully used the achitedure in a timely fashion to build and evolve some
context-aware goplicdions.

6.2.3 Advanced Applications and Research
Thethird pation of aresearch isto investigate the achitedure’ s usefulness as a research platform that can
be used to examine difficult problems in context-aware computing and to build advanced applicaions. To
ill ustrate this, we propose to do a study of group context. Group context involves multiple entities whase
context is required simultaneously to perform some adion. This areaof context-aware computing has been
relatively untouched due to the difficulty in building complex context-aware gplicaions. We intend to

24

study existing reseach on group interadions to identify some generic mechanisms that are useful when
deding with goup context. If necessary, we will also perform an ethnographic study of one of the
following groups. C2000 reseach goup, CNS, a family in a home setting. We will implement the
identified mechanisms on top d the general context mechanisms aready provided in the achitedure.
There ae two goals for our investigation of group context. The first is to show how the achitedure can be
used to as an open framework on which detailled explorations of advanced topics in context-aware
computing can be performed. The second goal is to demonstrate that the achitecture simplifies the design
of complex context-aware goplicaions sich as those involving group context.

We have built a number of simple gplications with the achitecdure. In [Salber99], we discussed an In Out
Board, an Information Display, and an informal meding capture system. The In Out Board keeps trad of
occupants of a building, determining whether they are in or out of the building and when they were last
sea. It uses identity, time and location context. A web version additionally uses the locaion of the person
viewing the board to modify the display. Viewers on the Georgia Tech campus are shown all of the
information, whereas viewers off-campus are shown only infout status with no time information. The
Information Display is an applicdion that displays information relevant to the user that approaches it. It
uses identity, locaion, and personal “profile” context. The informal meeding cgpture system, DUMMBO
[Brotherton9g], is an whiteboard that can cgpture what is written on it and the audio signal creaed around
it. When multiple people ae aound DUMMBO, it begins the recording process When those people leave,
the recording processis stopped. At alater time, the identities of these people and the time of the recording
could be used to retrieve the catured information, as a form of context-based retrieval [Lamming94].
DUMM BO uses identity, time, and location information.

In additi on to these gplications, we have built a ontext-aware mailing list that has knowledge of who isin
aparticular building. When users enter the building, they are alded to the mailing list, and when they leave
the building, they are removed from the list. This allows other users to send an email messge to a single
consistent email addressand have it be recaved by a dynamicdly changing group of people, the aurrent
occupants of the building. This applicaion uses only identity and location as context.

A more alvanced o complex application that we have built is a prototype ntext-aware tour guide
applicaion. When a user starts this application, she is asked for a list of personal interests. These interests
are used to generate aset of interesting sites to visit on the tour. When the user visits a site, she is siown
information relevant to that site. She can indicae her level of interest with the site, and this dynamic
information is used to update the list of potentially interesting and urvisited sites. After the tour is over, a
trip report is email ed to the user. This contains information about each site the user visited, including rame
of the site, description of the site, time of visit, web addressto oktain more information from, and the user’s
level of interest in the site. This tour guide gplicaion uses location, identity, time, and personal
preferences as context.

Our most complex application is the prototype Conference Asdstant [Dey99d]. This application aids a
conference attendeein determining what presentations to see a a conference locaing her colleaggues and
taking ndes on presentations. When a user arrives at a onference, he is given a Personal Digital Asdstant
(PDA), and asked to enter a list of reseach interests and the names of his colleagues. The PDA then
displays a schedule for the conference, highlighting the presentations that are patentialy interesting to the
user (based on hisinterests) and indicaing the locaions of his colleagues, if known. When the user enters a
presentation room, the PDA displays the title of the presentation, the name of the presenter, and a
thumbnail image of the aurrent PowerPoint dide or web page being presented. As the presentation
continues, the display is updated acrdingly. The user can enter notes on the aurrent or previous dides and
indicae his level of interest in the presentation. The level of interest information is dared with his
colleagues, just as theirsis displayed to him. In the cae where the user is attending a presentation that is
not interesting to him, this information is useful for determining which presentation he may want to move
to. After the mnference the user can use ntext-based retrieval to retrieve information abou the
conference, including hs personal notes on the presentations he dtended, as well as any presented
information. The user can retrieve this information wing the following as indices: keyword, user or
colleague atendance, user or coll eague question, or research interests. This application would be difficult
to buld without the context-aware achitedure. It uses gmilar context (identity, locaion, time, personal

25

preferences and presented information) as the other described applicaions, but what makes it complex is
the anount of context used, the dynamic nature of the mntext, and the likelihood d simultaneous context
upcates.

We will continue to buld complex applicaions sich as these. In particular, we am to buld applications
that push on many dimensions of scde including time (available 24 hous a day, 7 days a week), space
(avail able in multiple locaions), and number of people (Smultaneous use by multiple people). For this
resson, we chose to investigate group context. We have nat yet begun our study of group context, but we
have identified one general mechanism that we will need to support. This mechanism suppats comparison
between multi ple entities. One common feaure in group applicaionsisto creae asub-grouping based on a
common peceof information. For example, the people in a given room form an informal group, as do the
people who share a @mmon interest. A general comparison mechanism will ease the development of group
context appli cations that use this type of feaure. We believe that in our study of group context, we will find
additional general mechanismsto suppat.

6.3 Expeded Contributions

There ae three expeded contributions of this research, one for ead of the proposed pieces of reseach
discussed in the previous sub-section. The first is contribution is an intellecual one. By providing both the
orthogonal dimensions of context and a design process for building context-aware gplicaions, our
reseach will give gplicaion designers a better understanding of context and a novel methoddogy for
using context. The identificaion of the minimal set of requirements for context-aware infrastructures will
inform other infrastructure buil ders in buil ding their own solutions.

The second contribution of our reseach is to lower the threshold for application designers trying to build
context-aware gplicaions. The goal isto provide an architedural framework that will allow application
designers to rapidly prototype mntext-aware gplicaions. This framework is the supparting
implementation that all ows our design processto succeal. The functionality and suppart requirements have
that will be implemented in our architecure handles the time-consuming and mundane low-level detalsin
context-aware computing, alowing applicaion designers to concentrate on the more interesting high-level
details involved with adually aauiring and ading on context. The achitedure will use lightweight
integration mechanisms all owing for the eay addition of context to non-context-aware gplicaions.

The third contribution of our research is to raise the celing in terms of what researchers can acaomplish in
context-aware mmputing. The mntext architedure will alow reseachers to more eaily investigate
problems that were seen as difficult before. These problems include both architecura issues and
applicaion issues. For example, on the achitecure side, an interesting issue that can now be pursued is the
use of uncertain context information and how to ded with it in a generic fashion. The achitecure with its
required set of supparting medhanisms will provide the necessary building blocks to allow others to
implement a number of higher-level feaures for deding with context. On the gplicaion side, the mntext
architecture will allow designersto build new types of applicaions that were previously seen as difficult to
build. This includes context-aware gplicdions that scde dong several dimensions, such as multiple
locdions, multiple people, always avail able, with simultaneous and independent adivity.

7 Timetable for Completion

In this edion, we will provide atimeline for completing the remaining work that was outlined in the
previous edion.

Task | Complete By

Part 1: Investigation of Context

Identification of the orthogonal dimensions of context March 2000

Part 2: Implementation of the Architedure

Implementation of resource discovery October 1999

26

V ali dation of flexibili ty/pluggabili ty October 1999

V ali dation of language-independent mechanisms December 1999
Provide achitedure to students with plans for testing ease of use September 1999
Study ease of use March 2000
Part 3: Advanced Appli catlions and Reseach

Investigation of group context March 2000

I mplementation of example group context appli cations September 2000
Part 4: Disertation

Defense of Reseach December 2000
Submission of Thesis March 2001
Bibliography

Abowd97a Gregory D. Abowd, Chris G. Atkeson, Jason Hong, Sue Long, Rob Kooper & Mike

Abowd97h

Abowd99

Adly9T:

Arnold99

Bauer98:

Brooks37:

Brotherton98:

Brown96:

Brown97:

Pinkerton, Cyberguide: A mobile mntext-aware tour guide, ACM Wireless Networks,
3(5), 1997, pp. 421-433. (cited on page 11)

Gregory D. Abowd, Anind K. Dey & Andy Wood, Applying dynamic integration as a
software infrastructure for context-aware mmputing, Georgia Tech Technicd Report,
GIT-GVU-97-18, September 1997. (cited on page 14)

Gregory D. Abowd, Anind K. Dey, Jason Brotherton & Robert J. Orr, Context-awareness
in weaable and ubiquitous computing, Virtual Redity 3, 1999 pp. 200-211 (cited on

page 15)

Noha Adly, Pete Steggles & Andy Harter, SPIRIT: A resource database for mobil e users,
in Procedalings of the CHI '97 Workshop an Ubiquitous Computing, March 1997 (cited

on page 9)

Ken Arnold, Bryan O’ Sulivan, Robert W. Scheifler, Jim Waldo & Ann Wolrath, The Jini
spedfication, 1% edition, Addison-Wesley Publishing Company, June 1999 (cited on
page 24)

Martin Bauer, Timo Heiber, Gerd Korteum & Zary Segall, A collaborative weaable
system with remote sensing, in Proceadings of 2™ International Symposium on Weaable
Computers, ISWC '98, October 1998, pp. 10-17. (cited on pa@ 9)

F.P. Brooks, No silver bullet: Essence axd acddents of software engineeing, IEEE
Computer, 20(4), April 1987, pp. 10-19. (cited on page 6)

Jason A. Brotherton, Gregory D. Abowd & Khai N. Truong, Suppating cgpture and
access interfaces for informal and oppatunistic medings, Georgia Tech Tecnicd
Report, GIT-GVU-99-06, December 1998 (cited on pag 25)

Peter J Brown. The stick-e document: A framework for creding context-aware
applicaions, in Proceedings of EP’96. (cited onpage 13)

Peter J. Brown, John D. Bovey & Xian Chen, Context-aware gplicaions. From the

laboratory to the marketplace |IEEE Personal Communications, 4(5), October 1997, pp.
58-64. (cited on pag 14)

27

Brumitt99:

Clark91:

Cohen94:

Cooperstock97:

Davies97:

Dey97:

Dey98a:

Dey98h

Dey99%a:

Dey99h:

Dey99c:

Dey99d

DS98:

Barry Brumitt, John Krumm, Brian Meyers & Steven Shafter, EasyLiving: Ubiquitous
computing and the role of geometry, Position paper for the Inter-Agency Workshop o
Reseach Isaues for Smart Environments, July 25-26, 1999. (cited onpage 23)

H.H. Clark & S.E. Brennan, Grounding in communication, in L.B. Resnick, J. Levine, &
S.D. Tealey (editors.), Perspedives on socially shared cognition, Washington, DC. 1991
(cited onpage 2)

Philip R. Cohen, Adam Cheyer, Michelle Wang & Soon Cheol Bagg, An open agent
architedure, in Proceeadings of AAAI Symposium Series on Software Agents, March
1994 pp. 1-8. (cited onpages 13, 24)

Jeremy Cooperstock, Sidney Fels, William Buxton & K. Smith, Reactive environments:
Throwing away your keyboard and mouse, Communications of the ACM 40(9), 1997, pp.
65-73. (cited on pag 12)

Nigel Davies, S.P. Wade Adrian Friday & G.S. Blair, Limbo: A tuple space based
platform for adaptive mobile gplications, in Procealings of International Conference on
Open Distributed Processng/Distributed Platforms, ICODP/ICDP '97, May 1997. (cited
on page 12)

Anind K. Dey, Gregory D. Abowd, Mike Pinkerton & Andy Wood, CyberDesk: A
framework for providing self-integrating wiquitous ftware services, Georgia Tech
Tedhnicd Report, GIT-GVU-97-10, April 1997. Presented as a demonstration in the
Proceadings of User InterfaceSoftware and Technology, UIST '97, November 1997, pp.
75-76. (cited on pag 14)

Anind K. Dey, Gregory D. Abowd & Andy Wood CyberDesk: A framework for
providing self-integrating context-aware services, in Proceealings of Intelligent User
Interfaces, IUl "98, January 1998 pp. 47-54. (cited on page 14)

Anind K. Dey, Context-aware computing: The CyberDesk Projed, in Proceedings of
AAAI Spring Symposium on Intelligent Environments, AAAI Tednicd Report SS-98
02, March 1998, pp. 51-54. (cited on page 14)

Anind K. Dey, Gregory D. Abowd & Andy Wood CyberDesk: A framework for
providing self-integrating context-aware services, Knowledge-Based Systems 11, 199,
pp. 3-13. (cited on page 14)

Anind K. Dey & Gregory D. Abowd, Towards a better understanding of context and
context-awareness Georgia Tech Tedchnicd Report, GIT-GVU-99-22, June 1999 (cited
on pages 3, 9)

Anind K. Dey, Daniel Salber, Masayasu Futakawa & Gregory D. Abowd. An architedure
to suppart context-aware goplications, Georgia Tech Technicd Report, GIT-GVU-99-23,
June 1999 (cited on page 23)

Anind K. Dey, Masayasu Futakawa, Daniel Salber & Gregory D, Abowd. The
Conference Asdstant: Combining context-awareness with weaable cmputing, To be
presented at the 3 International Symposium on Weaable Computers, ISWC '98,
October 1999. (cited on pages 24, 25)

Java iButtons™ manufactured by Dallas Semiconductor Incorporated, web page
avail able & http://www.ibutton.com. (cited on pag 6)

28

Friday96:

Gelernter85:

Harrison98:

Harter94:

Harter99:

Hull97:

Kidd9a

Korteum98:

Lamming94:

Long96:

Mynatt98:

Nelson98:

OMGOL

Pascoe98:

Adrian J. Friday, Infrastructure suppart for adaptive mobile gplicaions, Ph.D. Thesis,
Lancaster University, September 1996 (cited on pag 13)

David Gelernter, Generative mmunicaion in Linda, ACM Transadions on
Programming Languages and Systems 2(1), January 1985 pp. 80-112 (cited on page 24)

Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos Mochon & Roy Want,
Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces, in
Proceadings of Conference on Human Fadors in Computing Systems, CHI '98, April
1998 pp. 17-24. (cited on page 11)

Andy Harter & Andy Hopper, A distributed location system for the Active Office IEEE
Network 8(1), January 1994 pp. 62-70. (cited on page 9)

Andy Harter, Andy Hopper, Pete Stegges, Andy Ward & Paul Webster, The anatomy of
a ontext-aware gplication, to be presented at MobiCom '99, August 1999 (cited on

page 9)

Richard Hull, Philip Neaves & James Bedford-Roberts, Towards situated computing, in
Proceedings of 1% International Symposium on Weaable Computers, |SWC 97, October
1997 (cited on page 15)

Cory K. Kidd, Robert J. Orr, Gregory D. Abowd, Christopher G. Atkeson, Irfan A. Ess,
Blair Madntyre, Elizabeth Mynatt, Thad E. Starner & Wendy Newstetter, The Aware
Home: A living laboratory for ubiquitous computing reseach, in Procealings of the 2™
International Workshop an Cooperative Buildings, CoBuild '99, October 1999, (cited on

page 24)

Gerd Korteum, Zary Segal & Martin Bauer, Context-aware, adaptive weaable
computers as remote interfaces to ‘intelligent’ environments, in Proceadings of 2"
International Symposium on Weaable Computers, ISWC 98, October 1998, pp. 58-65.
(cited onpages 9, 13)

Lamming, Brown, Carter, Eldridge, Flynn, Robinson, & Sellen, The design of a human
memory prosthesis, Computer Journal 37(3), 1994, pp. 153-163 (cited on page 25)

Sue Long, Rob Kooper, Gregory D. Abowd & Christopher G. Atkeson, Rapid
prototyping of mobile mntext-aware gplications. The Cyberguide cae study, in
Proceedings of the 2@ ACM International Conference on Mobile Computing and
Networking, MobiCom '96, November 1996 (cited on pag 11)

Elizabeth D. Mynatt, Maribeth Bak, Roy Want, Michad Baa & Jason B. Ellis,
Designing Audio Aura, in Procealings of Conference on Human Fadors in Computing
Systems, CHI '98, April 1998 pp. 566-573. (cited onpages 9, 13)

Giles J. Nelson, Context-aware and locaion systems, Ph.D. Thesis, University of
Cambridge, January 1998 (cited on pages5, 15, 23)

Objed Management Group, The cmmon objed request broker: Architedure and
spedfication, Revision 1.1, OMG Document Number 91.12.1, Decanber 1991 (cited on

page 24)
Jason Pascoe, Adding generic ocontextual capabilities to weaable @mputers, in

Proceedings of 2™ International Symposium on Weaable Computers, ISWC '98,
October 1998, pp. 92-99. (cited on page 8, 9,15)

29

Pederson97:

Rekimoto96:

Richardson95:

Rodden98:

Salber99:

Schilit94a:

Schilit94k

Schil it95:

Schmidt98:

Schwartz92:

Ullmer9T:

Want92:

Want95:

Ward98:

Weiser91:

E.R. Pederson & T. Sokoler, AROMA: Abstrad representation of presence supparting
mutual awareness, in Proceealings of Conference on Human Fadors in Computing
Systems, CHI '97, March 1997, pp. 51-58 (cited on page 12)

Jun Rekimoto. Tilting operations for small screen interfaces, in Proceedings of User
Interface Software and Technology, UIST *96, November 199, pp. 167-168 (cited on

page 11)

Tristan Richardson, Teleporting — Mobile X sessons, in Proceadings of the 9" X
Tedhnicd Conference, January 1995 (cited on page 9)

Tom Rodden, Keith Cheverst, Nigel Davies & Alan Dix, Exploiting context in HCI
design for mobhile systems, in Procealings of Workshop an Human Computer Interadion
with Mobile Devices, HCIMD 98, May 1998 (cited on pag 17)

Daniel Salber, Anind K. Dey & Gregory D. Abowd, The Context Toolkit: Aiding the
development of context-enabled applicaions, in Procealings of Conference on Human
Faaors in Computing Systems, CHI '99, May 1999 pp. 434-441 (cited onpage 18, 23,
25)

William N. Schilit, Norman I. Adams & Roy Want, Context-aware @mputing
applications, in Procealings of the 1% International Workshop an Mobile Computing
Systems and Applicaions, December 1994 pp. 85-90. (cited onpage 9)

Willi am N. Schilit & Marvin Theimer, Disseminating Active Map information to mobhile
hosts, IEEE Network, 8(5), September/October 1994, pp. 22-32. (cited onpage 4)

William N. Schilit, System architedure for context-aware mobile computing, Ph.D.
Thesis, Columbia University, May 1995 (cited onpages 9, 14)

Albrecdht Schmidt, Michad Beigl & Hans-Werner Gellersen, There is more to context
than location, in Procedalings of Interadive Applicaions of Mohile Computing, IMC’ 98,
November 1998 (cited on pag 9)

M.F Shwartz et al., A comparison of internet resource discovery approacies, Computing
Systems, Fall 1992 pp. 461-493 (cited on pag 18)

Brygg Ullmer & Hiroshi Ishii., The metaDESK: Models and prototypes for tangible user
interfaces, in Proceadings of User InterfaceSoftware and Technology, UIST ’97, October
1997 (cited on page 12)

Roy Want, Andy Hopper, Veronica Falcao & Jonathan Gibbans. The Active Badge
locaion system, ACM Transadions on Information Systems 10(1), January 1992 pp.
91-102. (cited on pages 8, 12, 17)

Roy Want, Bill N. Schilit, Norman |I. Adams, Rich Gold, Karin Petersen, David
Goldberg, John R. Ellis & Mark Weiser, An overview of the PARCTab ubiquitous
computing experiment, |IEEE Personal Communications, 2(6), December 19%, pp. 28
43. (cited on pag 8)

Andrew M.R. Ward, Sensor-driven computing, Ph.D. Thesis, University of Cambridge,
August 1998 (cited on pa@ 9)

Mark Weiser. The computer for the 21% century, Scientific American 265(3), September
1991, pp. 94-104. (cited onpage 2)

30

Weiser96:

Whitehead99

Mark Weiser & John S. Brown. Designing cdm technology, PowerGrid Journal 1.01,
July 1996 (cited onpage 2)

E. James Whitehead, Jr., Rohit Khare, Richard N. Taylor, David S. Rosenblum &
Michad M. Gorlick. Architedures, protocols, and trust for info-immersed adive
networks, Position paper for the Inter-Agency Workshop an Reseach Issues for Smart
Environments, July 25-26, 1999 (cited on page 6)

31

