
The Design and Use of a Generic Context Server

Daniel Salber and Gregory D. Abowd
GVU Center, College of Computing

Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30332-0280

{salber, abowd}@cc.gatech.edu

Abstract

Although context-awareness is a key component for
perceptual user interfaces, we lack generic infrastructures
for developing context-aware applications. We propose a
generic infrastructure based on context servers that store,
share and archive contextual data. We describe a few
applications we have built that take advantage of context
sharing and context history and then turn to the overall
design of our context server.

1. Introduction

Context-awareness is recognized as an important feature
for ubiquitous and wearable computing. Context sensing
and interpretation techniques are maturing and applications
demonstrate the value of using context. However, bridging
the gap between sensing and interpretation techniques on
one hand and applications on the other hand is mostly done
using ad hoc techniques. The lack of generic infrastructure
requires developers to rely on custom solutions for handling
context and hinders the development of new applications.

In this paper, we first look at common sources of
context and emphasize the need for two often overlooked
generic context handling features: context sharing in multi-
user settings and context history. We describe applications
that take advantage of these features. We then turn to the
design of an infrastructure for supporting such applications.
We first explain our goals and then describe our
architecture for a generic context server.

1.1. What is Context?

Context covers information that is part of an
application’s operating environment and that can be sensed
by the application. This typically includes the location,
identity, activity and state of people, groups and objects.
Places such as buildings and rooms can be fitted with
sensors that provide measurements of physical variables
such as temperature or lighting. Finally, an application may
sense its software and hardware environment to detect, for
example, the capabilities of nearby resources. Context-
aware applications sense context information and modify
their behavior accordingly without explicit user

intervention.
In the next section, we look at commonly used sources

of context. Besides these, we identify two overlooked areas:
sharing context in multi-user settings and exploiting context
history.

1.2. Sources of Context

We distinguish four broad categories of context:
physical, system, application, and social. The physical
context and notably the user’s location is a most commonly
used source of context [1, 4, 9, 11]. The system’s
environment is a second popular source of context: nearby
computing resources [12] or network traffic [16] are
presented to the user or used to tailor the interaction.
Similarly, application data, such as the current text
selection, provides context information that can help
anticipate user actions [3, 5, 10]. Finally, the social
environment is a relevant source of context information:
information about people such as the presence of people,
their identity, their activity, may be used by systems to
either provide information to other users or tailor the
system’s behavior to a user’s needs or preferences [1].

Although research has been carried out on identifying
and tracking people in a scene, there are few convincing
applications that take advantage of social context. Sharing
context information can provide richer social context and
provide a foundation for applications. We also observe that
context-aware applications use context information at the
present time. Context history also provides interesting
information. Still, sharing context and context history are
two little explored areas.

1.3. Sharing Context

There is previous work on sharing physical context
information and namely location. For instance, a user’s
current location tracked by an active badge may not trigger
any relevant actions for the wearer. But this information
will help a colleague locate her to discuss an urgent
problem or allow the secretary to forward a phone call [15].
However, context sharing can be extended profitably to a
user’s system and application context in order to provide
social context to other users. The applications described in
section 2 rely on that form of context sharing. Context

sharing at the level of a group is another unexplored area.
An application we envision provides a group of people

gathered in a social area with a display of news likely to
interest most of them. By gathering each user’s preferred
daily Web sources of news, it decides to display on a large
screen the news source that most people present prefer and
the news items people haven’t read yet. Another potential
application relies on the inspection of people’s unread
email. When a member of a workgroup sends everybody
else an urgent message (e.g., a meeting time change), the
application allows the sender to check that everybody has
read the message.

In group-level context sharing, context information
from several users is gathered and synthesized into a new
piece of context. Everybody being aware of the meeting
time change is social context to the sender. This gathering
of private information may appear like a potential privacy
threat. To give users control over the information that is
gathered, our infrastructure provides users with
customizable privacy protection mechanisms.

1.4. Context History

Most context-aware applications deal with context data
concerning the present. Except for context-based retrieval
applications [6], there has not been much work done on the
value of context data history. A marginal example is
capture applications. In this case, context data is not
remembered for itself, but because it is associated with
some captured piece of data.

However, in everyday social relationships we rely
naturally on historical data. For instance, when looking for
somebody, we ask colleagues if they have seen this person
in the recent past. This information may actually be more
useful than the current location of the person. If she’s been
in her office, she saw the note left on her desk, or she’s
probably read her email. A user’s recent context (her
whereabouts) helps other users interact with her.

Similarly, a history of URLs visited may provide
interesting clues to both the user and colleagues as to what
tasks the user was engaged in.

Another example would be a context history-aware
note-taking aid. It could look up meeting history
information and pull up notes taken the last time the user
was attending a meeting with the same persons. A similar
application could be provided to students attending classes.

2. Applications

We have designed and built applications based on a
generic context server. In this section, we describe three of
them that exploit context sharing and context history
capabilities of the infrastructure.

2.1. Where Have You Browsed Today?

The “Where Have You Browsed Today?” application
aims at stimulating discussion between people who may
share common interests based on their web surfing activity.
In contrast to collaborative browsing tools [8], this
application matches users’ interests after they’re done
browsing to stimulate interaction when they may be more
available to engage in discussion. It uses both context
history and shared context information.

The application consists of a URLs logger that captures
the current URL displayed in the user’s web browser. Using
the history feature, logs of visited URLs can be generated.
At the end of the day, URLs logs are compared for common
web pages or sites. The result is used to notify the users if
they’ve been visiting the same pages or sites that day.

It is important to note that users do not know each
other’s URL logging history, which most users would
consider private data. Only those URLs that are common to
all users are revealed and only to them. Still, other options
may be explored, like requesting permission from each user
before sharing her common URLs.

2.2. Are You Reading Me?

The “Are You Reading Me?” application uses context
sharing to facilitate email communication. Suppose Daniel
needs to send an urgent message to Gregory, who is usually
overloaded with email. Email seems convenient but is it the
right medium to get in touch effectively with Gregory
today?

The “Are You Reading Me” application adds two
functions to Daniel’s email client:

- The first one allows Daniel to know how many
messages are left unread in Gregory’s Inbox.

- The second function allows Daniel to know how
many previous messages from him to Gregory are
still left unread.

Daniel’s email client fetches these two pieces of
information from Gregory’s context. They allow Daniel to
assess Gregory’s current email load and the fitness of email
for sending an urgent message.

Gregory has the possibility to restrict access to these
pieces of his context. Typically one would want only close
colleagues to be able to inquire about one’s current email
load.

2.3. Let’s Have A Meeting!

The “Let’s Have A Meeting!” application uses context
sharing to provide more efficient scheduling. When two
people decide to have a meeting, they usually both create an
entry into their schedule. Both entries have the same date,
symmetrical information (A enters “meeting with B”, B
enters “meeting with A”) and each user may add private
notes. Using context may alleviate this duplication of work.

With our application, only one user has to create an
entry in her schedule. She then shares this entry with the
other person involved. If for instance, Gregory and Daniel
decide to schedule a meeting, Gregory creates an entry
labeled “meeting with Daniel” in his schedule. With an
extra click, he shares this entry with Daniel. This action
creates a symmetrical entry (i.e., “meeting with Gregory”)
in Daniel’s schedule at the same date. If the meeting
involves a third party, the name of the third party appears in
both entries. Users can add personal information to the
entry once it is created.

In this case, both Daniel’s and Gregory’s context
information is used. When Gregory shares his meeting
entry, his own context is queried for the user’s name to
reconstruct a complete meeting entry, namely to add
Gregory’s name as a participant to the meeting (this was
implicit in Gregory’s entry). Then, the complete meeting
information is sent over to Daniel’s scheduling application.
This application in turn queries Daniel’s context for the
user’s name and scans the meeting information to try to
match the user’s name. It then removes it if present and
creates the entry in Daniel’s schedule.

3. Context Infrastructure Design

In this section, we describe our design of a context
infrastructure to support the applications described in the
previous section. We first outline our design goals and
observe that existing context infrastructures don’t achieve
them. We then turn to our overall design and architecture.

3.1. Design Goals

To provide the services required by the applications we
just described, our infrastructure goals are threefold:

1) allow for networked applications to access local and
remote context data in a heterogeneous
environment;

2) accommodate a variety of applications, sensors, and
operations on context data;

3) preserve the history of contextual data sensed.

With these objectives in mind, let us examine previous
work on context infrastructures.

3.2. Previous Work

A few context-handling infrastructures have already
been developed notably Schilit’s architecture for context-
aware mobile computing [12] and Hull et al.’s SitComp
service [7].

Schilit’s architecture mainly aims at storing context data
in a repository accessible by networked applications
running on mobile ParcTab devices or fixed computers.
Applications as well as sensors manipulate context data
directly and thus must be aware of the storage model.

Independence of applications and sensors from context data
is not guaranteed. Furthermore, no provision is made for
storing the history of context data.

The SitComp (Situated Computing) service software
component utilizes local sensors to provide situation
information to applications through an API. Applications
can either query the SitComp service or ask to be notified
of context changes. SitComp also performs fusion of data
from multiple local sensors and abstracts raw data into
context information at a higher level of abstraction.
SitComp puts the emphasis on these abstraction
mechanisms and provides a clear separation between
applications on one hand and context sensing and
abstracting mechanisms on the other. However, SitComp is
intended for applications running on a single computer and
doesn’t allow remote access. Although the authors envision
using context history for context-based retrieval, SitComp
does not seem to support this yet.

3.3. Global Design

Our infrastructure is comprised of context servers that
maintain a dynamic model of context data. We look at the
services provided by context servers and assess how this
infrastructure achieves our objectives stated in section 3.1.

In our model, context data is sensed by devices and
gathered in a repository by the computer these devices are
attached to. A computer is attached either to persons
(individuals or groups) or places (e.g., rooms, buildings,
vehicles). Each computer runs a context server that
performs context management and provides access to
context data: it acquires raw local context data through
sensors and stores it and provides access to this data to local
and remote applications. In addition, context servers run
services, called context synthesizers, that act on local
and/or remote context data to generate context information
at a higher level of abstraction (see Figure 1).

Access to local and remote context data is provided
through a context access API. This API guarantees
independence of applications from sensors as well as from
the particular storage model used. To allow access by
heterogeneous clients, the API is a network API based on
XML [14] and HTTP. Each context server runs an HTTP
server as well as an XML parser. Requests and replies are
encoded in XML. As in SitComp, two models of
communication are supported: events and requests. In the
events-based mechanism, the context-generating
component (either a sensor or the context repository)
generates events to registered components when the sensed
or stored data changes. In the request method, the context
gathering component (either an application or the
repository) polls the context-generating component when
needed. This distinction reflects the dichotomy already
observed in user interfaces between status, i.e.,

continuously available information and events, i.e., atomic,
transient information [2].

Context Management

Sensors

Context
Synthesizers

Context Access API

Context
Aware App

Figure 1. The architecture of the context server. The three rectangles
constitute the context server. The context management component
handles context acquisition and storage. The context API provides local
and remote access to context data. Context synthesizers abstract raw
context data into higher level information. Arrows show context data
flow between components. Dashed arrows denote XML encoded
communications.

Raw context data must often be abstracted into higher
level information. To achieve this, a context server hosts
synthesizers. Synthesizers are pluggable modules that
access context data through the API and generate new
context data that is fed back to the context management
component. Examples of abstraction mechanisms include:
deducing the state and country from a city name and
assessing if a room is occupied or not by combining
ambient lighting, sound level and presence sensors data.
Synthesizers also aggregate context data from multiple
context servers and perform comparisons as in the URLs
log comparison example described in 2.1. Another example
of aggregation is the detection of spatial relationships like
adjacency or inclusion between geographical context
information collected from multiple context servers.

Finally, to allow the use of context history, context
servers log context data changes and preserve historical
data. They allow access to context data at any point in the
past or retrieval of data over a time interval.

The architecture we presented is generic: Context
servers are not tied to applications or sensors. The context
access API ensures independence from applications.
Sensor-specific components are insulated from the context
management layer and can be reconfigured dynamically to
suit the context needs of applications.

The current context server prototype is implemented in
Frontier, a scripting language and environment that runs on
MacOS and Windows [13]. Frontier provides us with a
persistent object database, XML encoding and parsing,
HTTP client and server support, and an AppleEvents or
COM interface for inter-application communication.

4. Conclusion

We have presented a generic context-handling
infrastructure based on context servers. Context servers are
particularly suited for sharing context data and providing
access to context history. These features enable us to
explore promising new applications. Our immediate goal is
to develop more applications based on the context servers
infrastructure. Of particular interest are applications that
rely on elaborate context interpretation and applications
aimed at mobile users. More information is available from:
http://www.cc.gatech.edu/fce/contextserver/

5. Acknowledgments

The first author is currently funded by a fellowship from
INRIA. We wish to thank members of the Future
Computing Environments group at Georgia Tech for
fruitful discussions and particularly Anind Dey for insights
and comments.

6. References
[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper and M.

Pinkerton. Cyberguide: A Mobile Context-Aware Tour Guide.
ACM Wireless Networks, 3:421-433, 1997.

[2] G. D. Abowd and A. J. Dix. Integrating status and event
phenomena in formal specifications of interactive systems. ACM
Software Engineering Notes, 19(5):44-52, December 1994.

[3] Apple Research Laboratories. Apple Data Detectors homepage.
http://www.research.apple.com/research/tech/AppleDataDetectors/,
Apple Computer, 1997.

[4] N. Davies, K. Mitchell, K. Cheverst and G. Blair. Developing a
Context Sensitive Tour Guide. Proceedings of First Workshop on
Human-Computer Interaction for Mobile Devices, pp. 64-68, 1998,
Glasgow, UK.

[5] A. Dey. Context-Aware Computing: The CyberDesk Project.
Proceedings of the 1998 Spring AAAI Symposium on Intelligent
Environments, 1998.

[6] M. L. M. Flynn. Forget-me-not: Intimate computing in support of
human memory. Proceedings of FRIEND21: International
Symposium on Next Generation Human Interfaces, pp. 125-128,
1994.

[7] R. Hull, P. Neaves and J. Bedrod-Roberts. Towards Situated
Computing. Proceedings of IEEE ISWC'97, First International
Symposium on Wearable Computers1997, Cambridge, MA, USA.

[8] H. Lieberman, N. V. Dyke and A. Vivacqua. Let's Browse: A
C o l l a b o r a t i v e W e b B r o w s i n g A g e n t .
http://lieber.www.media.mit.edu/people/lieber/Lieberary/Lets-
Browse/Lets-Browse.html, MIT Media Lab, 1998.

[9] E. D. Mynatt, M. Back, R. Want and R. Frederick. Audio Aura:
Light-Weight Audio Augmented Reality. Proceedings of the ACM
UIST'97 Symposium on User Interface Software and Technology, p.
211-212, 1997.

[10] M. Pandit and S. Kalbag. The Selection Recognition Agent: Instant
Access to Relevant Information and Operations. Proceedings of
Intelligent User Interfaces '97, 1997.

[11] J. Pascoe, N. Ryan and D. Morse. Human-Computer-Giraffe
Interaction: HCI in the Field. Proceedings of First Workshop on
Human-Computer Interaction for Mobile Devices, pp. 48-57, 1998,
Glasgow, UK.

[12] W. N. Schilit. System architecture for context-aware mobile
computing. Ph.D. Thesis, 1995, Columbia University.

[13] UserLand S o f t w a r e . F r o n t i e r 5 . 1 .
http://www.scripting.com/frontier5/, UserLand Software, 1998.

[14] W3C XML Working Group. Extensible Markup Language (XML)
1.0. http://www.w3.org/TR/1998/REC-xml-19980210, World-Wide
Web Consortium, 1998.

[15] R. Want, A. Hopper, V. Falcao and J. Gibbons. The active badge
location system. ACM Transactions on Information Systems,
10(1):91-102, 1992.

[16] M. Weiser and J. S. Brown. Designing Calm Technology.
Workshop on Ubiquitous Computing at CHI 1997, 1997.

