General-Purpose Code Acceleration with Limited-Precision Analog Computation

Renée St. Amant Amir Yazdanbakhsh Jongse Park Bradley Thwaites
Hadi Esmaeilzadeh Arjang Hassibi Luis Ceze Doug Burger

Georgia Institute of Technology The University of Texas at Austin
University of Washington Microsoft Research

Georgia Institute of Technology
Alternative Computing Technologies (ACT) Lab

ISCA 2014
Esmaeilzadeh, Sampson, Ceze, and Burger, “Neural Acceleration for General-Purpose Approximate Programs,” MICRO 2012
The compiler-circuit co-design enables analog circuits to efficiently accelerate conventional code.
3.7x \times 6.3x
\begin{align*}
\text{Speedup} & \quad \text{Energy Reduction} \\
\approx 23x & \\
\text{Energy-Delay Product} & \\
\text{Quality Degradation} & < 10.0\%
\end{align*}
Last Session (Accelerators)

Wednesday at 10:40

$I_{out} = I_0 + I_1 + I_2$

Kirchhoff’s Law

$I(x_n) + V_o - R(w_n)$

$V_o = I(x_n) \cdot R(w_n)$

Ohm’s Law