
Research Statement

Brendan Dolan-Gavitt

Research in computer security is more important than ever. Software has
expanded into nearly every aspect of modern life, from cars to coffee makers.
This expansion into new areas has not been accompanied by safer program-
ming practices, and the safety and reliability of these devices is highly sus-
pect. At the same time, powerful adversaries such as national governments
and organized crime have displayed both motivation and aptitude for ex-
ploiting weak systems. These circumstances make it imperative that we find
effective ways of securing existing systems and develop new architectures for
building secure systems.

My own research focuses on understanding the behavior of systems and
software for security. This includes the use of automated techniques to un-
derstand what real software is doing, and how to discover implicit and un-
documented assumptions in systems. In short, I want to minimize the human
effort required to understand the architecture, organization, and internals of
computing systems, and use that understanding to produce effective ways of
defending them against attackers.

Thesis Work

My research over the past few years has led to several new ways of automat-
ically understanding the behavior of large, real-world systems and producing
novel defenses against attacks. In this section, I will describe my key publi-
cations and their impact on the state of the art.

In Robust Signatures for Kernel Data Structures [3], I developed
techniques for probing the invariants enforced on kernel-mode data struc-
tures. These structures represent objects of significant interest from a secu-
rity perspective, as they include files, processes, threads, and network connec-
tions. Because of this, tools often locate kernel objects by scanning memory

1



using invariants on data structure fields. However, this strategy only works
if the invariants are enforced—if an attacker can manipulate the data in an
object, they can hide it from scans and evade detection. Indeed, I found that
the invariants that were checked by memory scanners were rarely enforced
by the kernel, presenting many opportunities for attackers to hide. To cor-
rect this situation I created a novel dynamic analysis that combines profiling
(checking how often each field in a structure was accessed by the operating
system) with fuzzing (actively making changes to the structure fields and
observing the OS’s response) to find out which fields are strictly checked by
the OS. Finally, we generated new, robust signatures by finding invariants
on precisely those fields that were most strictly checked by the kernel itself,
and that an attacker would have the most difficulty in tampering with. Our
robust signatures effectively resist evasion even by powerful adversaries that
have the ability to manipulate dynamic kernel data and make it impossible
for attackers to hide objects from memory scans.

I have also made significant contributions to the field of virtualization se-
curity. In this area, the goal is to harden systems against attack by separating
security software from the systems they are meant to protect by placing them
into separate virtual machines (typically referred to as the security and guest
virtual machines, respectively), with a small and verifiable hypervisor ensur-
ing the isolation between the two. Thus, even if the operating system running
inside the VM is compromised, hypervisor-level monitoring will remain se-
cure and will be able to respond to the attack effectively. A key challenge
in this area is the semantic gap: although the separation between the two
virtual machines means that tools in the security VM are resistant to tamper-
ing, visibility into the guest VM is greatly reduced. Virtualization security
tools are presented with a low-level view of the guest VM that is typically
limited to the contents of RAM and the CPU registers, but to make effec-
tive security decisions they need information about high-level OS concepts
such as processes, threads, files, and network connections. Thus, virtualiza-
tion security tools must painstakingly reconstruct a high-level view from this
low-level data, which requires deep understanding of the algorithms and data
structures of the OS and applications running in the guest VM. Worse, in
the case of closed-source operating systems this understanding can only be
derived by time-consuming and expensive manual reverse engineering of the
binary code. The semantic gap therefore poses a significant obstacle to the
development and deployment of virtualization security.

In Virtuoso: Narrowing the Semantic Gap in Virtual Machine

2



Introspection [2], I made the first significant progress on the semantic gap
problem in virtualization security. The critical insight is that the operat-
ing system must already contain code that does the work of “parsing” out
low-level data into higher-level abstractions—after all, this is precisely how
public-facing APIs and system administration tools work. To capitalize on
this idea, I developed novel techniques (based on dynamic program slicing)
that analyze whole-system execution traces of programs performing tasks
such as listing processes, extract out just the code that computes the list
of processes, and then transforms it into a program that perform the same
task with access only to a physical memory image and CPU state. This
work made virtualization-based security monitors practical by transforming
a manual process that required weeks of expert manual effort into one that
needs just a few minutes of computation time.

A related problem arises when considering virtualized security systems
that need to do more than passive monitoring of a system. In cases where an
intrusion detection system such as antivirus software must receive notification
when certain events happen such as a file being opened or a URL being
visited in a web browser, careful analysis of the guest operating system is
needed to determine where to interpose. As with the semantic gap problem,
this once required many painstaking hours with a disassembler to locate
the functions (often private and undocumented) that corresponded to the
event of interest. In Tappan Zee (North) Bridge: Mining Memory
Accesses for Introspection [1], I found that by grouping the memory
accesses made by a system according to the code that generated them, it
was possible to apply techniques from information retrieval and machine
learning to locate code that corresponded to events of security interest. This
allowed us to quickly find points at which to interpose on a system for security
monitoring on five operating systems and two processor architectures with no
reverse engineering required. This work was also the first to consider program
analysis as a “big data” question, where executing code generates reams of
data that can then be aggregated and searched for patterns of interest.

Future Work

Looking broadly at the goals of security and privacy in computing systems,
I see two areas where significant progress must still be made. First, many
current systems are difficult to analyze and model by security researchers

3



because they have been built with the assumption that their internals are no
one’s business but the original developers. As my past work demonstrates,
this assumption is dangerously wrong. In addition to developing ever-more
powerful ways to tease out the hidden implementation details of hardware
and software, we might instead turn the question around and ask whether we
can construct programming languages and tools that expose the internals of
a program in a self-documenting way. For example, a compiler might be able
to automatically produce parsers for the in-memory data structures used by
a program, or generate a list of useful hook points throughout the code, such
as places where data crosses marked security boundaries.

We might even extend this idea to hardware design, and ask whether
there are ways to make currently obscure and undocumented hardware self-
documenting. For example, one could imagine tools that, in addition to
helping lay out an embedded peripheral, also create code for an emulator
model of that peripheral. This would allow one to have virtual instances of a
full embedded device “for free,” allowing much larger scale testing of device
code (it is, after all, much easier to run a thousand virtual machines than
it is to obtain and test a thousand internet-enabled coffee makers). More-
over, making such models available to third party developers would make it
possible for other operating systems to be ported to embedded platforms, giv-
ing users much more freedom and control over the gadgets that increasingly
dominate their lives.

Second, commodity computing systems, be they desktop operating sys-
tems, mobile phones, or low-powered embedded platforms, are generally en-
tirely opaque to the user. As such, they contain innumerable opportunities
for mischief to go unnoticed; this manifests itself both in the prevalence of
backdoors in commercial software and the ease with which malware runs
undetected on end users’ systems. In addition to making implementation de-
tails available to developers, I plan to investigate how we might make system
execution understandable to end users. This would require deep changes to
the way we construct systems, as we would need a way to tie its low-level
implementation to a high-level semantic description of its runtime behavior
in a way that is verifiable (it would do no good if programs could claim ma-
licious behavior was something innocent). We can summarize this research
path by asking whether we can ensure that a program 1) does what it says;
2) says what it does; and 3) can prove it.

In the absence of cooperation from hardware or software developers, we
can also ask whether it is still possible to make progress on these research

4



goals. For example, could we find ways of automating the creation of hard-
ware models? Can we create high-level summaries of the behavior of software
on a system? Although these tasks are likely to be impossible in the general
case (due to fundamental limitations such as the Halting Problem), we may
be able to find real-world classes of programs or devices for which we can
accomplish our goals.

References

[1] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee. Tappan Zee (North)
Bridge: Mining memory accesses for introspection. In Proceedings of
the ACM Conference on Computer and Communications Security (CCS),
2013.

[2] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtu-
oso: Narrowing the semantic gap in virtual machine introspection. In
Proceedings of the IEEE Symposium on Security and Privacy (Oakland),
May 2011.

[3] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Robust signa-
tures for kernel data structures. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2009.

5


