Why Do Developers Neglect Exception Handling?

Hina Shah, Carsten Gorg, Mary Jean Harrold
College of Computing, Georgia Institute of Technology, Atlanta, Georgia, U.S.A.

{hinashah,goerg,harrold}@cc.gatech.edu

ABSTRACT

In this paper, we explore the problems associated with exception
handling from a new dimension: the human. We designed a study
that evaluates (1) different perspectives of software developers to
understand how they perceive exception handling and what meth-
ods they adopt to deal with exception handling constructs, and (2)
the usefulness of a visualization tool that we developed in previ-
ous work for exception handling. We describe the design of our
study, present details about the study’s participants, describe the
interviews we conducted with the participants, present the results
of the study, and discuss what we learned from the study. Based
on our analysis, we suggest several future directions, including
the proposal of a new role for the software-development process—
exception engineer, who works closely with software developers
throughout all phases of the software-development life cycle and
who concentrates on the integration of exception handling into the
core functionality of programs.

Categories and Subject Descriptors

D.1.5 [Software]: Object-oriented programming—Exception Han-
dling; H.1.2 [Information Systems]: User/Machine Systems—
Software psychology; H.5.2 [Information Systems]: User Inter-
faces—Evaluation/methodology

Keywords

Exception handling, interactive visualization, human aspects, user
studies.

1. INTRODUCTION

The importance of error handling in software development has
been known for a long time, and considerable research has been
performed to develop tools and techniques to aid developers in in-
corporating exception handling into their programs. Lemos and
Romanovsky [1] propose an approach that separates the handling of
requirements-related, design-related, and implementation-related ex-
ceptions during the software life cycle. Lippert and Lopes [6]
propose that aspect-oriented programming can help in separating
the code of exception handling from the main core functionality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WEH 08, November 14, Atlanta, Georgia, USA

Copyright 2008 ACM 978-1-60558-229-0 ...$5.00.

code. However, in these proposed approaches both types of code
(main functionality code and exception handling code) would still
be implemented by the same developer. Filho and colleagues [2,
3] suggest lexically separating error-handling code from normal
code so that both code types can be independently modified. In
addition they propose leveraging aspect-oriented programming to
enhance the separation between error-handling code and normal
code. Zhang and colleagues [10] propose a different approach that
provides programmers with more intuitive exception-handling be-
havior and control.

All these approaches concentrate on enhancing the separation
between main functionality code and exception-handling code. How-
ever, “a number of recent field studies have identified that error
handling design in industrial applications typically exhibits poor
quality independently of the underlying programming language and
application domain.”* Thus, to gain a better understanding of the
problems with exception handling, we took a different approach:
exploring the human dimension using a set of studies.

First, we conducted a survey with 34 software developers to bet-
ter understand the needs of developers related to exception-handling
constructs in Java programs. Based on the survey results, we devel-
oped a tool called ENHANCE [8] (ExceptioN HANdling CEntric
visualization).?2 ENHANCE offers three views of the exception-
handling constructs in a Java program to aid software developers
in understanding exception-handling constructs in their programs.
We briefly describe ENHANCE by showing its three views (in Fig-
ure 1) on the NANOXML program®—a Java program, which con-
tains about 2700 lines of code.

The Quantitative View presents high-level information about throw-
catch pairs at the level of packages, classes, or methods. For ex-
ample, Figure 1(a) shows the Quantitative View for the exception
dependencies in NANOXML at the package level. There are 11
throws in the nanoxml package that may be caught by catch blocks
in the nanoxml.sax package.

The Flow View provides details about selected exceptions flows
at abstracted level. The view presents type definitions, throw clauses,
and catch clauses as abstract icons on separate layers, and the ex-
ception flow is represented as links between them. For example,
the highlighted path in Figure 1(b) shows that an exception of type
“FileNotFoundException” can be thrown from the throw statement
at line 2038 in method nanoXML.XMLMethod.addMethod and this
exception can be caught at the catch statement at line 2039 in the
same method.

1Quote from the call for papers for the 4th International Workshop
on Exception Handling, http://www.comp.lancs.ac.uk/
computing/WEH.08/cfp.htm

2Details of this tool can be found in Reference [8].
3’http : //nanoxml . sourceforge.net/orig/

The Contextual View provides low-level information by embed-
ding exception-handling constructs and their flows in an abstract
code view of the system. The example in Figure 1(c) shows the
propagation path of an exception across two packages: a throw
in the method XMLElement.skipBogusTag in package nanoxml is
caught by the catch block in method SAXParser.parse in method
nanoxml.sax after it is propagated through five other methods.

To evaluate our visualization, we conducted interviews with three
graduate students from the software-engineering group at the Geor-
gia Institute of Technology. The goal of this study was to under-
stand 1) how software developers currently deal with exception-
handling constructs and 2) whether ENHANCE can provide assis-
tance in helping them better perform their tasks. The results of
this preliminary evaluation study were interesting. It was surpris-
ing to find that the participants often ignored exception-handling
constructs.

To investigate further the findings from the preliminary evalu-
ation, we performed a more extensive study with nine software
developers. This extensive study concentrates on understanding
the approach software developers adopt to deal with exception-
handling-related tasks, such as designing, coding, reviewing, refac-
toring, testing, and debugging. Additionally, the study investigates
in more detail whether our ENHANCE tool can help software de-
velopers to better perform tasks related to exception-handling con-
structs.

Our study results revealed that some developers have shifted
their perspective on exception handling from the intended proac-
tive approach (i.e., how to handle possible exceptions) to a reac-
tive approach (i.e., using exception handling as debugging aids).
In addition, some developers dislike being forced to implement
exception-handling constructs and therefore, neglect to implement
them thoughtfully. Both results explain the poor quality of error
handling. To address this problem, we propose a new role for the
software-development process—exception engineers—who could
be designated developers who specialize in designing, implement-
ing, and integrating exception handling constructs.

The main contributions of this paper are:

e a presentation of the results of a study we conducted to un-
derstand the human dimension in exception handling,

e an analysis of the results of our study and what we learned
from it,

e aproposal for a solution to the issues raised by our study.

In the next section (Section 2), we describe the study in detail.
Then, we present the results of the study (Section 3). Next, we
discuss what we learned from the study (Section 4), Finally, we
conclude and discuss future work (Section 5).

2. STUDY DESCRIPTION

In this section, we describe in more detail our motivation for
conducting studies about the human aspects that are related to ex-
ception handling, how we designed our interview protocol, and the
strategy we adopted to select our participants. We also discuss the
methodology we followed to conduct the interviews and the analy-
sis.

2.1 Motivation

As we stated in Section 1, in our previous work [8], we per-
formed a preliminary evaluation of our visualization. In that evalu-
ation, we conducted a study with three graduate students from the
software-engineering group at the Georgia Institute of Technology.

The study results revealed interesting findings about approaches
that software developers adopt while dealing with exception-han-
dling constructs (e.g., the ignore-for-now approach in which devel-
opers ignore exception handling until there is an error or until they
are forced to address it). The results of the preliminary study mo-
tivated us to conduct further investigations whose main goals are
to understand what approaches software developers adopt to deal
with exception-handling tasks, to understand why they adopt those
approaches, and to evaluate our visualization to determine whether
it can help the software developers to better perform their tasks.

2.2 Protocol and Participant Details

We used the results of our preliminary study [8] to design our
new study. In the preliminary study we had created an initial inter-
view protocol based on our past experiences and we had conducted
the preliminary study using this interview protocol. The partici-
pants in the preliminary study provided feedback for improving our
interview protocol. Based on this feedback, we iteratively modified
the semi-structured interview protocol for the participants. After
we completed the design of the interview protocol, we contacted
potential participants by emailing invitations to software develop-
ers who had Java experience. We concentrated the study on devel-
opers with considerable experience in Java because currently our
visualization tool, ENHANCE, supports only Java programs. Nine
software developers agreed to participate in the study: eight of them
were summer interns at a large multinational organization and one
was a full-time employee at the same organization. All the par-
ticipants had experience with Java, but most even had experience
working on programming languages such as C/C++ and during the
interviews they provided information about exception-handling ap-
proaches they generally adopted irrespective of the languages they
used. The intern participants had between one and ten years of prior
industrial software-development experience whereas the full-time
employee had twenty-five years of industrial software-development
experience. And all participants had experience working on large
software projects.

2.3 Study Design

Based on our study goals, stated above, we designed our study
to consist of two parts: (1) understanding how the participants ap-
proach the problem of understanding exception handling and how
they adopt those approaches, and (2) evaluating our visualization
using the ENHANCE tool. While conducting the user studies, we
first asked questions about the participants’ current approaches for
understanding exception handling information, then we demonstrat-
ed the tool (by running the tool on the NANOXML sample pro-
gram) and asked them to play around with it, and finally we asked
them questions related to the tool evaluation. Each study lasted for
approximately one hour.

In Part 1 of the study, we asked the participants to explain how
they deal with exceptions. The set of questions covered in the in-
terview protocol includes:

e What approach do you follow to understand exception-flow
information in a program?

e For what do you use exception-handling constructs in a pro-
gram? How do you use them?

e When working with code (e.g., coding, testing, reviewing,
and understanding) how often do you pay attention to the
functionality associated with exception handling?

e Do you avoid using exception handling in programs? If yes,
why?

MNumber of throw-catch pairs at PACKAGE LEVEL o : e

1 15 540

{default) | nancxml | nanaoxml.

Sax
{default)
oo 0.0
\EnoxmWMLE\ememt.addedMeﬁﬂod:2038|
nanexmil : ‘
nancsxml. A““
sax . b\“
Pair Court: 11

© 0 0 0O

Throw in: nanoxrl

v

OOQOQOQOQO.

Catch in: nancwxml.sax

[nanoxmi/xMLElement addediethod: 2039)

(a) The Quantitative View showing exception de-
pendencies at the package level.

(b) The Flow View showing exception flows in NANOXML.

Lsax

SAXLocator jara SANPATser jara

Eoample jara ML ParseEoception jan

| nanoxmlfsax/SAXParser parse

LY

(c) The Contextual View showing the exception flow of an exception embedded in the source code.

Figure 1: Thethree views of the ENHANCE visualization tool.

In Part 2 of the study, we first demonstrated how to use EN-
HANCE and introduced each of ENHANCE’s views to the partici-
pants. We then let the participants use the tool to explore the views
using the NANOXML program.® After that we asked the partici-
pants several questions about the visualization:

e For each view, how can that view be used to support the com-
prehension of exception-flow-related tasks?

e Would such a visualization better motivate you to deal with
the exception-handling parts of the code?

2.4 Method

Before beginning the interview with each participant, we ex-
plained the goals of the study, and informed the participants that
their information would be anonymous and that they could stop the
interview at any time, without being required to give a reason. Ad-
ditionally, we asked permission to audio record the conversation.
Before leaving, we asked their permission to send emails to them
in case we required any clarifications at a later time.

We adopted a straight-forward approach for the analysis. We
worked through each interview to produce a summary, and then
read through the entire field notes multiple times to find cross-
cutting sets of common themes.

3. STUDY RESULTS

In this section, we present the results of the interviews with the
eight intern participants. Because the full-time employee partici-
pant had significantly more experience than the other participants
in the study, to maintain the consistency of the participants’ de-
mographics, we excluded the full-time employee participant’s data
from this section. However, we include the full-time employee par-
ticipant’s data in the discussion in Section 4. Based on the analysis
of the interview data, several common themes emerged. We present
each of them in turn.

Using exception handling for debugging

All the participants we interviewed stated that they use exception
handling primarily for debugging purposes. They indicated that
when an exception occurs, they use the information provided by
the stack trace to understand what caused the exception. All partic-
ipants, except one, were interested in understanding the path the ex-
ception follows from the point it is thrown to the point it is caught.
One participant stated

I don’t need to understand the entire path of [the] stack
trace because all | need is the point where the excep-
tion is thrown, and that’s it.

The participants mentioned that on some occasions they use the
names of the exceptions to understand the context of the surround-
ing program code (e.g., an exception-code block with a ParseEx-
ception indicates that the code functionality around this exception
code block deals with parsing). Additionally, one participant stated
that customized exceptions are very useful. The participant men-
tioned that whenever customized exceptions are used, the partic-
ipant tries to understand the exception-handling measures (imple-
mented by the application developer) associated with the customized
exception to gain a deeper understanding of the core functionality
that is implemented. However, most of the participants agreed that
in cases where Java’s defined exceptions (e.g., ClassNotFoundEx-
ception) are used, they tend to ignore understanding the exception
handling implemented around these exceptions.

Adopting theignore-for-now approach

Another common attitude held by the participants is that they do not
think that exception handling is a high-priority task. They believe
that dealing with exception handling is tangential to the actual tasks
of the program—handling the program’s main functionality. Thus,
neglecting a thoughtful implementation of exception-handling con-
structs is allowable. Participants think that it is time consuming and
hence, a waste of time, to design exception-handling code in ad-
vance. They believe that a thoughtful implementation of exception
handling can be postponed until the error actually occurs. They

can then identify the cause and fix the error. Statements made by
participants include

I ignore exceptions because | don’t need to take care
of them. Whenever something goes wrong just fix the
error, it’s not worth spending the time.

I care only about the right path.

I try to keep things [program] simple as far as possible
by implementing some simple exception handling stuff.

At the beginning | tend to avoid it [exceptions], but
when they occur | handle them.

The only exception to the ignore-for-now behavior occurs in sce-
narios where the code on which the participants were working al-
ready had some useful implementation of exception handling. In
such scenarios, the participants agreed that they try to mimic the
existing code. Thus, in general, participants try to avoid handling
exceptions unless some support structure is already available.

Per ceiving forced exception handling in Java

A third common attitude held by the participants was that they use
the exception handling because they perceive that the language (i.e.,
Java) forces them to use it. They explained this by stating that they
will not use exception handling if the compiler does not prompt
them with compile-time errors when the appropriate exception-relat-
ed code was missing (e.g., declaration of throws clause, or imple-
mentation of respective try-catch block). Some participants men-
tioned that this behavior was partly because they had prior experi-
ence with programming languages such as C and C++, where no
compulsion exists to implement exception-handling code. State-
ments made by participants include

I don’t love to use it [exception handling] but for some
features of the language, | have to use it.

I need to catch exceptions because Java requires me to
do it. I just fulfill the language’s requirements.

Using the ENHANCE visualization tool

Seven out of the eight intern participants thought it was difficult
to understand ENHANCE’s Quantitative View and its usage. The
participants complained about the layout and the usage of informa-
tion that was being displayed. They thought that the dependency-
relation information that the view provides might be more useful
for project managers than for them. Only one participant disagreed,
and that participant suggested another use of the view: understand-
ing the exception concentration in the program and identifying ex-
ceptions that are not caught.

However, all eight participants thought that the other two views
were quite useful. When viewing the unreachable blocks that the
Flow View displays, participants mentioned that they were unaware
that such unreachable blocks actually exist in programs. Many
made interesting conclusions about the program based on the ex-
ception patterns revealed in the view. Also, participants thought
that the Contextual View is useful because it reveals the complete
paths of exception flows in the program, giving information about
the number of levels an exception is thrown before it is handled
(e.g., distance between throw and catch [9]).

Another common attitude that the study revealed is that, despite
the availability of a visualization for aiding exception-handling re-
lated tasks, participants were not motivated to change their ap-
proach to dealing with exception handling. However, they also

noted that at times when they are forced to deal with exception
handling, such a tool would make their work simpler. Participants
comments include

Such a tool will not motivate me to deal with exception-
handling better, it will only help me spend less time.

I might have used it, but currently, my focus will still
be more on functionality.

4. DISCUSSION

In this section we discuss the results of our analysis and we pro-
pose a solution to solve some of the problems related to exception
handling that were exposed in the analysis. We also discuss our
visualization in the context of the analysis results and solution we
propose.

Usage shift to Debugging

The analysis results show that there has been a shift from the way
exception handling was originally designed to be used (error han-
dling and recovery) to the way it is currently used (debugging and
understanding). For instance programming languages such as Java
provide exception handling constructs that were originally designed
to be used for systematically handling error conditions in a program
by taking the necessary action based on the situation (i.e., provide
scaffolding either to recover from an error or to allow a graceful exit
when an unrecoverable error has occurred) [5]. However, the re-
sults clearly indicate that developers tend to use exception-handling
constructs mostly for debugging purposes (e.g., to understand the
flow of the program when an error occurs).

We observed that this shift in the usage pattern of exception han-
dling has direct implications on the way it is implemented by de-
velopers. Developers view exception handling more as a feature
that aids them in debugging and they tend not to invest time in im-
plementing code for proper handling of error conditions unless its
implementation helps with debugging. This behavior explains to
some extent why most developers implement only basic exception-
handling code, such as printing stack traces in catch blocks even
if the situation demands to handle the exception in a more sophis-
ticated way (e.g., release resources in database scenarios, perform
clean ups, or print to log files).

The shift in use of exception handling from error recovery to
debugging and the developer’s ignore-for-now attitude that we dis-
cussed in the previous section indicate that the attitude of develop-
ers is more reactive whereas exception handling was designed to
support developers to be proactive. This reactive nature, to some
extent emerges because developers tend to consider exception-han-
dling functionality as lower priority than the main functionality.

However, the significantly more experienced participant had a
different and interesting perspective on this topic. In addition to use
exception handling for debugging purposes, this participant con-
sidered the exception handling also as a good way of documenting
potential problems. Thus, these findings could indicate that there
is a difference in the approach adopted by significantly more expe-
rienced developers as compared to not as experienced developers.
To investigate these differences in more detail, we intend to con-
duct similar studies with more experienced developers as part of
our future work.

Forced Exception Handling

In programming languages such as C, exception-handling mech-
anism support is not as extensive and easy as it is in Java [4, 7]
because these languages do not provide an elegant framework for

exception handling. Because of the lack of such a framework soft-
ware developers tend to ignore implementing exception handling.

To address this problem, Java’s exception-handling mechanisms
were designed such that they support the software developers in im-
plementing the exceptions-handling functionality in an easy and el-
egant manner.* However, our study results show that Java’s design
was perceived as a force by most of the participants what indicates
that the software developers were not willing to handle exceptions
but the language imposed compulsions to handle exceptions.

Therefore, the two similar attitudes of “avoiding exception han-
dling” that developers carry on both the occasions — when no sup-
port for exception handling is available and when support is avail-
able — indicate that developers are less willing to deal with excep-
tion handling.

Nevertheless, the significantly more experienced participant in
our study had a completely different perspective on Java’s forced
exception handling. This participant found Java’s exception han-
dling beneficial and easy to use. An interesting quote from the
conversation is:

It’s so cheap to put a little check and it’s not time con-
suming too, it doesn’t slow me down infinitely. And the
throw-catch makes life so simple.

C had signals to indicate errors and they were really
tough to use, but Java makes that life simpler by pro-
viding some scaffolding for exception handling.

This opinion highlights another difference of attitude between
the significantly more experienced software developer and the less
experienced developers. We intend to conduct further investiga-
tions through detailed studies to confirm such findings.

Need for Exception Engineers

In the past, there has been considerable research performed in sep-
arating error-handling code from main-functionality code. How-
ever, despite the code separation, the responsibility of implement-
ing both, the main as well as the exceptional functionalities is the
task of the same developer. Under such situations, the developers
tend to give low priority to exception handling because they be-
lieve that it does not form a part of their main functionality. Thus,
because developers are burdened with the responsibilities of man-
aging both the main functionality and the exceptional functionality,
they might continue ignoring the exception-handling functionality.
To address this problem we propose to separate the main func-
tionality from the exception functionality in a different way. Whereas
separating error handling code from the core functionality code
is the current approach, we propose that the separation should be
taken one step further where error-handling developers are separate
from main functionality developers. We recommend that a new
role should be introduced in the software development process—
the role of exception engineers. With a similar functionality as a
test engineer (the primary focus of a test engineer is to test the pro-
gram for bugs), the exception engineer’s role would be to focus on
exceptional code while working closely with the developers of the
core functionality code. Thus, now the software development life
cycle would involve three types of engineers working in harmony:
(1) the developers who focus on developing the main functionality,
(2) the test engineers who focus on failing the functionality, and (3)
the exception engineers who focus on recovering from failures or
gracefully exiting the program on unrecoverable failures.

*http://web.archive.org/web/20050417232501/
http://technetcast.ddj.com/tnc_program.html?
program_ id=63&page id=3

Exception engineers may work closely with the developers through
the different phases in the software development life cycle with a
primary focus on determining the exceptional conditions that may
occur in the system (e.g., creating use cases with exceptional and
failure scenarios [1] during the design phase, writing exception
handling code during the implementation phase, and testing the
exceptional path during the testing phase). Special training ses-
sions may be organized for exception engineers in which they are
educated about the common exceptional situations that have been
encountered in the past. Also, they may be exposed to some of the
common practices highly-experienced software developers adopt to
deal with exceptional situations.

This solution would address the ignore-for-now approach as well
as debugging problems. It would resolve the ignore-for-now prob-
lem because now the core functionality developers do not have to
focus any more on writing exception-handling code. By defining
a dedicated role for the exception engineers, they will concentrate
on the implementation of exceptional functionality, which was pre-
viously handled by the main developers. Also, the core function-
ality developers could now work closely with the exception engi-
neers to incorporate better debugging code along with error han-
dling. Exception engineers could use programming paradigms that
support the separation of main functionality from the cross-cutting
functionality of exception handling (e.g., aspect-oriented program-
ming) to develop the exception-related code in parallel along with
the main software developers.

Introducing a new role of exception engineers would demand a
close coordination between them and the other developers; it would
be interesting to investigate further the coordination between the
exception engineers and the other developers. This will not only
help to unfold unseen problems but also help to design the role of
exception engineers in more detail.

Visualization for Exception Handling

Our studies about the visualization revealed that developers tend
to use visualization tools like ENHANCE less frequently because
their main focus is rarely on implementing code related to excep-
tion handling. However, they stated that if their role requires them
to work extensively with exception handling (e.g., working on crit-
ical projects), then they would definitely use such tools to save time
and efforts.
An interesting quotation from one of the participants was

If | was a power user of exceptions then | would defi-
nitely use this tool a lot.

Additionally, the studies also showed that the participants thought
that two of the views, the Flow View and the Contextual View, pro-
vided useful information about exception handling. However, only
one of the participants thought that the Quantitative View provided
useful information. As a part of the future work, we intend to re-
design the Quantitative View in such a way that it clearly indicates
what information it provides.

Thus, the study results of the visualization indicate that such a
visualization would be helpful for developers whose work is fo-
cused on exception handling. If the role of exception engineers
would be established successfully, then they could benefit from the
ENHANCE visualization tool.

5. CONCLUSIONSAND FUTURE WORK

Software developers need to understand the complex mechanisms
of exception handling in large software systems to be able to de-
velop, debug, and maintain those systems. In this paper, we pre-

sented the results of studies we conducted to gain a better under-
standing of the human dimension in tasks related to exception hand-
ing.

The study results showed that developers are not satisfied with
the existing exception-handling mechanisms in Java. They do not
like the force that languages such as Java impose to implement ex-
ception handling constructs. Furthermore, sometimes the complex
mechanisms are even overwhelming and developers wish to have
a better support to understand and implement exception-handling
constructs.

To address this problem, we proposed to introduce a new role
of exception engineers who would be dedicated to the design, im-
plementation, and maintenance of the parts of programs dealing
with exceptions. Whereas such a role could improve the software-
development process related to exception handling on the one hand,
it also would introduce new challenges on the other hand. Excep-
tion engineers would need a proper training, the communication be-
tween exception engineers and developers of the core functionality
would have to be streamlined, and features such as aspect-oriented
programming would have to be considered to support the divided
work flow of implementing exception-related and core functional-
ity program code. We plan to investigate these challenges as part
of our future work.

Participants in our study considered two views of our visualiza-
tion tool ENHANCE—the Flow View and the Contextual View—to
be very helpful in understanding, implementing, and debugging ex-
ception handling constructs. Therefore, we believe that ENHANCE
would be a valuable tool for exception engineers. The Quantitative
View was not considered to be as helpful, and we plan to re-design
this view.

Finally, we intend to conduct additional studies with more expe-
rienced developers (more than 20 years of experience) from differ-
ent organizations to understand whether experience and organiza-
tional cultures play important roles in the way exception handling
is approached and used.

Acknowledgements

This work was supported in part by NSF awards CCF-0429117,
CCF-0541049, and CCF-0725202 to Georgia Tech. The partici-
pants in our study provided valuable information. The anonymous
reviewers gave helpful comments on an earlier version of this pa-
per.

6. REFERENCES

[1] R. de Lemos and A. B. Romanovsky. Exception Handling in
the Software Lifecycle. International Journal of Computer
Systems Science and Engineering, 16(2):119-133, 2001.

[2] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhéo,

A. Garcia, and C. M. F. Rubira. Exceptions and aspects: the
devil is in the details. In SIGSOFT *06/FSE-14: Proceedings
of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 152-162, New
York, NY, USA, 2006. ACM.

[3] F. C. Filho, A. Garcia, and C. M. F. Rubira. Error handling as
an aspect. In BPAOSD ’07: Proceedings of the 2nd workshop
on Best practices in applying aspect-oriented software
development, pages 1-6, New York, NY, USA, 2007. ACM.

[4] N. H. Gehani. Exceptional C or C with exceptions. Softw.
Pract. Exper., 22(10):827-848, 1992.

[5] J. B. Goodenough. Exception handling: issues and a
proposed notation. Commun. ACM, 18(12):683-696, 1975.

(6]

(7]

(8]

M. Lippert and C. V. Lopes. A study on exception detection
and handling using aspect-oriented programming. In ICSE
’00: Proceedings of the 22nd international conference on
Software engineering, pages 418-427, New York, NY, USA,
2000. ACM.

B. G. Ryder and M. L. Soffa. Influences on the design of
exception handling: Acm sigsoft project on the impact of
software engineering research on programming language
design. SIGPLAN Not., 38:16-22, June 2003.

H. Shah, C. Goérg, and M. J. Harrold. Visualization of
exception handling constructs to support program

(9]

[10]

understanding. In Proceedings of the ACM Symposium on
Software Visualization, pages 19-28, 2008.

S. Sinha and M. J. Harrold. Analysis of programs with
exception-handling constructs. In Proceedings of the
International Conference on Software Maintenance, pages
348-357, 1998.

L. Zhang, C. Krintz, and P. Nagpurkar. Supporting exception
handling for futures in java. In PPPJ 07: Proceedings of the
5th international symposium on Principles and practice of
programming in Java, pages 175-184, New York, NY, USA,
2007. ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

