Pairwise Statistics

- Problems involving pairwise distance computation
Pairwise Statistics

- Problems involving pairwise distance computation
 - All nearest-neighbor search
Pairwise Statistics

- Problems involving pairwise distance computation
 - All nearest-neighbor search
 - All point kernel density estimation / kernel machines
Pairwise Statistics

- Problems involving pairwise distance computation
 - All nearest-neighbor search
 - All point kernel density estimation / kernel machines

- Single-query case: Cumulative effect of a reference set \mathcal{R} with N points in Euclidean space on a query point q
Pairwise Statistics

- Problems involving pairwise distance computation
 - All nearest-neighbor search
 - All point kernel density estimation / kernel machines

- Single-query case: Cumulative effect of a reference set \mathcal{R} with N points in Euclidean space on a query point q

- Multiple queries case (all-query): Combined effects of \mathcal{R} on each point q in a query set Q of size $O(N)$.
Pairwise Statistics

- Problems involving pairwise distance computation
 - All nearest-neighbor search
 - All point kernel density estimation / kernel machines

- Single-query case: Cumulative effect of a reference set \mathcal{R} with N points in Euclidean space on a query point q

- Multiple queries case (all-query): Combined effects of \mathcal{R} on each point q in a query set \mathcal{Q} of size $O(N)$.

- Naïve Solution: Quadratic $O(N^2)$ runtime
Pairwise Statistics

- Problems involving pairwise distance computation
 - All nearest-neighbor search
 - All point kernel density estimation / kernel machines

- Single-query case: Cumulative effect of a reference set \mathcal{R} with N points in Euclidean space on a query point q

- Multiple queries case (all-query): Combined effects of \mathcal{R} on each point q in a query set Q of size $O(N)$.

- Naïve Solution: Quadratic $O(N^2)$ runtime

- Sub-problem: magnitude of effect of point r on point q inversely proportional to their distance $d(q, r)$.
Pairwise Statistics

- Problems involving pairwise distance computation
 - All nearest-neighbor search
 - All point kernel density estimation / kernel machines

- Single-query case: Cumulative effect of a reference set \(\mathcal{R} \) with \(N \) points in Euclidean space on a query point \(q \)

- Multiple queries case (all-query): Combined effects of \(\mathcal{R} \) on each point \(q \) in a query set \(Q \) of size \(O(N) \).

- Naïve Solution: Quadratic \(O(N^2) \) runtime

- Sub-problem: magnitude of effect of point \(r \) on point \(q \) inversely proportional to their distance \(d(q, r) \).

- Solution method used: \textit{spatial-partitioning tree datastructures} built on \(\mathcal{R} \)
Existing Algorithms: Single-query Case

Existing Algorithms: All-query

Contributions

Trees: Structure
Trees: Properties
Tree NN: Algorithm and Analysis
Dual-tree NN: Algorithm
Dual-tree NN: Analysis
Single-tree KDE: Algorithm
Single-tree KDE (contd.)
Tree Approximate KDE: Approximate potential summation
Multiple queries on a single reference tree
Existing Algorithms: Single-query Case

- Multiple queries on a single reference tree
 - kd-tree (Freidman, Bentley, Finkel, '77): Expected $O(\log N)$ for NN of a single query, also used for KDE (no runtime bounds).
Multiple queries on a single reference tree

- *kd*-tree (Freidman, Bentley, Finkel, ’77): Expected $O(\log N)$ for NN of a single query, also used for KDE (no runtime bounds).

- Barnes & Hut, ’86: $O(\log N)$ bound on approximate potential computation, no error guarantees.
Existing Algorithms: Single-query Case

- Multiple queries on a single reference tree
 - \(kd \)-tree (Freidman, Bentley, Finkel,’77): Expected \(O(\log N) \) for NN of a single query, also used for KDE (no runtime bounds).
 - Barnes & Hut,’86: \(O(\log N) \) bound on approximate potential computation, no error guarantees.
 - Karger & Ruhl,’02: Randomized algorithm for \(O(\log N) \) single NN query for low-intrinsic-dimensional data.
Existing Algorithms: Single-query Case

- Multiple queries on a single reference tree
 - kd-tree (Freidman, Bentley, Finkel, '77): Expected $O(\log N)$ for NN of a single query, also used for KDE (no runtime bounds).
 - Barnes & Hut, '86: $O(\log N)$ bound on approximate potential computation, no error guarantees.
 - Karger & Ruhl, '02: Randomized algorithm for $O(\log N)$ single NN query for low-intrinsic-dimensional data.
 - Navigating Nets data structure (Krauthgamer & Lee, '04) for $O(\log N)$ NN query for low-intrinsic-dimensional data (more robust notion)
Existing Algorithms: Single-query Case

- Multiple queries on a single reference tree
 - *kd*-tree (Freidman, Bentley, Finkel, ’77): Expected $O(\log N)$ for NN of a single query, also used for KDE (no runtime bounds).
 - Barnes & Hut, ’86: $O(\log N)$ bound on approximate potential computation, no error guarantees.
 - Karger & Ruhl, ’02: Randomized algorithm for $O(\log N)$ single NN query for low-intrinsic-dimensional data.
 - Navigating Nets data structure (Krauthgamer & Lee, ’04) for $O(\log N)$ NN query for low-intrinsic-dimensional data (more robust notion)
 - Cover trees (Beygelzimer, Kakade & Langford, ’06) for $O(\log N)$ NN query (algorithm efficient in practice too).
Existing Algorithms: Single-query Case

- Multiple queries on a single reference tree
 - \textit{kd}-tree (Freidman, Bentley, Finkel, ’77): Expected $O(\log N)$ for NN of a single query, also used for KDE (no runtime bounds).
 - Barnes & Hut, ’86: $O(\log N)$ bound on approximate potential computation, no error guarantees.
 - Karger & Ruhl, ’02: Randomized algorithm for $O(\log N)$ single NN query for low-intrinsic-dimensional data.
 - Navigating Nets data structure (Krauthgamer & Lee, ’04) for $O(\log N)$ NN query for low-intrinsic-dimensional data (more robust notion)
 - Cover trees (Beygelzimer, Kakade & Langford, ’06) for $O(\log N)$ NN query (algorithm efficient in practice too).

- All-query case: Single-tree algorithms improves $O(N^2)$ to at best $O(N \log N)$
Existing Algorithms: All-query Case

- Existing all-query algorithm/analysis: Only monochromatic case
Existing Algorithms: All-query Case

- Existing all-query algorithm/analysis: Only monochromatic case
 - Fast Multipole Method (FMM) (Greengard & Rokhlin, ’87) - algorithm for N-body particle simulation with non-rigorous $O(N)$ runtime bound
Existing Algorithms: All-query Case

- Existing all-query algorithm/analysis: Only monochromatic case
 - Fast Multipole Method (FMM) (Greengard & Rokhlin,'87) - algorithm for N-body particle simulation with non-rigorous $O(N)$ runtime bound
 - Methods based on well-separated-pair-decomposition (WSPD) (Callahan & Kosaraju,’95) for all-NN and particle simulation with $O(N)$ runtime bound - inefficient in practice, not clearly extendible to bichromatic case
Existing Algorithms: All-query Case

- Existing all-query algorithm/analysis: Only monochromatic case
 - Fast Multipole Method (FMM) (Greengard & Rokhlin,’87) - algorithm for N-body particle simulation with non-rigorous $O(N)$ runtime bound
 - Methods based on well-separated-pair-decomposition (WSPD) (Callahan & Kosaraju,’95) for all-NN and particle simulation with $O(N)$ runtime bound - inefficient in practice, not clearly extendible to bichromatic case

- Dual tree algorithms: Generalization to bichromatic sets
Existing Algorithms: All-query Case

- Existing all-query algorithm/analysis: Only monochromatic case
 - Fast Multipole Method (FMM) (Greengard & Rokhlin, ’87) - algorithm for N-body particle simulation with non-rigorous $O(N)$ runtime bound
 - Methods based on well-separated-pair-decomposition (WSPD) (Callahan & Kosaraju, ’95) for all-NN and particle simulation with $O(N)$ runtime bound - inefficient in practice, not clearly extendible to bichromatic case

- Dual tree algorithms: Generalization to bichromatic sets
 - builds tree also on Q
Existing Algorithms: All-query Case

- Existing all-query algorithm/analysis: Only monochromatic case
 - Fast Multipole Method (FMM) (Greengard & Rokhlin,’87) - algorithm for N-body particle simulation with non-rigorous $O(N)$ runtime bound
 - Methods based on well-separated-pair-decomposition (WSPD) (Callahan & Kosaraju,’95) for all-NN and particle simulation with $O(N)$ runtime bound - inefficient in practice, not clearly extendible to bichromatic case

- Dual tree algorithms: Generalization to bichromatic sets
 - builds tree also on Q
 - descends both trees simultaneously
Existing Algorithms: All-query Case

- Existing all-query algorithm/analysis: Only monochromatic case
 - Fast Multipole Method (FMM) (Greengard & Rokhlin,’87) - algorithm for N-body particle simulation with non-rigorous $O(N)$ runtime bound
 - Methods based on well-separated-pair-decomposition (WSPD) (Callahan & Kosaraju,’95) for all-NN and particle simulation with $O(N)$ runtime bound - inefficient in practice, not clearly extendible to bichromatic case

- Dual tree algorithms: Generalization to bichromatic sets
 - builds tree also on Q
 - descends both trees simultaneously
 - significantly more efficient in practice than single-tree algorithms
Existing Algorithms: All-query Case

- Existing all-query algorithm/analysis: Only monochromatic case
 - Fast Multipole Method (FMM) (Greengard & Rokhlin,’87) - algorithm for N-body particle simulation with non-rigorous $O(N)$ runtime bound
 - Methods based on well-separated-pair-decomposition (WSPD) (Callahan & Kosaraju,’95) for all-NN and particle simulation with $O(N)$ runtime bound - inefficient in practice, not clearly extendible to bichromatic case

- Dual tree algorithms: Generalization to bichromatic sets
 - builds tree also on Q
 - descends both trees simultaneously
 - significantly more efficient in practice than single-tree algorithms
 - conjectured to be $O(N)$ with cover trees
Our Contributions

We provide $O(N)$ runtime bounds for the following problems:
Our Contributions

We provide $O(N)$ runtime bounds for the following problems:

- **All Nearest-neighbors**: $\forall q \in Q$, find

$$r^*(q) = \arg \min_{r \in R} d(q, r).$$
Our Contributions

We provide $O(N)$ runtime bounds for the following problems:

- **All Nearest-neighbors:** $\forall q \in Q$, find

 $$r^*(q) = \arg \min_{r \in \mathcal{R}} d(q, r).$$

- **Kernel summations:** Given a kernel function $K(\cdot)$, $\forall q \in Q$, compute the kernel summations

 $$f(q) = \sum_{r \in \mathcal{R}} K(d(q, r)), \ \forall q \in Q.$$
Our Contributions

We provide $O(N)$ runtime bounds for the following problems:

- **All Nearest-neighbors:** $\forall q \in Q$, find
 \[r^*(q) = \arg \min_{r \in \mathcal{R}} d(q, r). \]

- **Kernel summations:** Given a kernel function $K(\cdot)$, $\forall q \in Q$, compute the kernel summations
 \[f(q) = \sum_{r \in \mathcal{R}} K(d(q, r)), \forall q \in Q. \]

- **N-body potential calculation:** $\forall q \in Q$ compute the net electrostatic or gravitational potential
 \[f(q) = \sum_{r \in \mathcal{R}, r \neq q} d(q, r)^{-1}. \]
Cover trees: Structure

- Tree T stores \mathcal{R} in the form of a levelled tree. Each level is indexed by an integer scale i which decreases as the tree is descended. Let C_i denote the set of nodes at scale i:
Cover trees: Structure

- Tree T stores \mathcal{R} in the form of a levelled tree. Each level is indexed by an integer scale i which decreases as the tree is descended. Let C_i denote the set of nodes at scale i:
 - nesting invariant: $C_i \subset C_{i-1}$
Cover trees: Structure

- Tree T stores \mathcal{R} in the form of a levelled tree. Each level is indexed by an integer scale i which decreases as the tree is descended. Let C_i denote the set of nodes at scale i:
 - nesting invariant: $C_i \subset C_{i-1}$
 - covering invariant: For every $p \in C_{i-1}$, there exists a $q \in C_i$ satisfying $d(p, q) \leq 2^i$, and exactly one such q is a parent of p.
Cover trees: Structure

- Tree T stores \mathcal{R} in the form of a levelled tree. Each level is indexed by an integer scale i which decreases as the tree is descended. Let C_i denote the set of nodes at scale i:
 - nesting invariant: $C_i \subset C_{i-1}$
 - covering invariant: For every $p \in C_{i-1}$, there exists a $q \in C_i$ satisfying $d(p, q) \leq 2^i$, and exactly one such q is a parent of p.
 - separation invariant: For all $p, q \in C_i$, $d(p, q) > 2^i$.
Cover trees: Structure

- Tree T stores \mathcal{R} in the form of a levelled tree. Each level is indexed by an integer scale i which decreases as the tree is descended. Let C_i denote the set of nodes at scale i:
 - nesting invariant: $C_i \subset C_{i-1}$
 - covering invariant: For every $p \in C_{i-1}$, there exists a $q \in C_i$ satisfying $d(p, q) \leq 2^i$, and exactly one such q is a parent of p.
 - separation invariant: For all $p, q \in C_i$, $d(p, q) > 2^i$.

- Space requirement: $O(N)$
Cover trees: Structure

- Tree T stores \mathcal{R} in the form of a levelled tree. Each level is indexed by an integer scale i which decreases as the tree is descended. Let C_i denote the set of nodes at scale i:
 - nesting invariant: $C_i \subseteq C_{i-1}$
 - covering invariant: For every $p \in C_{i-1}$, there exists a $q \in C_i$ satisfying $d(p, q) \leq 2^i$, and exactly one such q is a parent of p.
 - separation invariant: For all $p, q \in C_i$, $d(p, q) > 2^i$.

- Space requirement: $O(N)$
- Construction time: $O(N \log N)$
Cover trees: Structure

- Tree \(T \) stores \(\mathcal{R} \) in the form of a levelled tree. Each level is indexed by an integer scale \(i \) which decreases as the tree is descended. Let \(C_i \) denote the set of nodes at scale \(i \):
 - nesting invariant: \(C_i \subset C_{i-1} \)
 - covering invariant: For every \(p \in C_{i-1} \), there exists a \(q \in C_i \) satisfying \(d(p, q) \leq 2^i \), and exactly one such \(q \) is a parent of \(p \).
 - separation invariant: For all \(p, q \in C_i \), \(d(p, q) > 2^i \).

- Space requirement: \(O(N) \)
- Construction time: \(O(N \log N) \)

- Representations
Cover trees: Structure

- Tree T stores \mathcal{R} in the form of a levelled tree. Each level is indexed by an integer scale i which decreases as the tree is descended. Let C_i denote the set of nodes at scale i:
 - nesting invariant: $C_i \subset C_{i-1}$
 - covering invariant: For every $p \in C_{i-1}$, there exists a $q \in C_i$ satisfying $d(p, q) \leq 2^i$, and exactly one such q is a parent of p.
 - separation invariant: For all $p, q \in C_i$, $d(p, q) > 2^i$.

- Space requirement: $O(N)$
- Construction time: $O(N \log N)$

- Representations
 - Implicit: Infinitely many levels C_i with the level C_∞ containing a single node which is the root and the level $C_{-\infty}$ containing every point in the dataset as a node.
Cover trees: Structure

- **Tree** T stores \mathcal{R} in the form of a levelled tree. Each level is indexed by an integer scale i which decreases as the tree is descended. Let C_i denote the set of nodes at scale i:
 - nesting invariant: $C_i \subseteq C_{i-1}$
 - covering invariant: For every $p \in C_{i-1}$, there exists a $q \in C_i$ satisfying $d(p, q) \leq 2^i$, and exactly one such q is a parent of p.
 - separation invariant: For all $p, q \in C_i$, $d(p, q) > 2^i$.

- **Space requirement**: $O(N)$
- **Construction time**: $O(N \log N)$

- **Representations**
 - Implicit: Infinitely many levels C_i with the level C_{∞} containing a single node which is the root and the level $C_{-\infty}$ containing every point in the dataset as a node.
 - Explicit: Collapses all nodes whose only child is the self-child. (provides the $O(N)$ space bound)
Cover Tree: Properties

- Intrinsic dimension: **Expansion constant** of \mathcal{R} is

\[
\arg\min_{c \geq 2} |B_{\mathcal{R}}(p, 2\rho)| \leq c |B_{\mathcal{R}}(p, \rho)| \quad \forall p \in \mathcal{R}, \forall \rho > 0.
\]

\[
d_{KR}(\mathcal{R}) = \log c.
\]
Cover Tree: Properties

- Intrinsic dimension: **Expansion constant** of \mathcal{R} is

$$\arg \min_{c \geq 2} |B_{\mathcal{R}}(p, 2\rho)| \leq c |B_{\mathcal{R}}(p, \rho)| \quad \forall p \in \mathcal{R}, \forall \rho > 0.$$

$$d_{KR}(\mathcal{R}) = \log c.$$

- Properties of the trees
Cover Tree: Properties

- Intrinsic dimension: **Expansion constant** of \mathcal{R} is

$$\arg \min_{c \geq 2} |B_{\mathcal{R}}(p, 2\rho)| \leq c |B_{\mathcal{R}}(p, \rho)| \ \forall p \in \mathcal{R}, \ \forall \rho > 0.$$

$$d_{KR}(\mathcal{R}) = \log c.$$

- Properties of the trees
 - **Width bound**: The number of children of any node p is bounded by c^4.

\[\text{Intrinsic dimension: Expansion constant of } \mathcal{R} \text{ is} \]

\[\arg \min_{c \geq 2} |B_{\mathcal{R}}(p, 2\rho)| \leq c |B_{\mathcal{R}}(p, \rho)| \ \forall p \in \mathcal{R}, \ \forall \rho > 0. \]

\[d_{KR}(\mathcal{R}) = \log c. \]

- **Properties of the trees**
 - **Width bound**: The number of children of any node p is bounded by c^4.

Intrinsic dimension: **Expansion constant** of \mathcal{R} is

$$\arg\min_{c \geq 2} |B_\mathcal{R}(p, 2\rho)| \leq c |B_\mathcal{R}(p, \rho)| \quad \forall p \in \mathcal{R}, \forall \rho > 0.$$

$$d_{KR}(\mathcal{R}) = \log c.$$

Properties of the trees

- **Width bound:** The number of children of any node p is bounded by c^4.
- **Growth bound:** For all $p \in \mathcal{R}$ and $\rho > 0$, if there exists a point $r \in \mathcal{R}$ such that $2\rho < d(p, r) \leq 3\rho$, then

 $$|B(p, 4\rho)| \geq \left(1 + \frac{1}{c^2}\right) |B(p, \rho)|.$$
Cover Tree: Properties

- Intrinsic dimension: **Expansion constant** of \mathcal{R} is
 \[
 \arg \min_{c \geq 2} |B_{\mathcal{R}}(p, 2\rho)| \leq c |B_{\mathcal{R}}(p, \rho)| \quad \forall p \in \mathcal{R}, \forall \rho > 0.
 \]

 \[d_{KR}(\mathcal{R}) = \log c.\]

- Properties of the trees
 - **Width bound**: The number of children of any node p is bounded by c^4.
 - **Growth bound**: For all $p \in \mathcal{R}$ and $\rho > 0$, if there exists a point $r \in \mathcal{R}$ such that $2\rho < d(p, r) \leq 3\rho$, then
 \[|B(p, 4\rho)| \geq \left(1 + \frac{1}{c^2}\right) |B(p, \rho)|.

 - **Depth bound**: The maximum depth of any point p in the explicit representation is $O(c^2 \log N)$.
Single-tree NN: Algorithm and analysis

FindNN(\mathcal{R}-Tree T, query q)

1. **Initialize** $R_\infty = C_\infty$.
2. **for** $i = \infty$ to $-\infty$ **do**
 3. $R = \{\text{Children}(r) : r \in R_i\}$
 4. $R_{i-1} = \{r \in R : d(q, r) \leq d(q, R) + 2^i\}$
 end for
3. **return** $\arg \min_{r \in R_{-\infty}} d(q, r)$
Single-tree NN: Algorithm and analysis

\textbf{FindNN}(\mathcal{R}\text{-Tree } T, \text{ query } q)

\textbf{Initialize} \quad R_\infty = C_\infty.

\textbf{for} \ i = \infty \ \textbf{to} \ -\infty \ \textbf{do}

3: \quad R = \{Children(r): r \in R_i\}

\quad R_{i-1} = \{r \in R: d(q, r) \leq d(q, R) + 2^i\}

\textbf{end for}

6: \quad \textbf{return} \ \arg \min_{r \in R_{-\infty}} d(q, r)

- If the dataset \(\mathcal{R} \cup \{q\} \) has expansion constant \(c \), the nearest neighbor of \(q \) can be found in time \(O(c^{12} \log N) \).
Dual-tree NN: Algorithm

\textbf{FindAllNN}(Q-subtree } q_j \text{, } \mathcal{R} \text{-cover set } R_i \text{)}

1. if \(i = -\infty \) then
 \(\forall q \in L(q_j) \) \textbf{return} \(\arg \min_{r \in R_{-\infty}} d(q, r) \).
 \(// L(q_j) \) is the set of all the leaves of the subtree \(q_j \).

3. \textbf{else if } j < i \textbf{ then}
 \(R = \{ \text{Children}(r): r \in R_i \} \)
 \(R_{i-1} = \{ r \in R: d(q_j, r) \leq d(q_j, R) + 2^i + 2^{j+2} \} \)

6. \textbf{FindAllNN} \((q_j, R_{i-1}) \)

9. \textbf{else}
 \(\forall p_{j-1} \in \text{Children}(q_j) \) \textbf{FindAllNN}(\(p_{j-1}, R_i \))

9. \textbf{end if}
S' - query cover tree, T - reference cover tree. The degree of bichromaticity κ of the query-reference pair (Q, R) is the maximum number of descends in S' between any two descends in T.
Dual-tree NN: Analysis

- S - query cover tree, T - reference cover tree. The **degree of bichromaticity** κ of the query-reference pair (Q, R) is the maximum number of descends in S between any two descends in T.

- S descended completely before T is descended even once \Rightarrow runtime no better than $O(N \log N)$.
Dual-tree NN: Analysis

- S' - query cover tree, T - reference cover tree. The **degree of bichromaticity** κ of the query-reference pair (Q, R) is the maximum number of descends in S' between any two descends in T.
 - S' descended completely before T is descended even once \Rightarrow runtime no better than $O(N \log N)$.
 - κ quantifies this difference in scale.
Dual-tree NN: Analysis

- S - query cover tree, T - reference cover tree. The **degree of bichromaticity** κ of the query-reference pair (Q, R) is the maximum number of descends in S between any two descends in T.
 - S descended completely before T is descended even once \Rightarrow runtime no better than $O(N \log N)$.
 - κ quantifies this difference in scale
 - For monochromatic case, $\kappa = 1$.
Dual-tree NN: Analysis

- \(S \) - query cover tree, \(T \) - reference cover tree. The **degree of bichromaticity** \(\kappa \) of the query-reference pair \((Q, R)\) is the maximum number of descends in \(S \) between any two descends in \(T \).
 - \(S \) descended completely before \(T \) is descended even once \(\Rightarrow \) runtime no better than \(O(N \log N) \).
 - \(\kappa \) quantifies this difference in scale
 - For monochromatic case, \(\kappa = 1 \).

- \(R \) of size \(N \) and expansion constant \(c_R \), \(Q \) of size \(O(N) \) and expansion constant \(c_Q \), and bounded \(\kappa \) for the \((Q, R)\) pair, **FindAllNN** computes the nearest neighbor in \(R \) of each point in \(Q \) in \(O(c_R^{12} c_Q^{4\kappa} N) \) time.
Dual-tree NN: Analysis

- S' - query cover tree, T - reference cover tree. The **degree of bichromaticity** κ of the query-reference pair (Q, R) is the maximum number of descends in S' between any two descends in T.
 - S descended completely before T is descended even once \Rightarrow runtime no better than $O(N \log N)$.
 - κ quantifies this difference in scale
 - For monochromatic case, $\kappa = 1$.

- R of size N and expansion constant c_R, Q of size $O(N)$ and expansion constant c_Q, and bounded κ for the (Q, R) pair, **FindAllNN** computes the nearest neighbor in R of each point in Q in $O(c_{R}^{12} c_{Q}^{4\kappa} N)$ time.

- **Monochromatic case:** R of size N with expansion constant c, **FindAllNN** has a runtime bound of $O(c^{16} N)$.
Approximation necessary
- Approximation necessary

- Forms of approximation:
Approximation necessary

- Forms of approximation:
 - \(\epsilon \) absolute error bound, if for each exact value \(f(q_i) \) for \(q_i \in Q \), \(\hat{f}(q_i) \) is computed such that
 \[
 \left| \hat{f}(q_i) - f(q_i) \right| \leq N\epsilon.
 \]
Single-tree KDE: Algorithm

- Approximation necessary

- Forms of approximation:
 - ϵ absolute error bound, if for each exact value $f(q_i)$ for $q_i \in Q$, $\hat{f}(q_i)$ is computed such that $|\hat{f}(q_i) - f(q_i)| \leq N\epsilon$.
 - ϵ relative error bound, if for each exact value $f(q_i)$ for $q_i \in Q$, $\hat{f}(q_i) \in \mathbb{R}$ is computed such that $|\hat{f}(q_i) - f(q_i)| \leq \epsilon |f(q_i)|$.
Single-tree KDE: Algorithm

- Approximation necessary
- Forms of approximation:
 - \(\epsilon \) absolute error bound, if for each exact value \(f(q_i) \) for \(q_i \in Q \), \(\hat{f}(q_i) \) is computed such that \(|\hat{f}(q_i) - f(q_i)| \leq N\epsilon \).
 - \(\epsilon \) relative error bound, if for each exact value \(f(q_i) \) for \(q_i \in Q \), \(\hat{f}(q_i) \in \mathbb{R} \) is computed such that \(|\hat{f}(q_i) - f(q_i)| \leq \epsilon |f(q_i)| \).

Algorithm for \(\epsilon \)-absolute error

KernelSum(\(R \)-tree \(T \), query \(q \))

1. Initialize \(R_\infty = C_\infty, \hat{f}(q) = 0 \)
2. for \(i = \infty \) to \(-\infty \) do
 3. \(R = \{ \text{Children}(r) : r \in R_i \} \)
 4. \(R_{i-1} = \{ r \in R : K_h(d(q, r) - 2^i) - K_h(d(q, r) + 2^i) > \epsilon \} \)
 5. \(\hat{f}(q) = \hat{f}(q) + \sum_{r \in \{ R - R_{i-1} \}} K_h(d(q, r)) \cdot |L(r)| \)
5. end for
6. return \(\hat{f}(q) = \hat{f}(q) + \sum_{r \in R_{-\infty}} K_h(d(q, r)) \)
Single-tree KDE (contd.)

- Given \mathcal{R} of size N with expansion constant c, error value ϵ, and a monotonically decreasing smooth non-negative kernel function $K(\cdot)$ concave for $x \in [0, h]$ and convex for $x \in (h, \infty)$ for some bandwidth $h > 0$, KernelSum computes the ϵ-absolute approximate kernel summation at a query q with a runtime bound of $O\left(c f(\epsilon, K(\cdot), K'(\cdot), K^{(-1)}(\cdot), h) \log N\right)$.
Given \mathcal{R} of size N with expansion constant c, error value ϵ, and a monotonically decreasing smooth non-negative kernel function $K(\cdot)$ concave for $x \in [0, h]$ and convex for $x \in (h, \infty)$ for some bandwidth $h > 0$, KernelSum computes the ϵ-absolute approximate kernel summation at a query q with a runtime bound of $O(c f(\epsilon, K(\cdot), K'(\cdot), K^{(-1)}(\cdot), h) \log N)$.

Relative Error:
Single-tree KDE (contd.)

- Given \mathcal{R} of size N with expansion constant c, error value ϵ, and a monotonically decreasing smooth non-negative kernel function $K(\cdot)$ concave for $x \in [0, h]$ and convex for $x \in (h, \infty)$ for some bandwidth $h > 0$, KernelSum computes the ϵ-absolute approximate kernel summation at a query q with a runtime bound of $O\left(cf(\epsilon,K(\cdot),K'(\cdot),K^{(-1)}(\cdot),h) \log N\right)$

- Relative Error:
 - Algorithm: Same as KernelSum except that the definition of R_{i-1} is changed to:

$$R_{i-1} = \{ r \in R : K(d(q, r) - 2^i) - K(d(q, r) + 2^i) > \frac{\epsilon f(q)}{N} \}$$
Given \mathcal{R} of size N with expansion constant c, error value ϵ, and a monotonically decreasing smooth non-negative kernel function $K(\cdot)$ concave for $x \in [0, h]$ and convex for $x \in (h, \infty)$ for some bandwidth $h > 0$, KernelSum computes the ϵ-absolute approximate kernel summation at a query q with a runtime bound of $O\left(c f(\epsilon, K(\cdot), K'(\cdot), K^{(-1)}(\cdot), h) \log N\right)$.

Relative Error:
- Algorithm: Same as KernelSum except that the definition of R_{i-1} is changed to:

$$R_{i-1} = \{ r \in R : K(d(q, r) - 2^i) - K(d(q, r) + 2^i) > \frac{\epsilon f(q)}{N}\}$$

- Analysis: Relative error is an instance of absolute error by upperbounding the maximum possible relative error, hence can be computed in $O(\log N)$ time.
Dual tree KDE: Algorithm

Initialize $\Delta_f(q) \leftarrow 0 \forall q \in q_\infty$

AllKernelSum(Q-subtree q_j, R-cover set R_i)

if $i = -\infty$ then
 for $\forall q \in L(q_j)$ do
 $\hat{f}(q) = \hat{f}(q) + \sum_{r \in R_{-\infty}} K(d(q, r)) + \Delta_f(q_j)$
 end for
 $\Delta_f(q_j) = 0$

6: else

if $j < i$ then
 $R = \{ \text{Children}(r) : r \in R_i \}$

9: $R_{i-1} = \{ r \in R : K(d(q_j, r) - 2^i - 2^{j+1}) - K(d(q_j, r) + 2^i + 2^{j+1}) > \epsilon \}$

$\Delta_f(q_j) = \Delta_f(q_j) + \sum_{r \in R \setminus R_{i-1}} K(d(q_j, r)) \cdot |L(r)|$

AllKernelSum(q_j, R_{i-1})

12: else

for $\forall p_{j-1} \in \text{Children}(q_j)$ do
 $\Delta_f(p_{j-1}) = \Delta_f(p_{j-1}) + \Delta_f(q_j)$
end for

15: AllKernelSum(p_{j-1}, R_i)

end if

$\Delta_f(q_j) = 0$

18: end if

end if
Dual tree Approximate KDE: Analysis

- Absolute error: $O(N)$
Dual tree Approximate KDE: Analysis

- Absolute error: $O(N)$
- Relative error: $O(N)$
Kernel function: \(K(d) = 1/d(q, r) \)
N-body approximate potential summation

- **Kernel function:** \(K(d) = 1/d(q, r) \)

- \(C^2 \) continuous construction of this kernel:

\[
K_e(d) = \begin{cases}
\frac{1}{d_{\text{min}}} \left(\frac{15}{8} - \frac{5}{4} \left(\frac{d}{d_{\text{min}}} \right)^2 + \frac{3}{8} \left(\frac{d}{d_{\text{min}}} \right)^4 \right), & d < d_{\text{min}} \\
\frac{1}{d}, & d \geq d_{\text{min}}
\end{cases}
\]

where \(d_{\text{min}} = \min_{r \in \mathcal{R}, q \neq r} d(q, r) \)
N-body approximate potential summation

- Kernel function: $K(d) = 1/d(q, r)$
- C^2 continuous construction of this kernel:

$$K_e(d) = \begin{cases} \frac{1}{d_{min}} \left(\frac{15}{8} - \frac{5}{4} \left(\frac{d}{d_{min}} \right)^2 + \frac{3}{8} \left(\frac{d}{d_{min}} \right)^4 \right), & d < d_{min} \\ \frac{1}{d}, & d \geq d_{min} \end{cases}$$

where $d_{min} = \min_{r \in \mathcal{R}, q \neq r} d(q, r)$

- Consider d_{min} equivalent to the bandwidth h. Algorithmic runtimes follows from the approximate KDE analysis.
Thank You

Any questions