Boosting with Online Binary Learners for the Multiclass Bandit Problem

Shang-Tse Chen
Hsuan-Tien Lin
Chi-Jen Lu

Georgia Tech National Taiwan University Academia Sinica

June 28, 2012
Multiclass Bandit Problem - Motivation

- online advertising

query → ad

Google

← click or not
Multiclass Bandit Problem - Motivation

- online advertising

- feedbacks for the unchosen ads remain unknown

- exploitation and exploration trade-off
For $t = 1, 2, \ldots, T$

1. Receive $x_t \in \mathbb{R}^d$ (query)

2. Predict $\hat{y}_t \in \{1, \ldots, k\}$ (ad)

3. Pay $1[y_t \neq \hat{y}_t]$ (y_t is not revealed) (click or not)
Multiclass Bandit Problem - Our Approach

Previous works
- Adapt from full-information algorithms
- Most of them are linear models
 - Banditron, Newton, …

This work:

Simple Algorithms (Weak Learners) \rightarrow **Boosting** \rightarrow **Strong Bandit Learner**
Brief Review – Batch Boosting

training data

\[(x_1, y_1) \quad (x_2, y_2) \quad \ldots \quad (x_T, y_T)\]
Brief Review – Batch Boosting

Training data

\[w_1^{(1)} \quad w_2^{(1)} \quad \ldots \quad w_T^{(1)} \]

\[(x_1, y_1) \quad (x_2, y_2) \quad \ldots \quad (x_T, y_T) \]
Brief Review – Batch Boosting

better than random guessing over $w^{(1)}$

Better than random guessing over $w^{(2)}$

Better than random guessing over $w^{(N)}$

Strong Learner
Brief Review – Batch Boosting

\[(x_1, y_1) \quad (x_2, y_2) \quad \ldots \quad w_1^{(2)} \quad w_2^{(2)} \ldots \quad w_T^{(2)} \]

\[(x_T, y_T) \]

\[\alpha^{(1)} \quad h^{(1)} \]
Brief Review – Batch Boosting

better than random guessing over $w^{(2)}$

$\alpha^{(2)}$ $h^{(2)}$

$\alpha^{(1)}$ $h^{(1)}$

$w^{(2)}_1$ $w^{(2)}_2$ \cdots $w^{(2)}_T$

$w^{(1)}_1$ $w^{(1)}_2$ \cdots $w^{(1)}_T$

(x_1, y_1) (x_2, y_2) \cdots (x_T, y_T)

training data
Brief Review – Batch Boosting

\[\alpha^{(N)} \cdot h^{(N)} \]

\[w_1^{(N)} \quad w_2^{(N)} \quad \cdots \quad w_T^{(N)} \]

\[\alpha^{(2)} \cdot h^{(2)} \]

\[w_1^{(2)} \quad w_2^{(2)} \quad \cdots \quad w_T^{(2)} \]

\[\alpha^{(1)} \cdot h^{(1)} \]

\[w_1^{(1)} \quad w_2^{(1)} \quad \cdots \quad w_T^{(1)} \]

\[(x_1, y_1) \quad (x_2, y_2) \quad \cdots \quad (x_T, y_T) \]

Training data
Brief Review – Batch Boosting

Strong Learner

$\alpha^{(N)} \quad h^{(N)}$

$\alpha^{(2)} \quad h^{(2)}$

$\alpha^{(1)} \quad h^{(1)}$

$w_1^{(N)} \quad w_2^{(N)} \quad \ldots \quad w_T^{(N)}$

$w_1^{(2)} \quad w_2^{(2)} \quad \ldots \quad w_T^{(2)}$

$w_1^{(1)} \quad w_2^{(1)} \quad \ldots \quad w_T^{(1)}$

$(x_1, y_1) \quad (x_2, y_2) \quad \ldots \quad (x_T, y_T)$

training data
At each round t:

$$\alpha_t^{(N)}$$

$$h_t^{(N)}$$

$$\alpha_t^{(2)}$$

$$h_t^{(2)}$$

$$\alpha_t^{(1)}$$

$$h_t^{(1)}$$

Goal: minimize error rate:

$$\frac{1}{T} \sum_{t=1}^{T} \left[H_t(x_t), y_t \right]$$
At each round t:
1. receive x_t

For each round t:
- Receive x_t
- Predict $H^t(x_t)$
- Receive y_t
- Update h_t and α_t for $\alpha_t^{(1)}$, $\alpha_t^{(2)}$, and $\alpha_t^{(N)}$

Goal: minimize error rate:
$$\frac{1}{T} \sum_{t=1}^{T} \left[H^t(x_t), y_t \right]$$
Online Boosting (Binary)

At each round t:
1. receive x_t
2. predict $H_t(x_t)$

$H_t(x_t) = \text{sign}(\sum_{i=1}^{N} \alpha_t^{(i)} h_t^{(i)}(x_t))$

$w(t) = \alpha_t^{(1)} + \alpha_t^{(2)} + \cdots + \alpha_t^{(N)}$

$t - 1$ \hspace{1cm} t \hspace{1cm} $t + 1$
Online Boosting (Binary)

At each round t:
1. receive x_t
2. predict $H_t(x_t)$
3. receive y_t

$$H_t(x_t) = \text{sign} \left(\sum_{i=1}^{N} \alpha_t^{(i)} h_t^{(i)}(x_t) \right)$$
Online Boosting (Binary)

At each round t:
1. receive x_t
2. predict $H_t(x_t)$
3. receive y_t
4. update each $h_t^{(i)}$ and $\alpha_t^{(i)}$
At each round t:
1. receive x_t
2. predict $H_t(x_t)$
3. receive y_t
4. update each $h^{(i)}_t$ and $\alpha^{(i)}_t$

Online Boosting (Binary)

$$\begin{align*}
\alpha^{(N)}_t \rightarrow h^{(N)}_t \\
\alpha^{(2)}_t \rightarrow h^{(2)}_t \\
\alpha^{(1)}_t \rightarrow h^{(1)}_t \\
\end{align*}$$

Online Learning

$$\begin{align*}
x_t, y_t & \quad w^{(1)}_t = 1 \\
_t & \quad \alpha^{(1)}_t \rightarrow h^{(1)}_{t+1} \\
_t & \quad \alpha^{(1)}_t \rightarrow h^{(1)}_{t+1} \\
_{t+1} & \quad \alpha^{(N)}_t \rightarrow h^{(N)}_t \\
_{t+1} & \quad \alpha^{(2)}_t \rightarrow h^{(2)}_t \\
_{t+1} & \quad \alpha^{(1)}_t \rightarrow h^{(1)}_t \\
\end{align*}$$
Online Boosting (Binary)

At each round t:
1. receive x_t
2. predict $H_t(x_t)$
3. receive y_t
4. update each $h_t^{(i)}$ and $\alpha_t^{(i)}$

Online Learning

- x_t, y_t
- $t - 1$, t, $t + 1$
At each round t:
1. receive x_t
2. predict $H_t(x_t)$
3. receive y_t
4. update each $h_t^{(i)}$ and $\alpha_t^{(i)}$

Goal: minimize error rate:

$$\sum_{t=1}^{T} \left[H_t(x_t), y_t \right]$$
Online Boosting (Binary)

At each round \(t \):
1. receive \(x_t \)
2. predict \(H_t(x_t) \)
3. receive \(y_t \)
4. update each \(h_t^{(i)} \) and \(\alpha_t^{(i)} \)

Goal: minimize error rate:
\[
\sum_{t=1}^{T} \left[H_t(x_t), y_t \right]
\]
At each round t:
1. receive x_t
2. predict $H_t(x_t)$
3. receive y_t
4. update each $h_t^{(i)}$ and $\alpha_t^{(i)}$
At each round t:
1. receive x_t
2. predict $H_t(x_t)$
3. receive y_t
4. update each $h_t^{(i)}$ and $\alpha_t^{(i)}$

Goal: minimize error rate:

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{1}[H_t(x_t) \neq y_t]$$
At each round t:
1. receive x_t
2. predict \hat{y}_t
3. receive $1[y_t \neq \hat{y}_t]$
4. update each $h_t^{(i)}$ and $\alpha_t^{(i)}$

Challenges in this setting:
- Use a single bit of feedback to
 1. ensure good weak learners (with proper assumption)
 2. estimate example weights
 3. estimate voting weights
Challenge 1 - What is our online weak learner

What kind of weak learners should we use?

- Multiclass Bandit Weak Learner
 - More difficult to design
 - Weak learners are not in the standard bandit setting
 \[\text{(predict } \hat{y}_t^{(i)} \text{ but receive } 1[y_t \neq \hat{y}_t]) \]

- Binary (full-information) Weak Learner
 - simplest learner, many existing algorithms
 - use one-vs-rest reduction
 \[(x_t, y_t) \rightarrow ((x_t, k), y_{tk}), \quad k = 1, \ldots, K \]
 - Call the weak learner only when \(y_{tk} \) is known
What is our online weak learner? What kind of weak learners should we use?

- Multiclass Bandit Weak Learner
 - More difficult to design
 - Weak learners are not in the standard bandit setting

 \[\text{(predict } \hat{y}_t^{(i)} \text{ but receive } 1[y_t \neq \hat{y}_t]\) \]

- Binary (full-information) Weak Learner
 - simplest learner, many existing algorithms
 - use one-vs-rest reduction

 \[(x_t, y_t) \rightarrow ((x_t, k), y_{tk}), \quad k = 1, \ldots, K \]
 - Call the weak learner only when \(y_{tk} \) is known
What’s the assumption on the online binary weak learner?

- Better than random guessing under any distribution
 - → IMPOSSIBLE [Chen et al. ’12]
 - extreme case: only the first example has a non-zero weight
Challenge 1 - What is our online weak learner

What’s the assumption on the online binary weak learner?

- Better than random guessing under any distribution → IMPOSSIBLE [Chen et al. ’12]
 - extreme case: only the first example has a non-zero weight
- Relaxation: only deal with weights that satisfy

\[\sum_{t,k} w_{t,k} = \Omega\left(\frac{KB}{\gamma^2}\right), \quad \text{where } B \geq \max_{t,k} w_{t,k} \]

Batch

- a fixed hypothesis \(h \in \mathcal{H} \)
- advantage \(2\gamma > 0 \)

Online

- Linear Optimization
- regret = \(\sqrt{\frac{KB}{\sum_{t,k} w_{t,k}}} \)

Online

- a sequence of hypotheses \(h_1, ..., h_T \in \mathcal{H} \)
- advantage \(\gamma > 0 \)
Challenge 2 - How to set the example weight

Sum of weights $\sum_{t,k} w_{t,k}$ should be larger than $\Omega(KB/\gamma^2)$

- **Online SmoothBoost** [Chen et al. ’12] satisfies this condition (in the full-information setting). Let $\bar{w}_{tk}^{(i)}$ be such weights.
Challenge 2 - How to set the example weight

Sum of weights $\sum_{t,k} w_{t,k}$ should be larger than $\Omega(KB/\gamma^2)$

- **Online SmoothBoost** [Chen et al. ’12] satisfies this condition (in the full-information setting). Let $\bar{w}_{tk}^{(i)}$ be such weights.
- In the bandit setting, we can estimate it by

$$w_{tk}^{(i)} = \begin{cases}
\bar{w}_{tk}^{(i)}/p_t(k) & \text{if } \hat{y}_t = y_t \\
0 & \text{otherwise}
\end{cases}$$

- Randomly predict with probability δ to ensure $|w_{tk}^{(i)}| \leq K/\delta$
- By Azuma’s Inequality

$$Pr \left[\sum_t \left(\bar{w}_{tk}^{(i)} - w_{tk}^{(i)} \right) > \lambda T \right] \leq 2^{-\Omega(\lambda^2T/B)}$$
Choose the number of weak learners N in the beginning

- using uniform voting weight, we can achieve error rate $O(K\delta)$ by combining at most $O(K/(\delta^2\gamma^2))$ weak learners
- this is only an upper bound of N
- we know the existence of a good combination of weak learners

$$\bar{\alpha} = \left(\frac{1}{m}, \ldots, \frac{1}{m}, 0, \ldots, 0\right), \quad m \leq N$$

- idea: use another online learning process to learn $\bar{\alpha}$
Dynamically set voting weights α_{tk} at each round

- Define loss $L_{tk}(\alpha) = \max \left\{ 0, \theta - y_{tk} \sum_{i=1}^{N} \alpha^{(i)} h_{tk}^{(i)}(x_t) \right\}$

- estimate the subgradient $\ell_{tk} = \begin{cases} \nabla L_{tk}(\alpha)/p_t(k) & \text{if } \hat{y}_t = y_t \\ 0 & \text{otherwise} \end{cases}$

- use multiplicative update

$$\alpha^{(i)}_{tk} = \alpha^{(i)}_{tk} \cdot e^{-\eta \ell_{tk}^{(i)}/Z_{(t+1)k}}$$
Put it all together

Main Theorem

Assumption:

- There is an online binary learner which can achieve an advantage $2\gamma > 0$ for any sequence of examples with the sum of weights larger than $\Omega(KB/\gamma^2)$
- $T = \Omega\left(\frac{K^2}{\delta^4} \log(K/\delta)\right)$

Then, the proposed bandit boosting algorithm achieves error rate $O(K\delta/\gamma)$ by using $O(K/\delta^2\gamma^2)$ weak learners.
Experiments

Dataset: **Reuters4**

Stable in the choice of exploration parameter δ
Experiments

Dataset: Reuters4

Outperform other algorithms when T is large
Conclusion

- We propose the first boosting algorithm in the multiclass bandit setting with nice theoretical properties by solving the 3 main challenges.
 - Determine the appropriate weak learner and assumption
 - Estimate example weights based on limited feedback
 - Combining weak learners based on limited feedback
- Promising empirical results on real-world data sets

Thank you. Questions?