CHAPTER 7:
Clustering
Semiparametric Density Estimation

- **Parametric:** Assume a single model for $p (x | C_i)$ (Chapters 4 and 5)
- **Semiparametric:** $p (x | C_i)$ is a mixture of densities
 - Multiple possible explanations/prototypes:
 - Different handwriting styles, accents in speech
- **Nonparametric:** No model; data speaks for itself (Chapter 8)
Mixture Densities

\[p(x) = \sum_{i=1}^{k} p(x | G_i) P(G_i) \]

where \(G_i \) the components/groups/clusters,
\(P(G_i) \) mixture proportions (priors),
\(p(x | G_i) \) component densities

Gaussian mixture where \(p(x | G_i) \sim N(\mu_i, \Sigma_i) \) parameters \(\Phi = \{P(G_i), \mu_i, \Sigma_i\}_{i=1}^{k} \)
Classes vs. Clusters

- **Supervised:** $X = \{x^t, r^t\}_t$
- **Classes C_i** $i=1,...,K$
 \[p(x) = \sum_{i=1}^{K} p(x | C_i) P(C_i) \]
 where $p(x | C_i) \sim N(\mu_i, \Sigma_i)$
 \[\Phi = \{P(C_i), \mu_i, \Sigma_i\}_{i=1}^{K} \]
 \[\hat{P}(C_i) = \frac{\sum_{t} r_i^t}{N} \]
 \[m_i = \frac{\sum_{t} r_i^t x^t}{\sum_{t} r_i^t} \]
 \[S_i = \frac{\sum_{t} r_i^t (x^t - m_i)(x^t - m_i)^T}{\sum_{t} r_i^t} \]

- **Unsupervised:** $X = \{x^t\}_t$
- **Clusters G_i** $i=1,...,k$
 \[p(x) = \sum_{i=1}^{k} p(x | G_i) P(G_i) \]
 where $p(x | G_i) \sim N(\mu_i, \Sigma_i)$
 \[\Phi = \{P(G_i), \mu_i, \Sigma_i\}_{i=1}^{k} \]
 \[\text{Labels, } r_i^t \, ? \]

Lecture Notes for E ALPAYDIN 2004
Introduction to Machine Learning © The MIT Press (V1.1)
k-Means Clustering

- Find k reference vectors (prototypes/codebook vectors/codewords) which best represent data
- Reference vectors, m_j, $j = 1, \ldots, k$
- Use nearest (most similar) reference:
 \[
 \|x^t - m_i\| = \min_j \|x^t - m_j\|
 \]

- Reconstruction error
 \[
 E\left(\{m_i\}_{i=1}^k \mid X\right) = \sum_t \sum_i b_{i}^{t} \|x^t - m_i\|
 \]

 \[
 b_{i}^{t} = \begin{cases} 1 & \text{if } \|x^t - m_i\| = \min_j \|x^t - m_j\| \\ 0 & \text{otherwise} \end{cases}
 \]
Encoding/Decoding

![Diagram of Encoding and Decoding Process]

Lecture Notes for E ALPAYDIN 2004
Introduction to Machine Learning © The MIT Press (V1.1)

Wednesday, May 9, 2012
k-means Clustering

 Initialize $m_i, i = 1, \ldots, k$, for example, to k random x^t

 Repeat

 For all $x^t \in X$

 $$b_i^t \left\{ \begin{array}{ll} 1 & \text{if } \|x^t - m_i\| = \min_j \|x^t - m_j\| \\ 0 & \text{otherwise} \end{array} \right.$$

 For all $m_i, i = 1, \ldots, k$

 $$m_i \leftarrow \frac{\sum_t b_i^t x^t}{\sum_t b_i^t}$$

 Until m_i converge
Expectation-Maximization (EM)

• Log likelihood with a mixture model

\[\mathcal{L}(\Phi | X) = \log \prod_t p(x^t | \Phi) \]

\[= \sum_t \log \sum_{i=1}^k p(x^t | G_i) \mathcal{P}(G_i) \]

• Assume hidden variables \(z\), which when known, make optimization much simpler

• Complete likelihood, \(L_c(\Phi | X,Z) \), in terms of \(x\) and \(z\)
E- and M-steps

- Iterate the two steps
 1. E-step: Estimate z given X and current Φ
 2. M-step: Find new Φ' given z, X, and old Φ.

 E-step: $Q(\Phi | \Phi') = E \left[\mathcal{L}_c(\Phi | X, Z) | X, \Phi' \right]$

 M-step: $\Phi'^{+1} = \operatorname{arg\,max}_\Phi Q(\Phi | \Phi')$

An increase in Q increases incomplete likelihood

$$\mathcal{L}(\Phi'^{+1} | X) \geq \mathcal{L}(\Phi' | X)$$
EM in Gaussian Mixtures

- \(z_t^i = 1 \) if \(x^t \) belongs to \(G_i \), 0 otherwise (labels \(r_t^i \) of supervised learning); assume \(p(x^t | G_i) \sim N(\mu_i, \Sigma_i) \)

E-step:

\[
E[z_t^i | \mathcal{X}, \Phi'] = \frac{p(x^t | G_i, \Phi') p(G_i)}{\sum_j p(x^t | G_j, \Phi') p(G_j)} = p(G_i | x^t, \Phi') \equiv h_t^i
\]

M-step:

\[
P(G_i) = \frac{\sum_t h_t^i}{N} \quad m_t^{i+1} = \frac{\sum_t h_t^i x^t}{\sum_t h_t^i} \quad S_t^{i+1} = \frac{\sum_t h_t^i (x^t - m_t^{i+1}) (x^t - m_t^{i+1})}{\sum_t h_t^i}
\]

Use estimated labels in place of unknown labels
$P(G_1 | x) = h_1 = 0.5$
Mixtures of Latent Variable Models

- Regularize clusters
 1. Assume shared/diagonal covariance matrices
 2. Use PCA/FA to decrease dimensionality: Mixtures of PCA/FA

\[
p(x_t | G_i) = \mathcal{N}(m_i, V_i V_i^T + \phi_i)
\]

Can use EM to learn \(V_i\) (Ghahramani and Hinton, 1997; Tipping and Bishop, 1999)
After Clustering

- Dimensionality reduction methods find correlations between features and group features
- Clustering methods find similarities between instances and group instances
- Allows knowledge extraction through number of clusters, prior probabilities, cluster parameters, i.e., center, range of features.

Example: CRM, customer segmentation
Clustering as Preprocessing

- Estimated group labels h_j (soft) or b_j (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor.
- **Local** representation (only one b_j is 1, all others are 0; only few h_j are nonzero) vs **Distributed** representation (After PCA; all z_j are nonzero)
Mixture of Mixtures

- In classification, the input comes from a mixture of classes (supervised).
- If each class is also a mixture, e.g., of Gaussians, (unsupervised), we have a mixture of mixtures:

\[
p(x \mid C_i) = \sum_{j=1}^{k_i} p(x \mid G_{ij}) p(G_{ij})
\]

\[
p(x) = \sum_{i=1}^{K} p(x \mid C_i) p(C_i)
\]
Hierarchical Clustering

- Cluster based on similarities/distances
- Distance measure between instances x^r and x^s

Minkowski (L_p) (Euclidean for $p = 2$)

$$d_m(x^r, x^s) = \left[\sum_{j=1}^{d} (x^r_j - x^s_j)^p \right]^{1/p}$$

City-block distance

$$d_{cb}(x^r, x^s) = \sum_{j=1}^{d} |x^r_j - x^s_j|$$
Agglomerative Clustering

- Start with N groups each with one instance and merge two closest groups at each iteration.
- Distance between two groups G_i and G_j:
 - Single-link:
 $$ d(G_i, G_j) = \min_{x^r \in G_i, x^s \in G_j} d(x^r, x^s) $$
 - Complete-link:
 $$ d(G_i, G_j) = \max_{x^r \in G_i, x^s \in G_j} d(x^r, x^s) $$
 - Average-link, centroid
Example: Single-Link Clustering

Dendrogram
Choosing k

- Defined by the application, e.g., image quantization
- Plot data (after PCA) and check for clusters
- Incremental (leader-cluster) algorithm: Add one at a time until “elbow” (reconstruction error/log likelihood/intergroup distances)
- Manually check for meaning