CHAPTER 9: Decision Trees

ETHEM ALPAYDIN
© The MIT Press, 2010
Edited and expanded for CS 4641 by Chris Simpkins

alpaydin@boun.edu.tr
http://www.cmpe.boun.edu.tr/~ethem/i2ml2e
Overview

- Univariate decision trees
- Building classification trees
- Dealing with overfitting
- Extracting rules from decision trees
Tree Uses Nodes, and Leaves
Divide and Conquer

• Internal decision nodes
 • Univariate: Uses a single attribute, x_i
 • Numeric x_i: Binary split: $x_i > w_m$
 • Discrete x_i: n-way split for n possible values
 • Multivariate: Uses all attributes, x

• Leaves
 • Classification: Class labels, or proportions
 • Regression: Numeric; r average, or local fit

• Learning is greedy; find the best split recursively (Breiman et al, 1984; Quinlan, 1986, 1993)
Classification Trees (ID3, CART, C4.5)

- For node m, N_m instances reach m, N^i_m belong to C_i

$$\hat{P}(C_i | x, m) \equiv p^i_m = \frac{N^i_m}{N_m}$$

- Node m is pure if p^i_m is 0 or 1
- Measure of impurity is entropy

$$I_m = - \sum_{i=1}^{K} p^i_m \log_2 p^i_m$$
Best Split

- If node m is pure, generate a leaf and stop, otherwise split and continue recursively.
- Impurity after split: N_{mj} of N_m take branch j. N^i_{mj} belong to C_i

$$\hat{P}(C_i \mid x, m, j) = p^i_{mj} = \frac{N^i_{mj}}{N_{mj}}$$

$$J'_m = -\sum_{j=1}^{n} \frac{N_{mj}}{N_m} \sum_{i=1}^{k} p^i_{mj} \log_2 p^i_{mj}$$

- Find the variable and split that min impurity (among all variables -- and split positions for numeric variables)
GenerateTree(\mathcal{X})

If NodeEntropy(\mathcal{X}) < θ_I /* eq. 9.3
Create leaf labelled by majority class in \mathcal{X}
Return

$i \leftarrow$ SplitAttribute(\mathcal{X})

For each branch of x_i

Find \mathcal{X}_i falling in branch

GenerateTree(\mathcal{X}_i)

SplitAttribute(\mathcal{X})

MinEnt \leftarrow MAX

For all attributes $i = 1, \ldots, d$

If x_i is discrete with n values

Split \mathcal{X} into $\mathcal{X}_1, \ldots, \mathcal{X}_n$ by x_i

$e \leftarrow$ SplitEntropy($\mathcal{X}_1, \ldots, \mathcal{X}_n$) /* eq. 9.8 */

If $e < $MinEnt MinEnt $\leftarrow e$; bestf $\leftarrow i$

Else /* x_i is numeric */

For all possible splits

Split \mathcal{X} into $\mathcal{X}_1, \mathcal{X}_2$ on x_i

$e \leftarrow $SplitEntropy($\mathcal{X}_1, \mathcal{X}_2$)

If $e < $MinEnt MinEnt $\leftarrow e$; bestf $\leftarrow i$

Return bestf
Summary of Main Loop

- Pick A, the “best” decision attribute for examples at current node using impurity measure
- For each value of A, create new descendant leaf nodes of current node
- Sort training examples to leaf nodes according to their values for attribute A
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes (turning some of them into internal nodes)
Example: Play tennis today?¹

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperatur</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

¹Example from Mitchell 1997
Choosing the first split attribute

- **Outlook:**

\[
I'_{\text{root}} = - \sum_{j \in \{\text{Sunny, Overcast, Rain}\}} \frac{N_j}{N} \sum_{i \in \{\text{Yes, No}\}} p_j^i \log_2 p_j^i
\]

\[
= -\left[\frac{5}{14} \left(\frac{2}{5} \log_2 \frac{2}{5} + \frac{3}{5} \log_2 \frac{3}{5}\right) + \frac{4}{14} \left(\frac{4}{4} \log_2 \frac{4}{4} + \frac{0}{4} \log_2 \frac{0}{4}\right) + \frac{5}{14} \left(\frac{3}{5} \log_2 \frac{3}{5} + \frac{2}{5} \log_2 \frac{2}{5}\right)\right]
\]

\[= 0.693\]

- **Temperature:**

\[
I'_{\text{root}} = - \sum_{j \in \{\text{Hot, Mild, Cool}\}} \frac{N_j}{N} \sum_{i \in \{\text{Yes, No}\}} p_j^i \log_2 p_j^i
\]

\[
= -\left[\frac{4}{14} \left(\frac{2}{4} \log_2 \frac{2}{4} + \frac{2}{4} \log_2 \frac{2}{4}\right) + \frac{6}{14} \left(\frac{4}{6} \log_2 \frac{4}{6} + \frac{2}{6} \log_2 \frac{2}{6}\right) + \frac{4}{14} \left(\frac{3}{4} \log_2 \frac{3}{4} + \frac{1}{4} \log_2 \frac{1}{4}\right)\right]
\]

\[= 0.915\]

- **Humidity:**

\[
I'_{\text{root}} = - \sum_{j \in \{\text{High, Normal}\}} \frac{N_j}{N} \sum_{i \in \{\text{Yes, No}\}} p_j^i \log_2 p_j^i
\]

\[
= -\left[\frac{7}{14} \left(\frac{3}{7} \log_2 \frac{3}{7} + \frac{4}{7} \log_2 \frac{4}{7}\right) + \frac{7}{14} \left(\frac{6}{7} \log_2 \frac{6}{7} + \frac{1}{7} \log_2 \frac{1}{7}\right)\right]
\]

\[= 0.789\]

- **Wind:**

\[
I'_{\text{root}} = - \sum_{j \in \{\text{Strong, Weak}\}} \frac{N_j}{N} \sum_{i \in \{\text{Yes, No}\}} p_j^i \log_2 p_j^i
\]

\[
= -\left[\frac{6}{14} \left(\frac{3}{6} \log_2 \frac{3}{6} + \frac{3}{6} \log_2 \frac{3}{6}\right) + \frac{8}{14} \left(\frac{6}{8} \log_2 \frac{6}{8} + \frac{2}{8} \log_2 \frac{2}{8}\right)\right]
\]

\[= 0.892\]
Which attribute should be tested here?
Choosing an attribute for Sunny node

- $X_{\text{Sunny}} = \{D_1, D_2, D_8, D_9, D_{11}\}$

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperatur</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D_{11}</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Humidity:**

 $I'_{\text{sunny,humidity}} = - \sum_{j \in \{\text{High, Normal}\}}^{N_j} \frac{N_j}{N} \sum_{i \in \{\text{Yes, No}\}} p_i^j \log_2 p_i^j$

 $= -\left[\frac{3}{5}(\frac{0}{3}\log_2 \frac{0}{3} + \frac{3}{3}\log_2 \frac{3}{3}) + \frac{2}{5}(\frac{2}{2}\log_2 \frac{2}{2} + \frac{0}{2}\log_2 \frac{0}{2})\right]$

 $= 0$

- Do same calculation for Temperature and Wind
- Humidity has lowest entropy, so Humidity is split attribute at Sunny node
Observations

- Temperature was not needed
 - Decision tree can be used for feature extraction (a.k.a. feature selection)
- Tree is short
 - ID3 family of algorithms have preference bias for short trees
 - Occam’s Razor: shorter trees are better
Pruning Trees

- Remove subtrees for better generalization (decrease variance)
 - Prepruning: Early stopping
 - Postpruning: Grow the whole tree then prune subtrees which overfit on the pruning set

- Prepruning is faster, postpruning is more accurate (requires a separate pruning set)
Rule Extraction from Trees

C4.5Rules
(Quinlan, 1993)

R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8
R2: IF (age>38.5) AND (years-in-job≤2.5) THEN y = 0.6
R3: IF (age≤38.5) AND (job-type='A') THEN y = 0.4
R4: IF (age≤38.5) AND (job-type='B') THEN y = 0.3
R5: IF (age≤38.5) AND (job-type='C') THEN y = 0.2
Conclusion

- Decision trees good when:
 - Instances described by attribute-value pairs
 - Target function is discrete
 - Interpretability of learned hypothesis (e.g., as a rule set) is desired
 - Training data may be noisy
- Decision trees are a good first algorithm to try