Lecture Slides for

Machine Learning

2nd Edition

CHAPTER 6:

Dimensionality Reduction

ETHEM ALPAYDIN

© The MIT Press, 2010

alpaydin@boun.edu.tr

http://www.cmpe.boun.edu.tr/~ethem/i2ml2e
Why Reduce Dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions
Feature Selection vs Extraction

- **Feature selection:** Choosing $k<d$ important features, ignoring the remaining $d - k$

 Subset selection algorithms

- **Feature extraction:** Project the original x_i, $i = 1,...,d$ dimensions to new $k<d$ dimensions, z_j, $j = 1,...,k$

Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis (FA)
Subset Selection

- There are 2^d subsets of d features
- Forward search: Add the best feature at each step
 - Set of features F initially \emptyset.
 - At each iteration, find the best new feature
 \[j = \arg\min_i E(F \cup x_i) \]
 - Add x_j to F if $E(F \cup x_j) < E(F)$

- Hill-climbing $O(d^2)$ algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- Floating search (Add k, remove l)
Principal Components Analysis (PCA)

- Find a low-dimensional space such that when \(x \) is projected there, information loss is minimized.
- The projection of \(x \) on the direction of \(w \) is: \(z = w^T x \)
- Find \(w \) such that \(\text{Var}(z) \) is maximized

\[
\text{Var}(z) = \text{Var}(w^T x) = \mathbb{E}[(w^T x - w^T \mu)^2]
\]
\[
= \mathbb{E}[(w^T x - w^T \mu)(w^T x - w^T \mu)]
\]
\[
= \mathbb{E}[w^T(x - \mu)(x - \mu)^T w]
\]
\[
= w^T \mathbb{E}[(x - \mu)(x - \mu)^T]w = w^T \Sigma w
\]

where \(\text{Var}(x) = \mathbb{E}[(x - \mu)(x - \mu)^T] = \Sigma \)
Maximize \(\text{Var}(z) \) subject to \(||w|| = 1 \)

\[
\max_{w_1} w_1^T \Sigma w_1 - \alpha (w_1^T w_1 - 1)
\]

\(\Sigma w_1 = \alpha w_1 \) that is, \(w_1 \) is an eigenvector of \(\Sigma \)

Choose the one with the largest eigenvalue for \(\text{Var}(z) \) to be max

Second principal component: Max \(\text{Var}(z_2) \), s.t., \(||w_2|| = 1 \) and orthogonal to \(w_1 \)

\[
\max_{w_2} w_2^T \Sigma w_2 - \alpha (w_2^T w_2 - 1) - \beta (w_2^T w_1 - 0)
\]

\(\Sigma w_2 = \alpha w_2 \) that is, \(w_2 \) is another eigenvector of \(\Sigma \)

and so on.
What PCA does

\[z = W^T(x - m) \]

where the columns of \(W \) are the eigenvectors of \(\Sigma \), and \(m \) is sample mean.

Centers the data at the origin and rotates the axes.
How to choose k?

• Proportion of Variance (PoV) explained

\[
\frac{\lambda_1 + \lambda_2 + \lambda_k}{\lambda_1 + \lambda_2 + \lambda_k + \lambda_d}
\]

when \(\lambda_i \) are sorted in descending order

• Typically, stop at PoV > 0.9

• Scree graph plots of PoV vs k, stop at “elbow”
Factor Analysis

- Find a small number of factors \mathbf{z}, which when combined generate \mathbf{x}:

$$x_i - \mu_i = v_{i1}z_1 + v_{i2}z_2 + ... + v_{ik}z_k + \varepsilon_i$$

where $z_j, j = 1, ..., k$ are the latent factors with

$$E[z_j]=0, \ Var(z_j)=1, \ Cov(z_i, z_j)=0, \ i \neq j,$$

ε_i are the noise sources

$$E[\varepsilon_i]= \psi_i, \ Cov(\varepsilon_i, \varepsilon_j) =0, \ i \neq j, \ Cov(\varepsilon_i, z_j) =0,$$

and v_{ij} are the factor loadings
PCA vs FA

- **PCA** From \(x \) to \(z \) \[z = W^T(x - \mu) \]
- **FA** From \(z \) to \(x \) \[x - \mu = Vz + \varepsilon \]
Factor Analysis

- In FA, factors z_j are stretched, rotated and translated to generate x
Multidimensional Scaling

- Given pairwise distances between N points, d_{ij}, $i,j = 1, \ldots, N$
 place on a low-dim map s.t. distances are preserved.

- $z = g(x | \theta)$ Find θ that min Sammon stress

$$E(\theta | X) = \sum_{r,s} \frac{\left(\frac{\left| z^r - z^s \right| - \left| x^r - x^s \right|}{\left| x^r - x^s \right|^2} \right)^3}{\frac{\left| x^r - x^s \right|^2}{\left| x^r - x^s \right|^2}}$$

$$= \sum_{r,s} \frac{\left(\left| g(x^r | \theta) - g(x^s | \theta) \right| - \left| x^r - x^s \right| \right)^3}{\left| x^r - x^s \right|^2}$$
Map of Europe by MDS

Map from CIA – The World Factbook: http://www.cia.gov/
Linear Discriminant Analysis

• Find a low-dimensional space such that when \mathbf{x} is projected, classes are well-separated.

• Find \mathbf{w} that maximizes

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

$$m_1 = \frac{\sum_t \mathbf{w}^T \mathbf{x}^t r^t}{\sum_t r^t}$$

$$s_1^2 = \sum_t \left(\mathbf{w}^T \mathbf{x}^t - m_1\right)^2 r^t$$
Between-class scatter:

\[(m_1 - m_2)^2 = (w^T m_1 - w^T m_2)^2\]
\[= w^T (m_1 - m_2)(m_1 - m_2)^T w\]
\[= w^T S_B w \text{ where } S_B = (m_1 - m_2)(m_1 - m_2)^T\]

Within-class scatter:

\[s_1^2 = \sum_t (w^T x^t - m_1)^2 r^t\]
\[= \sum_t w^T (x^t - m_1)(x^t - m_1)^T w r^t = w^T S_1 w\]

where \(S_1 = \sum_t (x^t - m_1)(x^t - m_1)^T r^t\)

\[s_1^2 + s_1^2 = w^T S_w w \text{ where } S_w = S_1 + S_2\]
Fisher’s Linear Discriminant

• Find \mathbf{w} that max

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} = \frac{\left| \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2) \right|^2}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

• LDA soln:

$$\mathbf{w} = c \times \mathbf{S}_W^{-1} (\mathbf{m}_1 - \mathbf{m}_2)$$

• Parametric soln:

$$\mathbf{w} = \Sigma^{-1} (\bar{x}_1 - \bar{x}_2)$$

when $p(\mathbf{x} | C_i) \sim \mathcal{N}(\bar{x}_i, \Sigma)$
K>2 Classes

- Within-class scatter:
 \[S_W = \sum_{i=1}^{K} S_i \]
 \[S_i = \sum_{t} r_i^t (x_t^t - m_i)(x_t^t - m_i)^\top \]

- Between-class scatter:
 \[S_B = \sum_{i=1}^{K} N_i (m_i - m)(m_i - m)^\top \]
 \[m = \frac{1}{K} \sum_{i=1}^{K} m_i \]

- Find \(W \) that max
 \[J(W) = \frac{\left| W^T S_B W \right|}{\left| W^T S_W W \right|} \]
 The largest eigenvectors of \(S_W^{-1} S_B \)
 Maximum rank of \(K-1 \)
Isomap

- Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space.
Isomap

• Instances r and s are connected in the graph if
 \[\| x_r - x_s \| < \varepsilon \text{ or if } x_s \text{ is one of the } k \text{ neighbors of } x_r \]

 The edge length is \[\| x_r - x_s \| \]

• For two nodes r and s not connected, the distance is equal to the shortest path between them

• Once the $N \times N$ distance matrix is thus formed, use MDS to find a lower-dimensional mapping
Locally Linear Embedding

1. Given x^r find its neighbors $x^s_{(r)}$

2. Find W_{rs} that minimize

$$E(W | X) = \sum_r \left\| x^r - \sum_s W_{rs} x^s_{(r)} \right\|^2$$

3. Find the new coordinates z^r that minimize

$$E(z | W) = \sum_r \left\| z^r - \sum_s W_{rs} z^s_{(r)} \right\|^2$$
LLE on Optdigits