Introduction

- Game-playing: Sequence of moves to win a game
- Robot in a maze: Sequence of actions to find a goal
- Agent has a state in an environment, takes an action and sometimes receives reward and the state changes
- Credit-assignment
- Learn a policy
Single State: K–armed Bandit

- Among K levers, choose the one that pays best $Q(a)$: value of action a
 - Reward is r_a
 - Set $Q(a) = r_a$
 - Choose a^* if $Q(a^*) = \max_a Q(a)$

- Rewards stochastic (keep an expected reward):
 $$Q_{t+1}(a) = Q_t(a) + \eta [r_{t+1}(a) - Q_t(a)]$$
Elements of RL (Markov Decision Processes)

- s_t: State of agent at time t
- a_t: Action taken at time t
- In s_t, action a_t is taken, clock ticks and reward r_{t+1} is received and state changes to s_{t+1}
- Next state prob: $P(s_{t+1} \mid s_t, a_t)$
- Reward prob: $p(r_{t+1} \mid s_t, a_t)$
- Initial state(s), goal state(s)
- Episode (trial) of actions from initial state to goal
- (Sutton and Barto, 1998; Kaelbling et al., 1996)
Policy and Cumulative Reward

- Policy, \(\pi : \mathcal{S} \rightarrow \mathcal{A} \quad a_t = \pi(s_t) \)
- Value of a policy, \(V^\pi(s_t) \)
- Finite-horizon:
 \[
 V^\pi(s_t) = E\left[r_{t+1} + r_{t+2} + \sum_{i=1}^{T} r_{t+i} \right] = E\left[\sum_{i=1}^{T} r_{t+i} \right]
 \]
- Infinite horizon:
 \[
 V^\pi(s_t) = E\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \sum_{i=1}^{\infty} r_{t+i} \right] = E\left[\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i} \right]
 \]
 \(0 \leq \gamma < 1 \) is the discount rate
\[V^*(s_t) = \max_{\pi} V^\pi(s_t), \forall s_t \]
\[= \max_{a_t} E \left[\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i} \right] \]
\[= \max_{a_t} E \left[r_{t+1} + \gamma \sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i+1} \right] \]
\[= \max_{a_t} E \left[r_{t+1} + \gamma V^*(s_{t+1}) \right] \] \text{Bellman's equation}

\[V^*(s_t) = \max_{a_t} \left(E[r_{t+1}] + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a_t) V^*(s_{t+1}) \right) \]

\[V^*(s_t) = \max_{a_t} Q^*(s_t, a_t) \quad \text{Value of } a_t \text{ in } s_t \]

\[Q^*(s_t, a_t) = E[r_{t+1}] + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a_t) \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \]
Model-Based Learning

- Environment, $P(s_{t+1} \mid s_t, a_t)$, $p(r_{t+1} \mid s_t, a_t)$, is known
- There is no need for exploration
- Can be solved using dynamic programming
- Solve for

$$V^*(s_t) = \max_{a_t} \left(E[r_{t+1}] + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a_t) V^*(s_{t+1}) \right)$$

- Optimal policy

$$\pi^*(s_t) = \arg \max_{a_t} \left(E[r_{t+1} \mid s_t, a_t] + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a_t) V^*(s_{t+1}) \right)$$
Value Iteration

Initialize $V(s)$ to arbitrary values

Repeat

For all $s \in S$

For all $a \in A$

$$Q(s, a) \leftarrow E[r | s, a] + \gamma \sum_{s' \in S} P(s' | s, a)V(s')$$

$$V(s) \leftarrow \max_a Q(s, a)$$

Until $V(s)$ converge
Policy Iteration

Initialize a policy π arbitrarily.

Repeat

$\pi \leftarrow \pi'$

Compute the values using π by solving the linear equations:

$$V^{\pi}(s) = E[r|s, \pi(s)] + \gamma \sum_{s' \in S} P(s'|s, \pi(s))V^{\pi}(s')$$

Improve the policy at each state:

$$\pi'(s) \leftarrow \arg\max_a (E[r|s, a] + \gamma \sum_{s' \in S} P(s'|s, a)V^{\pi}(s'))$$

Until $\pi = \pi'$
Temporal Difference

- Environment, $P(s_{t+1} \mid s_t, a_t)$, $p(r_{t+1} \mid s_t, a_t)$, is not known; model-free learning.
- There is need for exploration to sample from $P(s_{t+1} \mid s_t, a_t)$ and $p(r_{t+1} \mid s_t, a_t)$.
- Use the reward received in the next time step to update the value of current state (action).
- The temporal difference between the value of the current action and the value discounted from the next state.
Exploration Strategies

- \(\epsilon \)-greedy: With probability \(\epsilon \), choose one action at random uniformly; and choose the best action with probability \(1 - \epsilon \).

- Probabilistic:

\[
P(a | s) = \frac{\exp Q(s, a)}{\sum_{b=1}^{\mathcal{A}} \exp Q(s, b)}
\]

- Move smoothly from exploration/exploitation.

- Decrease \(\epsilon \):

\[
P(a | s) = \frac{\exp \left[Q(s, a) / T \right]}{\sum_{b=1}^{\mathcal{A}} \exp \left[Q(s, b) / T \right]}
\]
Deterministic Rewards and Actions

\[Q^*(s_t, a_t) = E[r_{t+1}] + \gamma \sum_{s_{t+1}} P(s_{t+1} | s_t, a_t) \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \]

- Deterministic: single possible reward and next state

\[Q(s_t, a_t) = r_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) \]

used as an update rule (backup)

\[\hat{Q}(s_t, a_t) \leftarrow r_{t+1} + \gamma \max_{a_{t+1}} \hat{Q}(s_{t+1}, a_{t+1}) \]

Starting at zero, Q values increase, never decrease
Consider the value of action marked by ‘*’:
If path A is seen first, $Q(*) = 0.9 \times \max(0, 81) = 73$
Then B is seen, $Q(*) = 0.9 \times \max(100, 81) = 90$
Or,
If path B is seen first, $Q(*) = 0.9 \times \max(100, 0) = 90$
Then A is seen, $Q(*) = 0.9 \times \max(100, 81) = 90$
Q values increase but never decrease
Nondeterministic Rewards and

- When next states and rewards are nondeterministic (there is an opponent or randomness in the environment), we keep averages (expected values) instead as assignments.

- Q-learning (Watkins and Dayan, 1992):
 \[
 \hat{Q}(s_t, a_t) \rightarrow \hat{Q}(s_t, a_t) + \eta \left[r_{t+1} + \gamma \max_{a_{t+1}} \hat{Q}(s_{t+1}, a_{t+1}) - \hat{Q}(s_t, a_t) \right]
 \]

- Off-policy vs on-policy (Sarsa) backup

- Learning V (TD-learning: Sutton, 1988)
 \[
 V(s_t) \rightarrow V(s_t) + \eta \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]
 \]
Q-learning

Initialize all $Q(s, a)$ arbitrarily

For all episodes
 Initialize s
 Repeat
 Choose a using policy derived from Q, e.g., ϵ-greedy
 Take action a, observe r and s'
 Update $Q(s, a)$:
 $$Q(s, a) \leftarrow Q(s, a) + \eta(r + \gamma \max_{a'} Q(s', a') - Q(s, a))$$
 $s \leftarrow s'$
 Until s is terminal state
Sarsa

Initialize all $Q(s, a)$ arbitrarily

For all episodes

 Initialize s

 Choose a using policy derived from Q, e.g., ϵ-greedy

 Repeat

 Take action a, observe r and s'

 Choose a' using policy derived from Q, e.g., ϵ-greedy

 Update $Q(s, a)$:

 \[
 Q(s, a) \leftarrow Q(s, a) + \eta(r + \gamma Q(s', a') - Q(s, a))
 \]

 $s \leftarrow s'$, $a \leftarrow a'$

 Until s is terminal state
Eligibility Traces

- Keep a record of previously visited states (actions)

\[e_t(s,a) = \begin{cases}
1 & \text{if } s = s_t \text{ and } a = a_t \\
\gamma \lambda e_{t-1}(s,a) & \text{otherwise}
\end{cases} \]

\[\delta_t = r_{t+1} + \gamma Q(s_{t+1},a_{t+1}) - Q(s_t,a_t) \]

\[Q(s_t,a_t) = Q(s_t,a_t) + \eta \delta_t e_t(s,a), \forall s,a \]
Sarsa (λ)

Initialize all $Q(s,a)$ arbitrarily, $e(s,a) \leftarrow 0, \forall s,a$

For all episodes

 Initialize s

 Choose a using policy derived from Q, e.g., ϵ-greedy

 Repeat

 Take action a, observe r and s'

 Choose a' using policy derived from Q, e.g., ϵ-greedy

 $\delta \leftarrow r + \gamma Q(s',a') - Q(s,a)$

 $e(s,a) \leftarrow 1$

 For all s,a:

 $Q(s,a) \leftarrow Q(s,a) + \eta \delta e(s,a)$

 $e(s,a) \leftarrow \gamma \lambda e(s,a)$

 $s \leftarrow s', a \leftarrow a'$

 Until s is terminal state
Generalization

• Tabular: $Q(s,a)$ or $V(s)$ stored in a table
• Regressor: Use a learner to estimate $Q(s,a)$ or $V(s)$

$$E^t(\dot{e}) = \left[r_{t+1} + \gamma Q(s_{t+1},a_{t+1}) - Q(s_t,a_t) \right]$$
$$\Delta \dot{e} = \eta \left[r_{t+1} + \gamma Q(s_{t+1},a_{t+1}) - Q(s_t,a_t) \right] \nabla_{\dot{e}_t} Q(s_t,a_t)$$

Eligibility

$$\Delta \dot{e} = \eta \delta_t e_t$$

$$\delta_t = r_{t+1} + \gamma Q(s_{t+1},a_{t+1}) - Q(s_t,a_t)$$

$$e_t = \gamma \lambda e_{t-1} + \nabla_{\dot{e}_t} Q(s_t,a_t) \text{ with } e_0 \text{ all zeros}$$
Partially Observable States

- The agent does not know its state but receives an observation $p(o_{t+1}|s_t, a_t)$ which can be used to infer a belief about states
- Partially observable MDP
The Tiger Problem

- Two doors, behind one of which there is a tiger
- \(p \): prob that tiger is behind the left door

\[
R(a_L) = -100p + 80(1-p), \quad R(a_R) = 90p - 100(1-p)
\]

- We can sense with a reward of \(R(a_S) = -1 \)
- We have unreliable sensors

<table>
<thead>
<tr>
<th>(r(A, Z))</th>
<th>Tiger left</th>
<th>Tiger right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open left</td>
<td>-100</td>
<td>+80</td>
</tr>
<tr>
<td>Open right</td>
<td>+90</td>
<td>-100</td>
</tr>
</tbody>
</table>

\[
P(o_L|z_L) = 0.7 \quad P(o_L|z_R) = 0.3
\]
\[
P(o_R|z_L) = 0.3 \quad P(o_R|z_R) = 0.7
\]
If we sense o_L, our belief in tiger’s position changes

$$p' = P(z_L | o_L) = \frac{P(o_L | z_L)P(z_L)}{P(o_L)} = \frac{0.7p}{0.7p + 0.3(1 - p)}$$

$$R(a_L | o_L) = r(a_L, z_L)P(z_L | o_L) + r(a_L, z_R)P(z_R | o_L)$$

$$= -100p' + 80(1 - p')$$

$$= -100 \frac{0.7p}{P(o_L)} + 80 \frac{0.3(1 - p)}{P(o_L)}$$

$$R(a_R | o_L) = r(a_R, z_L)P(z_L | o_L) + r(a_R, z_R)P(z_R | o_L)$$

$$= 90p' - 100(1 - p')$$

$$= 90 \frac{0.7p}{P(o_L)} - 100 \frac{0.3(1 - p)}{P(o_L)}$$

$$R(a_S | o_L) = -1$$
\[V' = \sum_i \left[\max_j R(a_i | o_j) \right] P(o_j) \]

\[= \max(R(a_L | o_L), R(a_R | o_L), R(a_S | o_L))P(o_L) + \max(R(a_L | o_R), R(a_R | o_R), R(a_S | o_R))P(o_R) \]

\[= \max \begin{cases}
-100p + 80(1-p) \\
-43p - 46(1-p) \\
33p + 26(1-p) \\
90p - 100(1-p)
\end{cases} \]
Let us say the tiger can move from one room to the other with prob 0.8

\[p' = 0.2p + 0.8(1 - p) \]

\[V' = \max \begin{cases} -100p' + 80(1 - p') \\ 33p + 26(1 - p') \\ 90p - 100(1 - p') \end{cases} \]
When planning for episodes of two, we can take \(a_L \), \(a_R \), or sense and wait:

\[
V_2 = \max \begin{pmatrix}
-100p & +80(1-p) \\
90p & -100(1-p) \\
\max V' & -1
\end{pmatrix}
\]