VISUALIZING INTERACTION PATTERNS IN PROGRAM EXECUTIONS

A Thesis

Presented to

The Academic Faculty

by

Dean Frederick Jerding

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in Computer Science

Georgia Institute of Technology

November 1997

Copyright (1997 by Dean F. Jerding

Visualizing interaction patterns in program executions

	Approved:

	John T. Stasko, Chairman

	Gregory D. Abowd

	Thomas J. Ball

	Scott E. Hudson

	J. Spencer Rugaber

	John M. Vlissides

	Date Approved______________________

DEDICATION

This dissertation is dedicated to my wife, Marcia, for believing in me when I said my graduate work was an investment in her future, and for supporting us while I finished. To my father, whose intellectual guidance put me on this path at an early age; this is partly his. And to my mother, for always being supportive and never asking if my homework was finished.

ACKNOWLEDGMENT

Many people helped contribute to the work that resulted in this dissertation. However, a few need special recognition. First and foremost, I’d like to acknowledge the guidance, insight, and knowledge of my advisor, Dr. John Stasko, who made my trip through graduate school a true learning process, intellectually stimulating, and enjoyable. Dr. Spencer Rugaber, who helped me apply the ideas in my thesis to a real-world problem, one of the most difficult parts of the Ph.D. process. Dr. Thomas Ball, who treated me like a peer while I spent a summer learning with him at Bell Laboratories, and who helped me focus this research during its developmental stages. And finally, Dr. Gregory Abowd, Dr. John Vlissides, and Dr. Scott Hudson, who all dedicated part of their valuable time to be on my Thesis committee and counseled me along the road towards my Ph.D.

TABLE OF CONTENTS

� TOC \t "Heading 1,2,Heading 2,3,Div Heading,1,Chap Title,1" �DEDICATION	� GOTOBUTTON _Toc404957346 � PAGEREF _Toc404957346 �iii��

ACKNOWLEDGMENT	� GOTOBUTTON _Toc404957347 � PAGEREF _Toc404957347 �iv��

TABLE OF CONTENTS	� GOTOBUTTON _Toc404957348 � PAGEREF _Toc404957348 �v��

LIST OF TABLES	� GOTOBUTTON _Toc404957349 � PAGEREF _Toc404957349 �viii��

LIST OF FIGURES	� GOTOBUTTON _Toc404957350 � PAGEREF _Toc404957350 �ix��

SUMMARY	� GOTOBUTTON _Toc404957351 � PAGEREF _Toc404957351 �xii��

CHAPTER I - OVERVIEW	� GOTOBUTTON _Toc404957352 � PAGEREF _Toc404957352 �13��

MOTIVATION	� GOTOBUTTON _Toc404957354 � PAGEREF _Toc404957354 �13��

FUNDAMENTAL HYPOTHESES	� GOTOBUTTON _Toc404957355 � PAGEREF _Toc404957355 �15��

Visualization of Large Information Spaces	� GOTOBUTTON _Toc404957356 � PAGEREF _Toc404957356 �15��

Interaction Patterns Bridge Gap between Design/Implementation	� GOTOBUTTON _Toc404957357 � PAGEREF _Toc404957357 �16��

THESIS STATEMENT	� GOTOBUTTON _Toc404957358 � PAGEREF _Toc404957358 �16��

CONTRIBUTIONS	� GOTOBUTTON _Toc404957359 � PAGEREF _Toc404957359 �16��

Information Mural	� GOTOBUTTON _Toc404957360 � PAGEREF _Toc404957360 �17��

Interaction Scenario Visualizer	� GOTOBUTTON _Toc404957361 � PAGEREF _Toc404957361 �18��

DISSERTATION OUTLINE	� GOTOBUTTON _Toc404957362 � PAGEREF _Toc404957362 �18��

CHAPTER II - FOUNDATION: AN EXAMPLE	� GOTOBUTTON _Toc404957363 � PAGEREF _Toc404957363 �19��

INTRODUCTION	� GOTOBUTTON _Toc404957365 � PAGEREF _Toc404957365 �19��

EXAMPLE SCENARIO	� GOTOBUTTON _Toc404957366 � PAGEREF _Toc404957366 �20��

TACTICS FOR USING ISVIS	� GOTOBUTTON _Toc404957367 � PAGEREF _Toc404957367 �21��

CHAPTER III - VISUALIZING PROGRAM EXECUTIONS	� GOTOBUTTON _Toc404957368 � PAGEREF _Toc404957368 �26��

ANIMATED EXECUTION VIEW	� GOTOBUTTON _Toc404957370 � PAGEREF _Toc404957370 �27��

TOWARD A VISUALIZATION FRAMEWORK	� GOTOBUTTON _Toc404957371 � PAGEREF _Toc404957371 �29��

BROWSING PROGRAM EXECUTIONS	� GOTOBUTTON _Toc404957372 � PAGEREF _Toc404957372 �31��

VISUALIZING INTERACTION PATTERNS	� GOTOBUTTON _Toc404957373 � PAGEREF _Toc404957373 �36��

CHAPTER IV - THE INFORMATION MURAL	� GOTOBUTTON _Toc404957374 � PAGEREF _Toc404957374 �46��

INTRODUCTION	� GOTOBUTTON _Toc404957376 � PAGEREF _Toc404957376 �47��

TECHNIQUE	� GOTOBUTTON _Toc404957377 � PAGEREF _Toc404957377 �50��

Original Algorithm	� GOTOBUTTON _Toc404957378 � PAGEREF _Toc404957378 �52��

Efficient Algorithm	� GOTOBUTTON _Toc404957379 � PAGEREF _Toc404957379 �55��

Attribute Color Algorithm	� GOTOBUTTON _Toc404957380 � PAGEREF _Toc404957380 �56��

Implementation	� GOTOBUTTON _Toc404957381 � PAGEREF _Toc404957381 �58��

Limitations	� GOTOBUTTON _Toc404957382 � PAGEREF _Toc404957382 �60��

APPLICATIONS	� GOTOBUTTON _Toc404957383 � PAGEREF _Toc404957383 �62��

Software Visualization	� GOTOBUTTON _Toc404957384 � PAGEREF _Toc404957384 �63��

Data Visualization	� GOTOBUTTON _Toc404957385 � PAGEREF _Toc404957385 �69��

Information Visualization	� GOTOBUTTON _Toc404957386 � PAGEREF _Toc404957386 �77��

DISCUSSION AND EVALUATION	� GOTOBUTTON _Toc404957387 � PAGEREF _Toc404957387 �83��

CHAPTER V - FRAMEWORK FOR BEHAVIORAL UNDERSTANDING	� GOTOBUTTON _Toc404957388 � PAGEREF _Toc404957388 �87��

MODEL	� GOTOBUTTON _Toc404957390 � PAGEREF _Toc404957390 �88��

PROCESS	� GOTOBUTTON _Toc404957391 � PAGEREF _Toc404957391 �91��

CHAPTER VI - INTERACTION SCENARIO VISUALIZER	� GOTOBUTTON _Toc404957392 � PAGEREF _Toc404957392 �93��

OVERVIEW	� GOTOBUTTON _Toc404957394 � PAGEREF _Toc404957394 �93��

ARCHITECTURE	� GOTOBUTTON _Toc404957395 � PAGEREF _Toc404957395 �95��

PROCESS	� GOTOBUTTON _Toc404957396 � PAGEREF _Toc404957396 �97��

VIEWS	� GOTOBUTTON _Toc404957397 � PAGEREF _Toc404957397 �98��

CHAPTER VII - CASE STUDIES	� GOTOBUTTON _Toc404957398 � PAGEREF _Toc404957398 �108��

CASE I: REENGINEERING VIEW REDRAW MECHANISMS IN GUI APPLICATIONS	� GOTOBUTTON _Toc404957400 � PAGEREF _Toc404957400 �108��

Details	� GOTOBUTTON _Toc404957401 � PAGEREF _Toc404957401 �109��

Results	� GOTOBUTTON _Toc404957402 � PAGEREF _Toc404957402 �119��

CASE II: DESIGN RECOVERY OF MOSAIC WWW BROWSER	� GOTOBUTTON _Toc404957403 � PAGEREF _Toc404957403 �119��

Details	� GOTOBUTTON _Toc404957404 � PAGEREF _Toc404957404 �120��

Results	� GOTOBUTTON _Toc404957405 � PAGEREF _Toc404957405 �128��

CHAPTER VIII - RELATED WORK	� GOTOBUTTON _Toc404957406 � PAGEREF _Toc404957406 �130��

CLOSELY RELATED WORK	� GOTOBUTTON _Toc404957408 � PAGEREF _Toc404957408 �130��

SOFTWARE VISUALIZATION	� GOTOBUTTON _Toc404957409 � PAGEREF _Toc404957409 �133��

INFORMATION VISUALIZATION	� GOTOBUTTON _Toc404957410 � PAGEREF _Toc404957410 �139��

PROGRAM UNDERSTANDING	� GOTOBUTTON _Toc404957411 � PAGEREF _Toc404957411 �141��

OBJECT-ORIENTED SYSTEMS	� GOTOBUTTON _Toc404957412 � PAGEREF _Toc404957412 �143��

PATTERN LANGUAGES OF PROGRAMMING	� GOTOBUTTON _Toc404957413 � PAGEREF _Toc404957413 �145��

PROGRAM ANALYSIS	� GOTOBUTTON _Toc404957414 � PAGEREF _Toc404957414 �146��

CHAPTER IX - CONCLUSIONS	� GOTOBUTTON _Toc404957415 � PAGEREF _Toc404957415 �150��

CONTRIBUTIONS	� GOTOBUTTON _Toc404957417 � PAGEREF _Toc404957417 �150��

LIMITATIONS	� GOTOBUTTON _Toc404957418 � PAGEREF _Toc404957418 �152��

FUTURE WORK	� GOTOBUTTON _Toc404957419 � PAGEREF _Toc404957419 �153��

Scalability	� GOTOBUTTON _Toc404957420 � PAGEREF _Toc404957420 �153��

Extensibility	� GOTOBUTTON _Toc404957421 � PAGEREF _Toc404957421 �154��

Interoperability	� GOTOBUTTON _Toc404957422 � PAGEREF _Toc404957422 �154��

APPENDIX I - ISVIS FILE FORMATS	� GOTOBUTTON _Toc404957423 � PAGEREF _Toc404957423 �156��

COMPONENTS FILE	� GOTOBUTTON _Toc404957425 � PAGEREF _Toc404957425 �156��

SESSION FILE	� GOTOBUTTON _Toc404957426 � PAGEREF _Toc404957426 �156��

STATIC INFO FILE	� GOTOBUTTON _Toc404957427 � PAGEREF _Toc404957427 �156��

TRACE FILE	� GOTOBUTTON _Toc404957428 � PAGEREF _Toc404957428 �157��

TRACE INFO FILE	� GOTOBUTTON _Toc404957429 � PAGEREF _Toc404957429 �157��

NOTES	� GOTOBUTTON _Toc404957430 � PAGEREF _Toc404957430 �158��

�

LIST OF TABLES

� TOC \c "Table" �Table 1: History of Visualization Prototypes.	� GOTOBUTTON _Toc404957431 � PAGEREF _Toc404957431 �27��

Table 2: ISVis Main View menu commands.	� GOTOBUTTON _Toc404957432 � PAGEREF _Toc404957432 �101��

Table 3: ISVis Scenario View menu commands.	� GOTOBUTTON _Toc404957433 � PAGEREF _Toc404957433 �105��

�

LIST OF FIGURES

� TOC \c "Figure" �Figure 1: ISVis Scenario View of Mosaic program execution.	� GOTOBUTTON _Toc404957434 � PAGEREF _Toc404957434 �23��

Figure 2: VizBug++ animated view of simple C++ employee database program execution.	� GOTOBUTTON _Toc404957435 � PAGEREF _Toc404957435 �28��

Figure 3: Views from VooDoo program visualization prototype.	� GOTOBUTTON _Toc404957436 � PAGEREF _Toc404957436 �30��

Figure 4: Initial Execution Mural of a Polka bubble-sort algorithm animation program execution. Classes are on the vertical axis, and each message is a single pixel wide vertical line from source to destination class. The global view at the bottom is an Information Mural of the entire set of over 52,000 messages; a navigation rectangle shows the position of the focus area relative to the rest of the classes and messages in the trace. Note the repetitive patterns visible in both the focus area and the global Mural.	� GOTOBUTTON _Toc404957437 � PAGEREF _Toc404957437 �33��

Figure 5: Execution Mural from Figure 4 with several classes hidden, the message width increased, and several messages highlighted in different colors.	� GOTOBUTTON _Toc404957438 � PAGEREF _Toc404957438 �34��

Figure 6: Source code view of Polka animation toolkit, with files arranged horizontally. Circles represent class definitions and squares represent functions; the fill color shows relative message-passing volume for each node for a particular execution trace. When the user brushes across messages in Execution Mural view, arrows representing that set of messages will be overlaid, connecting source and destination nodes.	� GOTOBUTTON _Toc404957439 � PAGEREF _Toc404957439 �35��

Figure 7: (a) A call trace, (b) its corresponding call tree, and (c) call graph. Edge directions are assumed to be directed down the page.	� GOTOBUTTON _Toc404957440 � PAGEREF _Toc404957440 �39��

Figure 8: A compact representation of the call tree from Figure 7(b).	� GOTOBUTTON _Toc404957441 � PAGEREF _Toc404957441 �40��

Figure 9: V4.0 visualization of Polka bubble-sort algorithm animation containing 64,000 function invocations. On left is a Global Execution Mural of first 10,000 calls. In center is Global Execution Mural of entire execution (vertical resolution is 64,000 messages on 400 pixels, an information compression ratio of 160:1). Pattern Matrix is on right. In the matrix, entries are made for classes (top) and functions (bottom) that are “members” of each message pattern. A red highlight shows the occurrence of a particular pattern in each view.	� GOTOBUTTON _Toc404957442 � PAGEREF _Toc404957442 �41��

Figure 10: Another snapshot of v4.0 view of Polka bubble-sort animation. Top left is a Pattern Mural. Message patterns are assigned to the vertical axis by order of occurrence; a point in the mural is made for each message at sequential x coordinates, with the y value corresponding to the pattern of which that message is a member (messages that are not members of patterns are not shown). Lower left is a Pattern Matrix as in Figure 9 without the function part of the matrix. On right is a detailed Execution Mural for pattern AnimateOne#7213.	� GOTOBUTTON _Toc404957443 � PAGEREF _Toc404957443 �43��

Figure 11: Information Mural algorithm example, scaling pixel at (m,n) in M x N original image to (x,y) in I x J Mural. Contribution of (x,y) to pixel (floor(x),floor(y)) is shown with diagonal cross-hatch.	� GOTOBUTTON _Toc404957444 � PAGEREF _Toc404957444 �53��

Figure 12: Mural of object-oriented message trace of over 90,000 messages, drawn in an area 500 pixels wide.	� GOTOBUTTON _Toc404957445 � PAGEREF _Toc404957445 �64��

Figure 13: Same diagram as Figure 12 drawn by just over-plotting (without the Mural technique).	� GOTOBUTTON _Toc404957446 � PAGEREF _Toc404957446 �64��

Figure 14: Mural of parallel program message trace of the kernel integer sort benchmark.	� GOTOBUTTON _Toc404957447 � PAGEREF _Toc404957447 �67��

Figure 15: Same diagram as drawn by just over-plotting (without the Mural technique).	� GOTOBUTTON _Toc404957448 � PAGEREF _Toc404957448 �67��

Figure 16: View of message passing in kernel integer sort parallel processor benchmark, with focus area and global overview created using the Information Mural technique.	� GOTOBUTTON _Toc404957449 � PAGEREF _Toc404957449 �68��

Figure 17: ParaGraph space-time view of message passing in kernel integer sort parallel processor benchmark.	� GOTOBUTTON _Toc404957450 � PAGEREF _Toc404957450 �69��

Figure 18: Plot of average number of sun spots recorded per month, 1850-1993.	� GOTOBUTTON _Toc404957451 � PAGEREF _Toc404957451 �70��

Figure 19: Mural of the number of sun spots recorded daily, 1850-1993.	� GOTOBUTTON _Toc404957452 � PAGEREF _Toc404957452 �71��

Figure 20: Mural from Figure 19 of the number of sun spots recorded daily, 1850-1993, zoomed in on a small area.	� GOTOBUTTON _Toc404957453 � PAGEREF _Toc404957453 �72��

Figure 21: View of sun spots showing focus area and Mural navigation area of entire data set at the bottom.	� GOTOBUTTON _Toc404957454 � PAGEREF _Toc404957454 �72��

Figure 22: Mural of the mean daily river flow rates of the Saugeen river, 1915-1979.	� GOTOBUTTON _Toc404957455 � PAGEREF _Toc404957455 �74��

Figure 23: Figure 22 zoomed on small area at the bottom of the mural.	� GOTOBUTTON _Toc404957456 � PAGEREF _Toc404957456 �74��

Figure 24: Mural of a parallel coordinate view of automobile data showing: MPG, engine displacement, horsepower, weight, acceleration, and model year (1970-1982).	� GOTOBUTTON _Toc404957457 � PAGEREF _Toc404957457 �76��

Figure 25: Standard parallel coordinate view of the data in Figure 24.	� GOTOBUTTON _Toc404957458 � PAGEREF _Toc404957458 �76��

Figure 26: Color overlaid on Figure 24 for number of cylinders (3 = red, 4 = orange, 5 = yellow, 6 = green, 8 = cyan).	� GOTOBUTTON _Toc404957459 � PAGEREF _Toc404957459 �76��

Figure 27: Mural of population density distribution, using data from the 1990 census.	� GOTOBUTTON _Toc404957460 � PAGEREF _Toc404957460 �79��

Figure 28: Text editor containing LaTeX document. Mural of the entire file is shown in the background of the scrollbar, with text colored according to section.	� GOTOBUTTON _Toc404957461 � PAGEREF _Toc404957461 �81��

Figure 29: Murals showing keyword distribution for search on “visualization” (yellow), “object-oriented” (green), and “OO” (cyan) in three documents.	� GOTOBUTTON _Toc404957462 � PAGEREF _Toc404957462 �82��

Figure 30: General process for using visualization to support program understanding tasks.	� GOTOBUTTON _Toc404957463 � PAGEREF _Toc404957463 �92��

Figure 31: ISVis framework architecture.	� GOTOBUTTON _Toc404957464 � PAGEREF _Toc404957464 �96��

Figure 32: Object model diagram for ISVis Program Model.	� GOTOBUTTON _Toc404957465 � PAGEREF _Toc404957465 �97��

Figure 33: ISVis Main View of a Mosaic program execution described in case study of Chapter VII. At the top of the view is the main menu. Below this are the four actor lists: components, files, classes, and functions. Next are scenario and interaction lists, an area for focus information, and the key. At the bottom is the text command area.	� GOTOBUTTON _Toc404957466 � PAGEREF _Toc404957466 �100��

Figure 34: ISVis Scenario View of Mosaic program execution from case study described in Chapter VII. At the top is the menu bar, below which there are three option menus. The focus area of the view shows interactions drawn connecting source and destination actors. The Information Mural on the right shows a global overview of the entire scenario, and can be used to navigate the focus area. The analyst has colored certain interactions blue and magenta.	� GOTOBUTTON _Toc404957467 � PAGEREF _Toc404957467 �102��

Figure 35: Another Scenario View of the Mosaic program execution. Notice the HT save and execute .ps and MIME put character 2 interaction scenarios shown in this scenario, represented with rectangles containing involved actors.	� GOTOBUTTON _Toc404957468 � PAGEREF _Toc404957468 �106��

Figure 36: Scenario View of Mosaic execution with actors projected across components the analyst has created during the case study (Chapter VII). Note four bright areas in the Mural representing the start of each web page Mosaic displayed during the execution scenario. The bottom of the Mural shows the interactions during the display of a PostScript file.	� GOTOBUTTON _Toc404957469 � PAGEREF _Toc404957469 �107��

�

� � �

SUMMARY

Implementing, validating, modifying, or reengineering a software system requires an understanding of the program’s behavior. Many factors make this understanding difficult, including the gulf in terms of abstraction between design models and source code, and the design drift that occurs over the lifetime of a system. During this research several generations of visualizations have been designed and built to support particular behavioral understanding tasks. As a result, an innovative visualization technique for creating global overviews of large information spaces was developed. To help bridge the gap between low-level events in program executions and higher-level models of program behavior, the notion of interaction patterns as recurring interaction scenarios in program executions was defined. The result is a framework to identify, visualize, and analyze interactions in program executions as a means for examining and understanding behavior. The thesis that visualizing interaction patterns in program executions can facilitate program behavioral understanding during design recovery, design/implementation validation, and reengineering tasks has been validated by several case studies.

�CHAPTER I

OVERview

This chapter first motivates the research presented in this dissertation, describing problems that make behavioral understanding of programs difficult. The fundamental hypotheses of this research are presented, including the value of graphical visualizations to present and analyze complex information and the use of interaction patterns in program executions to help bridge the abstraction gap between low-level execution events and high-level design models. After the thesis statement, products and contributions of the research are summarized. Finally, an outline of the remaining dissertation is presented.

Motivation

The underlying motivation for this work is the difficulty and lack of support for understanding the behavior of software systems. A correct dynamic model of a program is required for many software engineering tasks, including design, implementation, testing, maintenance, and reverse engineering. This research focused in particular towards understanding program dynamics during design recovery, design and implementation validation, and reengineering tasks.

Difficulties in understanding the dynamics of a program arise for several reasons. One of the major problems is the gulf of abstraction between design level models and the source code that constitutes the implementation. Part of this gap is due to the level at which humans try to solve complex problems versus the level at which computers are currently programmed. Additionally, while most standard programming languages (especially object-oriented ones) support the transition of static design models into code, there is little direct language support for specifying behavioral protocols.

Not only does the gulf of abstraction lead to inconsistencies between intended design and the implemented system, often the design of a system is changed as it is implemented. This design drift often goes undocumented, especially if functional requirements are not affected by the changes. As systems evolve, with new features being added and bugs fixed, more versions are produced. Soon the only accurate documentation is the source code. Safe and efficient changes to the system cannot be made without correct behavioral models of the existing architecture and design.

Visual techniques and tools seem useful to help a human understand large and complex information spaces. In the analysis and design phases of software development, graphical notations and diagrams are often used to specify both static and dynamic aspects of a system. Such visual representations are valuable because they convey information to the observer more efficiently than would purely textual descriptions. In the implementation stage, these diagrams along with related textual specifications are translated into the source code. Tools that then analyze the source code and the corresponding system should present information in visual forms corresponding to those with which the system was designed. In order to accomplish this, mechanisms must exist to abstract and filter voluminous low-level information in the implementation up to design levels. Current visualization tools have not provided such mechanisms and do not scale well to handle the large amounts of information involved when analyzing “real-world” sized systems. Many of those cited in Chapter VIII, Related Work, suffer from this scalability problem. Additionally, most tools focus on the static aspects of a system such as the class hierarchy or calling relation, and omit important run-time information about the behavior of a program.

Fundamental Hypotheses

Two fundamental ideas form the core of this research and have guided the approach to solving the problems identified in the previous discussion.

Visualization of Large Information Spaces

The use of graphical techniques to depict information on a computer display has proven a useful mechanism for presenting various forms of information, including computer programs. It was hypothesized that visual representations of the voluminous information that can be derived from program executions could be a useful means for that information to be processed and analyzed. While off-line analysis of the data is obviously useful, program understanding problems are inherently task related and require high-level thought. Visualizations supplementing the human pattern recognition and abstraction capabilities might yield the most productive results in such a complex process. Useful visualizations, however, cannot be constructed unless effective representation and navigation techniques for large information spaces are developed.

Interaction Patterns Bridge Gap between Design/Implementation

During the course of this research, it was observed that program executions are made up of recurring interaction scenarios and that these interaction patterns occur at various levels of abstraction. It was then hypothesized that these patterns could help bridge the gulf of abstraction between low-level execution events such as function calls, and high-level design models of program behavior. Humans typically solve complex problems using divide-and-conquer strategies, by observing patterns, and by finding analogies; interaction patterns could be utilized in all three of these processes.

Thesis Statement

Visualizing interaction patterns in program executions can facilitate program behavioral understanding during design recovery, design/implementation validation, and reengineering tasks.

Contributions

Three major contributions emerged from the research presented in this dissertation. The first is a technique for creating global visual overviews of large information spaces. The second is the notion of an interaction pattern as an abstraction to bridge the gap between low-level program events and high-level behavior. The third is a framework, process, and accompanying tool for understanding program behavior by visualizing interactions in program executions.

Information Mural

An Information Mural is a 2D, graphical representation of a large information space that fits entirely within a display window or screen. Its miniature representation is drawn using anti-aliasing compression techniques and intensity/color shading, and is useful for visualizing patterns and anomalies in the overall distribution of information. By adding panning and zooming capabilities to Information Murals, they can be used as stand-alone visualizations or as global views accompanying more detailed informational displays.

The Information Mural technique can be integrated into various information visualization applications to help display large information spaces. In browsing information or examining a large data set, it is often useful to start with a global overview of the information. Information Murals can convey more information about large data spaces than traditional techniques, allowing overviews of certain types of information spaces to be created when before they could not. Another advantage of the Information Mural technique is that a visualization application constructs the overview in the coordinate space of the information and the Mural computes density and attribute mappings automatically based on the available screen space for the view.

Information Murals have been utilized in many software visualization prototypes with excellent results, using the Mural both to provide navigational context and to identify patterns in time-oriented views of program executions. Additionally, Information Murals have been applied to visualizations of scientific data, text files, and geographic data to demonstrate the general applicability of the technique.

Interaction Scenario Visualizer

The purpose of the Interaction Scenario Visualizer (ISVis) framework is to support the browsing and analysis of execution scenarios derived from actual program executions. It is useful for software engineering tasks requiring a behavioral understanding of programs such as design recovery, architecture localization, design/implementation validation, and reengineering. The key contributions of ISVis are its use of visualization techniques to depict the large amounts of information available to a user, and the notion of recurring scenarios, called interaction patterns, as abstractions which help bridge the gap between low-level event traces and high-level design models. The usefulness of this framework is for understanding program behavior in the form of scenarios, providing a different perspective from static analysis or cumulative dynamic profiling.

Dissertation Outline

The next chapter provides an introduction to the ideas and contributions of this research by presenting an example usage scenario of the ISVis tool. Chapter III contains a history of the program execution visualization research that constitutes this research. The Information Mural is described in detail in Chapter IV. Chapter V gives the framework and model for behavioral program understanding that are formalized in the ISVis tool, which is described in Chapter VI. Validation of the thesis is presented in the form of two case studies in Chapter VII, followed by a chapter on related work. Finally, conclusions and future work are given in Chapter IX.

CHAPTER II

foundation: AN example

This chapter provides an example usage of the Interaction Scenario Visualizer (ISVis) framework, to introduce the reader to the ideas and benefits of the thesis research it embodies. The ISVis tool, whose views utilize the Information Mural technique, has been used to assist real-world software engineering tasks. This chapter describes tactics that have been developed while using ISVis to perform behavioral understanding tasks. These guidelines are presented in the context of one of the case studies described in Chapter VII. The details of the model, process, and visualizations mentioned in this chapter form the bulk of the remaining dissertation. The purpose of this chapter is to give the reader a feeling for the usefulness of the products of this research before presenting the details, and as such there are some ideas or terms used in this chapter before being fully explained.

Introduction

Suppose there is a way to capture and record the dynamic interaction of actors within an executing program. These actors might be functions, classes, threads, files, or other components of the system. Interactions between these actors take the form of function calls/returns, data reference, object instantiation/deletion, or messages passed. In analyzing such behavior, repeated sequences, or patterns, of interaction can be uncovered.

For most complex systems, these first interaction patterns are at a very low level compared to the design of the system. Using various filtering and abstraction techniques, the high-level program behavior can be abstracted up from the low-level interaction patterns. Interactive graphical visualizations can present this voluminous information much more effectively than textual representations, allowing the user to control the filtering and abstraction of available information. Visualizations of the abstract behavior can then be compared with design level information, such as execution scenarios or interaction diagrams.

Example Scenario

Imagine being charged with enhancing the NCSA Mosaic World Wide Web browser version 2.4 by adding the capability to handle user-configurable external viewers. These viewers are external applications launched from within Mosaic to allow viewing content such as images and documents not in the HTML format. In version 2.4 external viewers were employed but the viewer used for a particular format (PostScript, PDF, etc.) could not be specified by the user.

In order to safely and efficiently make this enhancement, the design of the current Mosaic system must be established as it relates to the proposed change. The ISVis framework can be used to help an analyst construct and/or validate models of Mosaic’s behavior and in this example is employed to establish: 1) components of Mosaic and how they interact to determine the format and display the content of web pages, and 2) how dialog boxes were used in Mosaic to allow customization of options. Knowing how Mosaic accomplishes both of these tasks is instrumental toward designing the enhancement.

The basic strategy for using ISVis in this design recovery task is the following:

compile Mosaic using Solaris CC compiler flag to generate static information

use ISVis to read the static information and generate instrumented source code to trace interesting events such as function call/return

compile the instrumented Mosaic

generate execution traces by exercising the instrumented Mosaic in related usage scenarios, such as following a hypertext link, displaying a PostScript file, and popping up internal Mosaic windows

read the execution traces into ISVis

create working scenarios and build up to design-level models using various tactics (described in the next section)

view the resulting design-level components and scenarios and store analysis results

Tactics for Using ISVis

During the application of the ideas embodied in the ISVis process and tool in several case studies involving software engineering tasks (see Chapter VII), similar tactics were often used to understand and analyze the subject program. The following list describes these tactics, in the context of the example problem of adding user-configurable external viewers to the Mosaic web browser.

Abstract the view of scenarios by using the natural actor containment hierarchy.

One of the most useful features of ISVis is the ability to project dynamic interactions (typically function calls/returns) up the containment hierarchy of actors, including files, classes, and user-defined components. The scenarios from Mosaic included interactions between thousands of function actors, making viewing and understanding a scenario difficult at best. The first step in viewing the traces of Mosaic is to group function actors by the file actors containing them. Next, files in particular subdirectories, such as the “Xmx” widget library, are further grouped into a single component because the analyst is not interested in the internal interactions between actors in those files, only in the interface between that component and the rest of the system.

Eliminate interactions unrelated to the functionality one is trying to localize.

This capability allows an analyst to quickly locate, select, and removed unrelated interactions from scenarios. For example, low-level string manipulation and graphics library calls completely unrelated to the task at hand are noticed and removed. In the process of doing this, many utility operations such as list manipulation are found and those actors are grouped together into a "Utility" component.

Use the global overview and browse the scenario to identify interaction patterns.

The global scenario overview, created using the Information Mural technique contributed by this research, indicates phases in the scenario and also highlights areas of recurring sequences of interaction. It is possible to visually locate candidate interaction patterns by using the global overview to navigate to regions in the scenario where similar sequences of interaction occur.

� REF _Ref402804355 \h ��Figure 1� shows a Scenario View of a Mosaic execution. In the Information Mural at the right side of the Scenario View, notice the four different phases in the first two-thirds of the scenario, one for each HTML document visited. Repetitive patterns occur as each document is processed. Differences arise from the number of images in each document, another pattern that was found. Interaction patterns for the processing of a mouse click on an anchor, of which there are six in the scenario--three in the first two-thirds of the scenario for HTML links and three at the end for the PostScript documents displayed, are also located.

� INCLUDEPICTURE "scenario_big.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �1�: ISVis Scenario View of Mosaic program execution.

Understand interaction pattern behavior and replace the low-level interactions with a reference to the recovered scenario.

Once a sequence of interactions has been identified as a candidate interaction pattern, the analyst should attempt to understand what that sequence of interactions does. If the interaction pattern represents an important, recurring task in the program, the analyst should identify those interactions as a new scenario, add a scenario description to the model, and replace all instances of that set of interactions with a reference to the newly defined and understood scenario. This is how low-level events are abstracted up into design level behavior. Using this tactic, the analyst is able to reduce the number of interactions in the longest Mosaic event trace (450,000 events) by a factor of ten.

Use pattern matching to locate similar scenarios.

In addition to allowing an analyst to visually locate an interaction pattern, ISVis provides simple pattern matching functionality to help an analyst find recurring sequences of interactions. ISVis can look for repeating sequences of arbitrary interactions or for sequences that begin with a call interaction and end with the corresponding return interaction.

Investigate the behavior of actors by viewing their source code.

Sometimes the analyst will find that different but closely related scenarios occur at various points in the execution of a program. ISVis allows the analyst to open views of the source code to actually look into a function and understand why particular interactions occur in some places but not others.

During the latter part of this example case study, the analyst begins to open XEmacs’ views of the source code for various actors. When the analyst locates the interaction HTSaveAndExecute occurring after the handling of a PostScript link, it is confirmed by viewing the source code that this function is in fact where the external viewer for the link is determined, to be executed later.

Build components of related actors that provide related, cohesive functionality.

Based on the understanding of the system gained through browsing scenarios, identifying recurring interaction patterns, and viewing source code, an analyst can begin to group related actors into components. This furthers the abstraction of the low-level behavior up to the architectural level.

The analyst uses information gained by browsing the Mosaic scenarios, static information about actors such as the name of the file in which they are defined and their names in the program, as well as comments in the source code itself to help group related actors into fifteen different components. It should be noted that while sometimes all actors in a particular file seemed to fit nicely into a component, often actors in the same source code file were assigned to different components.

The ideas realized in ISVis were shaped over four generations of visualization prototypes. The next chapter gives a history of the visualization research that preceded ISVis.

chapter III

visualizing program executions

Several generations of visualizations were designed and built as part of this research, to depict the behavior of object-oriented and/or procedural programs. This chapter describes the progression of the research and the evolution of the visualization prototypes, as a pre-cursor to chapters that discuss the final model, framework, process, and visualizations that validate the thesis work. This progression is not simply a history of this research, but rather a justification for the principles that have emerged in the final visualization framework. The following list summarizes goals of this visualization research:

visualize behavior in program executions

create visualizations/techniques which can handle large, real-world software systems

develop visualizations that allow users to see both the global picture and interesting subsets, at variable levels of abstraction

provide graphical mechanisms for query and comparison of information

construct the visualizations unobtrusively, without user modification of source code

� REF _Ref402531790 \h ��

Table 1� summarizes the various visualization prototypes, their contributions and shortcomings:

Table � SEQ Table * ARABIC �1�: History of Visualization Prototypes.

Visualization�Summary�Contributions�Shortcomings��VizBug++�Single animated view of simple C++ execution, generated from trace file. �Helped defined problems, pointed out potential usefulness of visualization.�Manual program annotation, view scalability, execution control.��VooDoo�Separated program event generation and program event visualization, multiple animated views.�First cut at framework for information gathering, synchronized views, posed more questions.�Scalability still a problem, some views not very useful, manual annotation.��Peasoup�System to browse execution trace, view of object interaction sequence, simple automated annotation.�Visual patterns were observed in several program executions that were automatically instrumented.�View of messages too low-level for global program understanding tasks, pattern detection needed?��v4.0�Focus on visualizing interaction patterns, simple automatic pattern detection, multiple pattern-oriented views.�Existence of interaction patterns confirmed, automatic pattern detection possible, patterns at same level as mental models.�Patterns could not be recorded or abstracted as program behavioral model created. No way to input mental model.��

Animated Execution View

The first visualizations built animated the execution of C++ programs for the purpose of aiding debugging and program understanding tasks. The first framework, called VizBug++, provided a mechanism for gathering program events while a program executes and an animated post-mortem view of the execution [� NOTEREF _Ref404418208 \h ��44�]. A library of visualization functions was built to construct and animate the view appropriately for each type of event. Simple C++ programs were hand-annotated with calls to these functions at places where interesting events occur in the program, such as function calls and returns. Execution of the annotated source program produced calls into the visualization library and caused the view to be updated. A simple user-interface provided both continuous and discrete (step mode) control of the event visualization.

As shown in � REF _Ref402804594 \h ��Figure 2�, the VizBug++ view contained three basic entities: a tree structure representing the class hierarchy, rectangular nodes representing global functions, and circular nodes representing instances. The view was intended to graphically animate the message-passing that occurs during execution of object-oriented programs. By stepping through the visualization of the program execution, users could observe existing objects and messages and browse the class-sub-class relationships between existing entities by pointing and clicking.

� INCLUDEPICTURE "vizbug.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �2�: VizBug++ animated view of simple C++ employee database program execution.

From the results of using this view and the experience implementing VizBug++, it became clear that gathering the necessary static and dynamic program information to construct useful execution visualizations is indeed a difficult problem. View layout and information overload were major problems encountered in this simple view. Presenting the information in an organized and informative way seemed to require multiple coordinated views, with different levels of abstraction. Given the important role that object-oriented programming had begun to play in the software development arena, solving problems in visualizing system behavior seemed to merit further investigation.

Toward a Visualization Framework

The work on this problem was then divided into two basic areas: program event generation and program event visualization. The “Visualization Manager” was designed to control and synchronize program views and the “Event Manager” built to access the event stream coming from an executing program. When the Visualization Manager was ready for the next event, it would send a request to the Event Manager. After the requested event was received from the Event Manager, the Visualization Manager would then pass the event information to the underlying program state model and the visualization models specific to each particular view. In order to generate the views, hand annotation of a simple C++ program was performed as with VizBug++. Again, executing the annotated source produced an event stream for the views.

This framework, called VooDoo, included four different views (see � REF _Ref404424672 \h ��Figure 3�) in order to reduce the complexity of a single view depicting too many aspects of the execution [� NOTEREF _Ref404418208 \h ��44�]. The “object view” was a macroscopic view of all current instances in the program. Objects were shown at a pixel-like scale in an attempt to support programs with thousands of objects. Selecting an object allowed the user to see information such as the object's address, name, and inheritance hierarchy. Additionally, the view showed a history of active objects as the program executes by enlarging the size of recently active objects. A view of the inheritance hierarchy displayed the class inheritance structure for the program as a tree. Classes were shown as nodes labeled with their class name. Arrows showed inheritance from parent (base) classes to their children. The third view was a class-uses-class dependency matrix. Classes were listed in alphabetical order along each axis. The vertical axis showed classes that are dependent on classes on the horizontal axis. The last view depicted the call stack.

� INCLUDEPICTURE "views.eps" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �3�: Views from VooDoo program visualization prototype.

The event generation and event visualization capabilities of this first multi-view framework revealed several problems and gave rise to several questions:

How much of this event information can be generated automatically, in an unobtrusive manner?

How could both forward and backward navigation (browsing) through the program event stream be permitted, thus allowing programmers to rapidly focus on points of interest?

What mechanism could be used for saving the state information needed to restore previous program execution states?

How should the information models be defined in order to facilitate view synchronization, inter-view communication, and the addition of new views?

How could views that scale well for large applications be created? Do new methods of abstraction need to be developed?

Answering these questions motivated the next phase of the visualization research.

Browsing Program Executions

After the experience with animating program executions, it was hypothesized that a framework allowing the browsing of program executions would better support behavioral program understanding. Being able to animate the execution was “cute” and probably valuable for explaining simple scenarios (such as algorithm animations). However, program understanding tasks demanded that the analyst be able to see entire sequences of behavior or to focus in on specific ones. Sequential history was more important than just being able to see the current state.

The next generation of the framework, called Peasoup, was focused on allowing a user to display and browse real-world sized event traces (100,000+ messages) [� NOTEREF _Ref404418824 \h ��41�,� NOTEREF _Ref404418920 \h ��45�]. A subject program was instrumented by automatically inserting tracing objects into the source code. Various tools were tried to make this instrumentation more robust, such as gen++ [� NOTEREF _Ref404424103 \h ��24�] and Sage++ [� NOTEREF _Ref405029926 \h ��86�]. Automatic instrumentation was required in order to support the visualization of larger programs. The Execution Mural view, as shown in � REF _Ref403194407 \h ��Figure 4� and � REF _Ref403201524 \h ��Figure 5�, was designed to show time on the horizontal axis and messages passed between classes in a program on the vertical (much like an event trace diagram rotated 90 degrees). The approach was to provide a general view initially showing all the classes and messages, and then provide several visual filtering mechanisms that allow a user to focus on information of interest. These included the following:

a global navigational Information Mural [� NOTEREF _Ref404418824 \h ��41�,� NOTEREF _Ref404420092 \h ��42�] (see Chapter IV) which portrays the entire trace

the ability to change the ordering of classes along the vertical axis

a toggle to selectively show or hide particular classes

a mechanism to color-code specific messages

the capability to zoom in on sub-sections of the message trace

It was also hypothesized that any visualization which supports program understanding tasks must include a view of the source code for the system being examined, since that code is the concrete realization of the system (unless of course, the system is programmed visually). While different abstract models of the system can be developed to help a person understand its behavior, if that person will be modifying the system the abstractions must eventually be related to the source code. In Peasoup, a Code View depicted the messages between classes and functions overlaid on an abstract view of the source code. This helped relate the messages in the Execution Mural to the source code from which the event trace was generated.

� INCLUDEPICTURE "exec_mural1.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �4�: Initial Execution Mural of a Polka bubble-sort algorithm animation program execution. Classes are on the vertical axis, and each message is a single pixel wide vertical line from source to destination class. The global view at the bottom is an Information Mural of the entire set of over 52,000 messages; a navigation rectangle shows the position of the focus area relative to the rest of the classes and messages in the trace. Note the repetitive patterns visible in both the focus area and the global Mural.

As mentioned previously, with Peasoup it was determined that animating the execution of a program is less important for global program understanding tasks than

being able to browse the entire execution and focus on areas of interest as needed to undercover specifics. The focus of the thesis work was also narrowed to the sequence of object interactions, while others published work focused on cumulative dynamics [� NOTEREF _Ref404419487 \h ��21�,� NOTEREF _Ref402428387 \h ��22�]. Scalability was becoming the number one issue in creating useful visualizations to aid the understanding processes during implementation and maintenance of real-world sized systems, with the Information Mural technique created to support this goal [� NOTEREF _Ref404418824 \h ��41�,� NOTEREF _Ref404420092 \h ��42�].

� INCLUDEPICTURE "exec_mural2.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �5�: Execution Mural from � REF _Ref403194407 \h ��Figure 4� with several classes hidden, the message width increased, and several messages highlighted in different colors.

� INCLUDEPICTURE "code_view.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �6�: Source code view of Polka animation toolkit, with files arranged horizontally. Circles represent class definitions and squares represent functions; the fill color shows relative message-passing volume for each node for a particular execution trace. When the user brushes across messages in Execution Mural view, arrows representing that set of messages will be overlaid, connecting source and destination nodes.

Event traces of several different programs were analyzed with Peasoup, including Polka [� NOTEREF _Ref404420623 \h ��92�] and SeeSoft [� NOTEREF _Ref404419555 \h ��25�]. Visual patterns were seen in an entire message trace, and then lower-level patterns as sub-sequences of the execution were zoomed in on. The visual patterns were either the result of similar semantic operations in the code or of iteration as in a “for” loop. One of the weaknesses of the visualization in terms of helping program understanding tasks was that a view of individual messages is really too low-level compared to a user's mental model or system design models such as interaction

diagrams. The “message patterns” being uncovered seemed to be useful abstractions to help bridge this gap. The work with the Peasoup prototype thus motivated the development of the compact message trace representation and the views implemented in the next generation.

Visualizing Interaction Patterns

The fourth visualization prototype (v4.0) was focused on visualizing interaction patterns to support design recovery and reengineering tasks. It incorporated a similar view to Peasoup's Execution Mural, with the addition of certain automatic message pattern� detection methods and several message pattern-oriented views [� NOTEREF _Ref404418920 \h ��45�]. Patterns in the execution trace detected by the tool were used as a starting point for presenting the user with interaction patterns in execution traces. The visual interface then allowed the user to examine the message patterns.

V4.0 created views of a particular program execution based on static information about the program and a trace file of interesting events (function calls and returns). The views were Observers [� NOTEREF _Ref404419617 \h ��28�] of a single program model that contained both static and dynamic information, and they co-existed in a single Viewspace window that acted as a Controller [� NOTEREF _Ref404419636 \h ��30�] to handle user input. A Composite [� NOTEREF _Ref404419617 \h ��28�] class hierarchy defined views as visual objects themselves. User interaction occurred through pointing with the mouse and using pop-up menus associated with the various views.

In order to visualize and analyze large program executions a compact representation of the event trace and a way to extract the occurrences of interaction patterns was required. The v4.0 framework utilized a compact representation of the call trace to analyze large message traces. In a spectrum of possible representations of calling behavior that pit space overhead versus information accuracy, the call graph and the dynamic call trace represent two endpoints. At one extreme, a call graph is a compact representation of calling behavior that summarizes all possible run-time activation stacks. There is much interesting information about calling behavior that is dropped to gain compactness. The sequencing of calls, the context in which certain calls are made, conditional and indirect calls, and repeated calls are all examples of calling behavior that are lost. This can cause problems in software tools that use the call graph to summarize dynamic program properties. For example, the inaccuracy of program profilers such as gprof [� NOTEREF _Ref404089069 \h ��31�] and qpt [� NOTEREF _Ref404419682 \h ��56�] can be traced to their use of the call graph to summarize context-dependent profile information in a context-independent manner.

At the other end of the spectrum, the dynamic call trace is an unbounded data structure containing a record of all the calls and returns that occur in a program's execution, regardless of whether the calls are direct or indirect. Extracting the call trace may incur high run-time overhead and storing the trace may not be feasible for long running programs. Furthermore, there is a data explosion problem: finding interesting information from the mass of data in the trace is not easy. Some trace-based tools animate the call graph to show the trace on the fly (without storing it) [� NOTEREF _Ref404419704 \h ��10�], or compute statistical summary information from the trace [� NOTEREF _Ref402428387 \h ��22�]. Both of these techniques deal with the space problem by ignoring or summarizing a large amount of dynamic information, as is done with the call graph.

A middle ground was achieved in v4.0: a compact representation (such as the call graph) that also retained as much information as possible about dynamic calling behavior (such as the dynamic call trace). The data structure also provided various abstract views of the dynamic information and serves well as a query engine for software tools dealing with calling behavior. One such abstract view of this data structure was the notion of a message pattern, as defined previously.

There were three basic ideas used to compact the dynamic call trace. First, hash consing� ensured that duplicate tree structures derived from the dynamic call trace were represented exactly once in the compact representation. Second, repetitive sequences of sub-trees generated by loops were summarized at varying degrees of accuracy, resulting in different compact representations (and subsequently different levels of message pattern abstractions). Finally, repetitive calling chains generated by recursion were summarized as well. The compact representation of the dynamic call tree was a directed acyclic graph, or dag.

� REF _Ref403312836 \h ��Figure 7� shows an example call trace, call tree, and call graph. The compact representation of the call tree from � REF _Ref403312836 \h ��Figure 7�(b) is shown in � REF _Ref403312963 \h ��Figure 8�. Each vertex corresponds to a call. It is clear that this representation captures exactly the same information as the call tree.

The basic framework for parsing a call trace to produce a dag was straightforward. The analysis required three main data structures: a stack of active procedures, a heap of dag structures, and a hash table for determining if a particular dag structure has been built already. The dag structures were built in a bottom-up fashion (from the leaves of the dynamic call tree to the root). Hash consing ensured that if a tree data structure is constructed bottom-up, then duplicate trees always hash to the same element.

� INCLUDEPICTURE "tree.eps" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �7�: (a) A call trace, (b) its corresponding call tree, and (c) call graph. Edge directions are assumed to be directed down the page.

Hash consing resulted in the sharing of sub-trees in the dag, as is evident by the shared sub-tree of A calling B and C in � REF _Ref403312963 \h ��Figure 8�. This sub-tree was a message pattern, because it has more than one incoming parent edge. A pattern iterator walked the dag and returns message patterns that are encountered. In addition to identifying shared sub-trees, the pattern iterator also looked for repetitive sequences of sub-trees that result from iteration in the program execution.

� INCLUDEPICTURE "tree2.eps" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �8�: A compact representation of the call tree from � REF _Ref403312836 \h ��Figure 7�(b).

� REF _Ref403195252 \h ��Figure 9� and � REF _Ref403196057 \h ��Figure 10� show sample views of a Polka bubble-sort algorithm animation that consisted of almost 64,000 function invocations, similar to that used as an example in the previous section. A global Execution Mural of the entire message trace (middle of � REF _Ref403195252 \h ��Figure 9�) acted as a global overview, showing where the message patterns fit within the execution. Notice that the Execution Mural views in v4.0 were slightly different from the previous generation in Peasoup: the view has been rotated to look more like interaction diagrams [� NOTEREF _Ref404422227 \h ��40�]. There were 40 classes in the program on the horizontal axis and the almost 64,000 messages drawn as horizontal lines down the vertical axis using the Information Mural compression technique [� NOTEREF _Ref404418824 \h ��41�,� NOTEREF _Ref404420092 \h ��42�]. This global Execution Mural did not have a focus area, it just showed all of the messages at once. Notice how repetitive the diagram is visually. A distinct pattern appears in the beginning, followed by another that repeats six times. To get a feel for the information compression ratio, the left part of � REF _Ref403195252 \h ��Figure 9� shows the first 10,000 function invocations in the trace. More patterns become apparent at a finer resolution.

� INCLUDEPICTURE "viz1.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �9�: V4.0 visualization of Polka bubble-sort algorithm animation containing 64,000 function invocations. On left is a Global Execution Mural of first 10,000 calls. In center is Global Execution Mural of entire execution (vertical resolution is 64,000 messages on 400 pixels, an information compression ratio of 160:1). Pattern Matrix is on right. In the matrix, entries are made for classes (top) and functions (bottom) that are “members” of each message pattern. A red highlight shows the occurrence of a particular pattern in each view.

The right part of � REF _Ref403195252 \h ��Figure 9� shows a Pattern Matrix, used to show which classes and functions were involved in the identified message patterns. Top-level patterns were shown on the horizontal axis, and classes involved in the top-level message patterns identified by the pattern detection algorithm described previously on the vertical. “Top-level” means the largest sequence of messages that occur more than once and began closer to the root of the call graph than other sub-sequences that might also be message patterns. The matrix assigned a message pattern to each column; message patterns were identified by the first message name along with the global message number of the first message in the pattern. The rows of the matrix corresponded to the classes (top section of Pattern Matrix in � REF _Ref403195252 \h ��Figure 9�) or to functions in the program (bottom section of Pattern Matrix in � REF _Ref403195252 \h ��Figure 9�). In the Pattern Matrix of � REF _Ref403195252 \h ��Figure 9� the column for the AnimateOne#7213 pattern is highlighted in red, indicating that the AnimObject, AnimObjectImpl, Animator, GLOBAL, RectangleImpl, TextImpl, and View classes are involved in the pattern. The matrix was created using the Information Mural technique as well, effectively scalable to hundreds of classes and patterns (except for the text labels). Note that the order of message patterns along the horizontal axis can be changed to group patterns by name, size, or order of occurrence in the trace.

The Pattern Mural view gave a time ordering to the message patterns shown in the Pattern Matrix by showing message patterns on the vertical axis and where they occur in the program execution along the horizontal. This view used the Information Mural technique by drawing a point for each message in the execution, at sequential x coordinates and at the appropriate y coordinate for the message pattern to which that message belongs. Note that “sequential x coordinates” were in terms of the message order, not the pixels on the screen: many messages may be compacted into the same column of pixels.

� INCLUDEPICTURE "viz2.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �10�: Another snapshot of v4.0 view of Polka bubble-sort animation. Top left is a Pattern Mural. Message patterns are assigned to the vertical axis by order of occurrence; a point in the mural is made for each message at sequential x coordinates, with the y value corresponding to the pattern of which that message is a member (messages that are not members of patterns are not shown). Lower left is a Pattern Matrix as in � REF _Ref403195252 \h ��Figure 9� without the function part of the matrix. On right is a detailed Execution Mural for pattern AnimateOne#7213.

The order of patterns along the vertical axis could be changed as in the Pattern Matrix view; � REF _Ref403196057 \h ��Figure 10� shows patterns in order of occurrence (first at the top). In this view notice several distinct AnimateOne patterns that occur in the middle of the trace. It was hypothesized that each of these patterns corresponds to the distinct phases in the Global Execution Mural of � REF _Ref403195252 \h ��Figure 9�. The views were synchronized so that as the current pattern in one view was changed the others changed to show the location of that pattern as well.

The right part of � REF _Ref403196057 \h ��Figure 10� contains an Execution Mural of the AnimateOne#7213 pattern. The Mural on the right of the Execution Mural provided a global overview of all the messages in the pattern, and acted as a two-dimensional scroll bar for moving the focus area on the left. Messages corresponding to both function calls and returns could be displayed; calls were solid and returns are grayed. Horizontal lines represented messages, and name labels could optionally be displayed above each message. A circle marked the destination end of the message. The class of GLOBAL function calls could be removed by using the mouse to select the class label and choosing a menu option to remove that class. Another menu option allowed one to eliminate the return messages from the display.

The following was concluded from usage of the v4.0 prototype: 1) interaction patterns exist in program executions, 2) they can be automatically detected, and 3) they are at a similar level of abstraction as design level models in system design documents or programmer's mental models. It became clear that understanding the behavior of a few interaction patterns could go a long way toward understanding the entire execution scenario. While this will obviously not always be the case, it was clear that interaction patterns could be used as abstractions that relate the low-level implementation to higher level design models during design validation and recovery tasks.

To create several of the visualizations described thus far, the Information Mural technique was developed. While this technique was invaluable for the software visualizations created as part of this thesis research, it has also been applied to other types of information visualizations. The next chapter describes the technique in detail.

chapter IV

The Information Mural

Two of the primary goals of the visualization research described in Chapter III were to create visualizations/techniques that can handle large, real-world software systems and to develop visualizations that allow users to see both the global picture and interesting subsets, at variable levels of abstraction. A new visualization technique was required to create global overviews of program executions comprised of hundreds of thousands of interactions. Such a technique, called the Information Mural, has been developed and applied to visualizations of several different types of information, including software, scientific data, geographic information, and textual documents.

Information visualizations must allow users to browse information spaces and focus quickly on items of interest. A visualization of the entire information space provides an initial gestalt overview and gives context to support browsing and search tasks. However, the limited number of pixels on the screen constrains the information bandwidth and makes it difficult to completely display large information spaces. The Information Mural is a two-dimensional, reduced representation of an entire information space that fits entirely within a display window or screen. The Mural creates a miniature version of the information space using anti-aliasing like compression techniques and visual attributes such as grayscale shading, intensity, and color. Information Murals can be used as stand-alone visualizations or in global navigational views. Several views have been built to demonstrate the use of Information Murals in visualization applications; subject matter for these views includes computer software, scientific data, text documents, and geographic information.

Introduction

Although large quantities of information are becoming available on-line, the information itself is useless without effective display and access mechanisms. Information visualizations can utilize visual and audible channels to convey information to the observer. The visual channels include attributes such as size, shape, color, intensity, texture, font, etc. Independent of the visual channels used, visual bandwidth is limited by the number and size of screen pixels.

 The design of a particular information visualization is very much dependent on the tasks it is intended to support. Plaisant, Carr, and Shneiderman have categorized different types of tasks, including image generation, open-ended exploration, diagnostic, navigation, and monitoring [� NOTEREF _Ref404420237 \h ��72�]. For many of these applications, particularly within the context of a browser, a global view of the information is important as a navigational aid and as an analysis tool. Global views are used to provide context for more detailed views, to help formulate a search, to identify patterns, or to make a gestalt overview.

 As the information visualization field matures, visualizations must scale to larger and more complex information spaces. Different visualization techniques have been proposed to increase the amount of information that can be displayed on the screen at the same time, both to create global views and to portray focus and context simultaneously. However, all visualizations are limited by the number of pixels on the screen; this often severely constrains a designer's ability to create global overviews of large information spaces.

The Information Mural technique allows 2D visual representations of large information spaces to be created even when the number of informational elements greatly outnumbers the available pixels. Current methods for depicting such large information spaces, discussed in more detail later in this chapter, typically utilize abstraction, aggregation, over-plotting, or sampling to create a view of the entire space. Scroll bars may also be used to allow access to different parts of the information. All of these techniques can result in a loss of information that might be useful to the observer.

An Information Mural is a 2D, miniature representation of an entire information space that uses visual attributes such as color and intensity along with an anti-aliasing like compression technique to portray attributes and density of information. The goals of the technique can be summarized as follows:

Create a representation of an entire (large) information space that fits completely within a display window or screen.

Mimic what the original visual representation of the information would look like if it could be viewed in its entirety, i.e. contains the same visual patterns.

Minimize the loss of information in the compressed view, regardless of the size of the compressed representation.

The primary motivation for the development of Information Murals was to create global overviews for scalable software visualizations. However, there are several different types of information spaces that can be represented using Information Murals:

Time-oriented visualizations often span many computer screens if laid out completely. These types of views are particularly prevalent in software visualization and monitoring applications.

A text file or document usually does not fit entirely on the screen, because its vertical dimension far exceeds its horizontal dimension. Displays of textual information thus often utilize scrollbars to provide navigation through a document.

Graphs of data often require some compression technique to fit on the screen. Scaling and rounding of data values are often necessary to draw the entire graph. Other alternatives are to display a statistic such as the average of the data values, or only a subset of the data.

Images might be represented using Information Murals. Although an image usually fits on a screen, it is often desirable to change the size of the image. As an image is shrunk, information in the image is inevitably lost.

Visualizations that contain miniature representations of information are forced to make tradeoffs in deciding what visual attributes of the information can be included at small scales. Information Murals allow global views of large information spaces to be constructed. Such contextual information directly supports analytical and navigational tasks that a user performs while interacting with informational displays.

The next section describes the Information Mural technique in detail. Following this, several applications of Information Murals are presented. Then the technique is critiqued, assessing its relative advantages and disadvantages with respect to common tasks accomplished with the aid of visualizations.

Technique

Imagine some visual representation of a large information space whose resolution is M x N pixels, much larger than the screen resolution. For simplicity assume that it is a black and white image, to be displayed on the screen in I x J pixels. A simple algorithm just scales the pixels in the original image into the available space, overwriting pixels that happen to overlap. A destination pixel will look the same (be turned on) if one pixel from the original image happens to map to that screen location or if 100 or more pixels happen to fall there. This effect is known as aliasing [� NOTEREF _Ref404420348 \h ��26�].

The idea of the Information Mural technique is to make the density of overlap visually apparent. It draws on strategies for anti-aliasing in computer graphics by varying intensity of the screen pixels to convey the underlying density of pixels from the original sample. To construct an I x J Information Mural of the original image, the position of each pixel in the M x N representation is first scaled to fit into the available space. As each source pixel is then “drawn” in the Mural using an imaginary pen, different amounts of “ink” fall into bins for each screen pixel. As each subsequent pixel from the original is drawn, the amount of ink will build up in different bins, depending on the amount of original pixels that map to the same screen pixel.

The resulting Information Mural is then created by mapping the amount of ink in each screen pixel (the information density) to some visual attribute. In a grayscale Mural, the shade of each screen pixel is determined by the proportion of ink in its bin relative to the maximum amount of ink in any single bin. Thus, areas that are most dense with information are rendered the brightest (or darkest). Color can then be added to convey other attributes of the information, while still preserving the density mapping. Instead of using grayscale variation, an equalized intensity� variation over the entire color rainbow can also be used. Details of the mapping from pixel density to the color scale are described later.

The next three subsections describe various algorithms for creating Information Murals, followed by a discussion of how the Mural is actually used by applications as a user-interface widget. Modifications to the original algorithm were made to improve performance and then to support attribute colors. All algorithms for creating an Information Mural take an input image at a scale of M x N pixels and render it as Mural of I x J pixels. In addition to the data structures that store the original information, the algorithms require an I x J array of floats. While the algorithms describe the transformation from an original image into a Mural, in the actual implementation of the Mural widget there is not a physical original image; the client application draws points and lines via the Mural widget at the scale of the original image and the Mural widget translates these points and lines into a Mural of the appropriate size.

Original Algorithm

The original algorithm described below creates an Information Mural in a manner very similar to weighted area sampling with overlapping weighting functions [� NOTEREF _Ref404420348 \h ��26�]. In this version, a pixel from the original image contributes proportionally to the intensity of the four surrounding screen pixels that it covers when scaled into the I x J Mural. The intensity contributed to each of the surrounding pixels is computed as follows: 1) construct a unit square connecting the centers of the four surrounding destination pixels, 2) use the scaled location of the center of the original pixel to divide the square into four quadrants, and then 3) the area of the quadrant diagonally opposite to each of the four destination pixels is the amount of intensity contributed to that pixel. � REF _Ref405021861 \h ��Figure 11� shows the computation for a pixel at (m,n) in the original image. Note that the algorithm does not consider the physical location of the area contributions to correctly render sub-pixel geometries, as in some polygon rendering algorithms [� NOTEREF _Ref404420394 \h ��5�]. Typically this approach is not required given that Murals are typically of 2D, synthetic, abstract images, where geometry of overlapping or intersecting polygons is not as important as in rendering 3D scenes.

This algorithm is essentially area sampling using a weighted filter of size (2M/I - 1) x (2N/J - 1) to filter the original M x N binary image into I x J pixels. However, when computing intensity of a screen pixel, the total intensity at a given

� INCLUDEPICTURE "mural_alg.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �11�: Information Mural algorithm example, scaling pixel at (m,n) in M x N original image to (x,y) in I x J Mural. Contribution of (x,y) to pixel (floor(x),floor(y)) is shown with diagonal cross-hatch.

instance of the filter is divided by the maximum intensity over all filter instances instead of the area of the filter (as in traditional area sampling). When this divisor is less than the area of the filter, we are effectively “brightening” a sparse original image. Often the divisor will in fact be the area of the filter, when at least one instance of the filter finds all pixels on in the original image.

The detailed algorithm is as follows:

1)	for each i,j set mural_array[i][j] to zero

2)	for each pixel m,n in the original representation

a)	compute x = m / M * I, y = n / N * J

b)	compute the area of the quadrants defined by the point x,y and a unit square connecting each of surrounding pixels (floor(x),floor(y); floor(x),ceil(y); ceil(x),floor(y); ceil(x),ceil(y))

c)	add the area of the diagonally opposite quadrant to each mural_array entry: mural_array[floor(x)][floor(y)], mural_array[floor(x)][ceil(y)], mural_array[ceil(x)][floor(y)], mural_array[ceil(x)][ceil(y)]

d)	update max_mural_array_value if one of the four new mural_array[][] values is a new maximum

3)	for each i,j in the mural_array

a)	map the value mural_array[i][j] / max_mural_array_value to a grayscale or color intensity varying scale, depending on the type of Mural being created

b)	shade the pixel at i,j of the Mural based on the mapping computed in the previous step

Efficient Algorithm

For improved efficiency, the second algorithm eliminates the weighting filter computations performed in steps 2b and 2c of the original Mural. This effectively results in a “sharper” image, eliminating the blurring due to overlapping weighting functions. The benefits that weighted area sampling provide for rendering photo-realistic images are not as important for Murals of synthetic, abstract images often found in information visualizations.

Another way to look at this version of the algorithm is as a non-overlapping box filter of size M/I x N/J used to filter the original M x N image. As in the original algorithm, the total intensity of the source pixels at a given instance of the filter is divided by the maximum intensity over all instances instead of the area of the filter. This maximum is less than or equal to the area of the filter (when all pixels are on in a given instance of the filter unweighted area sampling is being done).

The more efficient algorithm is as follows:

1)	for each i,j set mural_array[i][j] to zero

2)	for each pixel m,n in the original representation

a)	compute x = m / M * I, y = n / N * J

b)	add 1.0 to mural_array[floor(x)][floor(y)]

c)	update max_mural_array_value if the new mural_array[floor(x)][floor(y)] is greater than the existing maximum

3)	for each i,j in the mural_array

a)	map the value mural_array[i][j] / max_mural_array_value to a grayscale or color intensity varying scale, depending on the type of Mural being created

b)	shade the pixel at i,j of the Mural based on the mapping computed in the previous step

Attribute Color Algorithm

Two alternative ways that attribute colors could be added to an Information Mural were considered as part of this research. Before discussing the positives and negatives of each approach, the context of the problem should be mentioned. First, since many pixels in the original image contribute to a single pixel in the Mural, and since a screen pixel is by definition a single color, the Mural may not be able to show attribute colors for every piece of data at the same time. What if the Mural compresses 50 pixels from the original image into the same screen pixel, 5 of which are to be colored blue, 13 red, 6 yellow, and so on--how should that screen pixel be rendered? It does not make sense to mix RGB values as is done in standard anti-aliasing, because an observer might not deduce that equal parts of red and green original pixels make a yellow screen pixel. Thus, each screen pixel should be colored according to the attribute color that occurs most frequently at that pixel in the Mural.

One way to compute this would be to keep track of the intensity for each color separately, requiring a mural_array of floats for each different attribute color. Note that just keeping a red, green, and blue array would not work, because colors should not be mixed for the reason mentioned above. Besides the large memory requirements, another problem is determining which maximum intensity value should be used to compute the resulting screen pixel density mapping. Without attribute colors, it is obvious: render relative to the maximum over all of the screen pixels. However, with attribute colors, is the reference the maximum density of the resulting color component? Or, is it the maximum density over all possible colors? The third and final option is to treat the intensity at each pixel independently from the attribute colors, and thus compute the density mapping relative to the maximum of intensity as is done in the previous algorithms.

This leads to the alternative for computing attribute colors that was chosen for the Information Mural. In addition to the array for determining screen pixel density, a list of shorts, one for each possible attribute color, is kept with each mural_array entry to record how many pixels from the original image of each attribute color have overlapped each screen pixel. This method was chosen for simplicity, compactness, and efficiency; while sacrificing the ability to correctly perform area sampling—the result will be an inaccurate reflection of exactly how much of the intensity is due to each color. For example, suppose five anti-aliased blue original pixels each contribute 0.1 intensity to a screen pixel and one anti-aliased red pixel contributes 0.8 intensity, the result is a blue screen pixel of 1.3 intensity. This problem only arises in building a Mural using overlapping weighted area sampling, because when non-overlapping unweighted sampling is done each point always contributes 1.0 intensity to a single pixel.

Of course, the choice of presenting the pixel color of the maximum contributor has the consequence that the remaining contributing colors are not shown, thus “hiding” some of the information in the original image. Interactive Murals could be configured, however, to allow the viewer to query the underlying attribute colors of a section of the Mural and display the results in a separate view. Alternatively, Murals that cyclically render pixels according to all colors contained are possible. For a more general discussion of a variety of these potential interactive brushing techniques, see [� NOTEREF _Ref404420420 \h ��63�].

Implementation

While the previous subsections on the Information Mural algorithm mentioned many implementation considerations, this subsection will discuss how Information Murals are actually included in visualization applications. In practice, a Mural is not constructed directly from an entire original image, but drawn incrementally at a resolution matching that of the original image.

The Information Mural is implemented as an abstract widget that can be used by an application just like a scroll bar, drawing area, or other graphical widget. The widget can be used purely for output to display an Information Mural, or more usefully it can act as a global view for more detailed views by providing a “navigation rectangle” that can be panned and zoomed by the user. The implementations are built in C++ on top of X Windows and Motif, with some also utilizing the Vz visualization framework.� The Mural C++ class provides a basic application interface to create, layout, and draw a Mural. Client applications must inherit from the Mural_Client class to receive interaction notification messages (method calls) which the application may choose to implement.

When an instance of a Mural is created, the application defines the coordinate system in which the Information Mural will be drawn. If the Mural's navigation capabilities are to be used, the initial position and size of the navigation rectangle must also be set. Whenever the Mural needs to be redrawn, it calls the application's MuralRedrawNeededCB()callback method. The application then calls whichever primitive drawing routines it needs to construct the Mural, such as MuralDrawPoint(), MuralDrawLine(), MuralFrameRectangle(), etc. These routines are passed coordinates in the application-defined coordinate system (typically that of the original image of the information space). Additionally, whenever the navigation rectangle is moved or the Mural is zoomed by the user, the application's MuralValueChangedCB()and MuralZoomedCB()are called, respectively, such that the application can update any focus area of the information being displayed.

In this way, the application draws the Information Mural in its own coordinate space with respect to the information being visualized, and the Mural widget handles the rendering of the Mural in it’s allocated screen space. A user's manipulations of the Mural widget are passed back to the application in the application-defined coordinate space as well. Such abstraction makes it easy for an application to use a Mural widget to implement a resizeable global overview. This feature emphasizes the value of the Mural widget versus an application using rendering hardware such as the Open GL accumulation buffer [� NOTEREF _Ref404420445 \h ��33�] to do anti-aliasing of a scene as it is drawn.

Several other parameters of the Mural widget can be changed by the client application. First the type of color scale is chosen (gray or equalized intensity), as well as the start intensity of the scale, end intensity, and the number of steps in the scale. Based on human abilities to differentiate color levels, a color scale with 10 steps is the default. Another parameter allows the application to set the mapping from pixel intensity to the level in the color scale. For example, a linear mapping equally distributes the range of computed pixel intensities to the steps in the color scale. A logarithmic mapping allows pixels in the lower range of the computed intensity to be allocated more steps in the color scale.

The next section gives many examples of applications using both stand-alone Mural widgets, and applications that use the Mural as a global view through which the user can navigate more detailed views. Before moving on to the examples, a short discussion of the Information Mural technique's limitations is provided.

Limitations

The Information Mural technique is not without limitations that may restrict its utility. Limitations of the method itself or problems caused by the content of the original image are mentioned here. One such aspect is the Mural's use of grayscale shading or density and the potential addition of color. Density is low in the ordering of elementary graphical perception tasks [� NOTEREF _Ref404420462 \h ��16�]. Distinguishing fine variations or levels of detail in grayscale is difficult for humans. Shading and density are better suited for illustrating strong patterns or providing a stimulus for an impression of data, tasks for which the Mural is useful.

The addition of color compounds the problem. Color is better suited for portraying categorical data rather than continuous values. Using attribute colors to categorize information in a Mural follows this paradigm. The use of color to illustrate numerical ordering and values can be problematic [� NOTEREF _Ref404420479 \h ��96�]. While this is clearly a problem with the equalized intensity color scale in Murals, it has been observed that it is easier to spot low-intensity outliers using color rather than grayscale. Cleveland has suggested color scales that may be more appropriate, such as varying intensity of two hues [� NOTEREF _Ref404420494 \h ��17�].

Furthermore, the context of color, i.e. the other colors adjoining or surrounding a particular color, strongly influences a person's perception of the color [� NOTEREF _Ref404420513 \h ��95�]. The use of many different color hues and intensities may result in a perceived merging of adjacent colors. Because Murals rely on pixel-level detail, it can be difficult if not impossible to notice a single yellow pixel in a sea of gray, for example. For a good summary of the potential dangers of using color in visualizations, see chapter 11 of [� NOTEREF _Ref404420535 \h ��67�].

Another potential liability for the Information Mural technique concerns the type of data set or image that it is capturing. A scaled down image of a periodic function will eventually compress a single cycle of that function into a single column of screen pixels as the frequency of the function increases (as it does when the duration of the function to be displayed increases). The result in a typical rendering of this function is simply a band with an amplitude equal to the amplitude of the function. However, the grayscale Mural gives a bit more information by showing higher intensity at the values that the function takes on more frequently. For example, a Mural of a square wave shows a dark band with bright extremes, and a pulse function will show a dark band with only the lower extreme bright. However, if the size of a data set is large enough relative to the number of pixels being used for the Mural and the distribution of the data is random enough, the resulting Mural can present a fuzzy gray cloud. Information Murals are best for illustrating synthetic visualizations or data sets with noticeable characteristics or patterns.

Finally, to display a Mural or even to display a focus region within a Mural requires examining all the pertinent data points or source image pixels. This can be computationally slow in applications requiring interactive redisplays. To address this problem the efficient algorithm described previously was developed, as well as the capability for client applications to draw the Mural “in the background” as a Motif work procedure executed while no X Window System events are being processed. While this helps with user interaction response time, manipulating extremely large source data sets with millions of points can still result in slower redisplays than desired.

Applications

Information Murals can be used as global views of information spaces, both for analysis purposes and for navigation. Used as a background in a navigational widget, murals provide informational context to support panning and zooming of more detailed focus views. By adding panning and zooming within the global view, an Information Mural can be used as a stand-alone visualization.

Below are some snapshots from visualization applications built using Information Murals. These applications contain many different forms of information, from software to data to text documents, some of which were mentioned in [� NOTEREF _Ref404420554 \h ��43�]. The examples are broken down here by data domain.

Software Visualization

The Information Mural technique originated in the software visualization research into visualization of object-oriented (OO) program executions described earlier [� NOTEREF _Ref404418824 \h ��41�].

Object-Oriented Message Traces

The first prototypical view to utilize the Information Mural technique was called the Execution Mural. This view was used to examine message traces from object-oriented programs, as described previously and shown in � REF _Ref403194407 \h ��Figure 4� on page � PAGEREF _Ref403203123 \h ��33� and � REF _Ref403201524 \h ��Figure 5� on page � PAGEREF _Ref403203140 \h ��34�.

To compare the global overview using the Mural to an over-plotted rendering of the entire image, � REF _Ref403201956 \h ��Figure 12� a shows a grayscale Information Mural of a message trace from a bubble-sort algorithm animation built using the Polka toolkit [� NOTEREF _Ref404420623 \h ��92�] containing approximately 20 classes on the vertical axis and over 90,000 messages on the horizontal. Drawing this image in a window 500 pixels wide results in a horizontal information compression ratio of over 180:1. For comparison, the same representation without the Mural technique (drawn by scaling each message to the nearest column of pixels and drawing a vertical line with the appropriate end-points) is shown in � REF _Ref403201973 \h ��Figure 13�.

� INCLUDEPICTURE "oo_mural2.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �12�: Mural of object-oriented message trace of over 90,000 messages, drawn in an area 500 pixels wide.

� INCLUDEPICTURE "oo_nomural2.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �13�: Same diagram as � REF _Ref403201956 \h ��Figure 12� drawn by just over-plotting (without the Mural technique).

Illustrating a program execution via the Mural allows the viewer to perceive phases and patterns in the entire execution as well as the classes participating in each phase, which can be an important factor in software analysis. The message coloring in the Mural also allows the location of particular messages throughout the execution to be identified; without a global view that can actually “show” every message, it would be difficult to find obscure messages in a lengthy message trace. The Mural provides an overview of the entire run that serves as a navigation context for various program understanding tasks.

More examples supporting the usefulness of Information Murals in software visualizations can be seen throughout this dissertation in the views of ISVis. Many other software visualization tools utilize miniature time-line views to portray execution information. Typically a scrolling view is used to show a subset of the execution that can fit in the available pixels, or the data is scaled to fit and over-plotting occurs as the execution time grows larger. For example, the HotWire visual debugger for C++ and Smalltalk provides both object views and a scripting language to create simple program visualizations [� NOTEREF _Ref404420697 \h ��54�]. A recording strip view is used to portray instance activation over time. The Information Mural technique could be utilized to increase the amount of historical information that can be displayed.

A different type of view from the v4.0 visualization prototype shows how the Information Mural technique can be used to create scalable matrix views, as shown in � REF _Ref403195252 \h ��Figure 9� on page � PAGEREF _Ref403203004 \h ��41�. Because there may be several hundred classes and thousands of messages, as well as hundreds of message patterns, there could be more rows or columns than there are pixels in the view.

Entries in the matrix automatically take up available space as the view is resized. So, if there are 50 classes and 500 pixels available in the vertical dimension, each row can take up 10 pixels. However, entry size takes into consideration the scale along both axes, so if there are a large number of message patterns requiring a very small horizontal resolution the vertical resolution will be reduced so as not to render an entry as a vertical line.

An information visualization that could take advantage of Information Murals in a similar way is the Table Lens [� NOTEREF _Ref404423045 \h ��77�]. The Table Lens is a visualization technique for illustrating tabular data. It can present relatively large tables using a fish-eye technique: some rows or columns can be expanded (in focus), while others are collapsed to their minimum size, a single row or column of pixels. Fundamentally, however, the Table Lens is restricted to illustrating a table with a number of rows or columns less than or equal to the number of pixels available. The Information Mural technique would allow the Table Lens to compress the representation beyond this limit so that multiple rows or columns in the table could be compressed into the same row or column of pixels. This would give the Table Lens more room to display the table entries that are in focus, especially for very large spreadsheets.

Parallel Processor Message Passing

Understanding the execution of parallel and distributed programs is a particularly challenging problem. Both debugging and performance optimization can benefit from helpful visualizations of a program’s execution [� NOTEREF _Ref404090633 \h ��50�,� NOTEREF _Ref404420737 \h ��37�]. Unfortunately, visualizations of the message communications on parallel architectures become very unclear when a long duration of time are shown. Typically, scrolling displays are used. An Information Mural provides a way of illustrating entire executions without scrolling.

The Mural of � REF _Ref403359758 \h ��Figure 14� shows the kernel integer sort benchmark executing on 16 processors using the PVM distributed system, generated using the PVaniM system built at Georgia Tech [� NOTEREF _Ref404090655 \h ��94�]. Each processor is assigned a row on the vertical axis, and a message is drawn as a line from one processor to another at the appropriate time coordinates. This particular view uses wall-clock timestamps. As is evident from the traditional over-plotted representation shown in � REF _Ref403205150 \h ��Figure 15�, the Mural gives the perception much finer resolution to the image.

� INCLUDEPICTURE "pf_mural.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �14�: Mural of parallel program message trace of the kernel integer sort benchmark.

As was done in the Execution Mural view, a Mural can be used in the background of a global overview to allow more detailed examination of the message passing. � REF _Ref403205077 \h ��Figure 16� shows the same message trace, this time with messages colored according to message type. The global overview provided by the Mural gives an immediate indication of the phases and sub-phases of the algorithm, as well as showing anomalies such as network blockage or processors waiting for others to complete.

� INCLUDEPICTURE "pf_nomural.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �15�: Same diagram as drawn by just over-plotting (without the Mural technique).

The space-time view of the PVM kernel integer sort benchmark shown using ParaGraph [� NOTEREF _Ref404420779 \h ��36�], a parallel program visualization system, is included as � REF _Ref403359909 \h ��Figure 17�. When the entire run is compressed into the view, messages blur together and make overall patterns less clear. Additionally, if message attribute colors are overlaid in this view, those messages that are drawn “on top” occlude the attributes of those “below”. The Information Mural technique would help minimize these effects by automatically computing the correct attribute color and intensity for each pixel after all messages have been drawn.

� INCLUDEPICTURE "pf.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �16�: View of message passing in kernel integer sort parallel processor benchmark, with focus area and global overview created using the Information Mural technique.

� INCLUDEPICTURE "pf_paragraph.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �17�: ParaGraph space-time view of message passing in kernel integer sort parallel processor benchmark.

Data Visualization

The Information Mural technique is useful for revealing the underlying density of data while viewing very large data sets. Traditional plotting techniques typically over-plot points that when scaled happen to map to the same pixel, or they aggregate, average, or smooth data values. The Mural technique shows the actual density of the information. Information Murals are most useful for revealing patterns and anomalies in data sets which may not be apparent if summary statistics are used. Incorporated into a data visualization, Murals can support one- or two-dimensional navigation through large data spaces. Much of this data was obtained from the StatLib server at Carnegie Mellon University, lib.stat.cmu.edu.

Sun Spots

Astronomers have been recording the number of sun spots since the 1700s. Because this is such a large data set, it is typically plotted by showing the monthly averages. � REF _Ref403311950 \h ��Figure 18� is a plot of the average number of sun spots per month recorded from 1850-1993. The data sets described in this section come from the National Geophysical Data Center in Boulder, CO.

� INCLUDEPICTURE "sunspot_mo.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �18�: Plot of average number of sun spots recorded per month, 1850-1993.

Using the Information Mural technique, very large datasets can be more directly depicted without averaging. � REF _Ref403205716 \h ��Figure 19� shows a Mural of the number of sun spots recorded daily from 1850-1993, over 52,000 readings. Instead of using grayscale to depict density, a color scale that goes from dark blue (lowest data density) to bright white (highest data density) was used because it is easier to see outliers using color.

The Information Mural view is valuable in that it conveys data density and an overall pattern (periodicity). Another advantage is, as opposed to averaging techniques, that the band of “missing” values between zero and about 10 sun spots is visible, and it is apparent that a large number of zero values was recorded (bright spots at bottom of � REF _Ref403205716 \h ��Figure 19�).

� INCLUDEPICTURE "sunspot.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �19�: Mural of the number of sun spots recorded daily, 1850-1993.

With the interactive Information Mural views, it is also possible to incrementally zoom in on sections of the Mural or to sweep out a rectangle to zoom. � REF _Ref403208841 \h ��Figure 20� shows the sun spot Mural zoomed in on a small area. � REF _Ref403208857 \h ��Figure 21� shows how the Mural of the entire data set can be placed in the background of a slider, giving context to a more detailed view of the data.

� INCLUDEPICTURE "sunspot_zoomed.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �20�: Mural from � REF _Ref403205716 \h ��Figure 19� of the number of sun spots recorded daily, 1850-1993, zoomed in on a small area.

� INCLUDEPICTURE "sunspot_slider.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �21�: View of sun spots showing focus area and Mural navigation area of entire data set at the bottom.

The Mural is not a panacea; rather, it is an alternative method for displaying large data sets available to visualization designers. It does not convey certain aspects of the data as well as other techniques. For example, time series data such as sun spots is often depicted via loess curve fitting [� NOTEREF _Ref404420494 \h ��17�]. This technique better conveys the relative slopes of segments of the data. Furthermore, when the analyst simply desires to learn the relative quantitative measures of a data set (means, distributions, frequencies, etc.) some of the standard summary techniques are sufficient, where the Mural is less appropriate and the graphical requirements of a Mural appear to be overkill. For a more thorough discussion of the variety of visualization techniques available for charting bivariate and trivariate data, see [� NOTEREF _Ref404420494 \h ��17�].

River Flow Data

Another interesting large data set is the mean daily Saugeen river flows, from Jan 1, 1915 to Dec 31, 1979�. The Mural of this data shows a periodic pattern, with concentrations at the lower values. At first glance, some bright spots occur seemingly randomly above the lower portion of the Mural shown in � REF _Ref403209232 \h ��Figure 22�. Zooming in on a small area at the bottom, it becomes apparent that the bright spots in the Mural are due to single values that occur repetitively � REF _Ref403312017 \h ��Figure 23�. It was hypothesized that these might be weeks or months in the data where a single value was extrapolated across the entire period to create the daily values. Here the Mural technique gives the viewer some quick insight into the structure of the data.

� INCLUDEPICTURE "saugeen.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �22�: Mural of the mean daily river flow rates of the Saugeen river, 1915-1979.

� INCLUDEPICTURE "saugeen_zoomed.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �23�: � REF _Ref403209232 \h ��Figure 22� zoomed on small area at the bottom of the mural.

Automobile Data

Another data visualization technique valuable for presenting multivariate data sets is parallel coordinates [� NOTEREF _Ref404420837 \h ��39�]. The Information Mural technique can be used to assist parallel coordinate data displays. Parallel coordinates are used to render tuples of multivariate data using a vertical axis for each variable in the tuple. A particular tuple is then shown as a line connecting the values of each variable for that tuple. A data set from the Committee on Statistical Graphics of the American Statistical Association (ASA) Second (1983) Exposition of Statistical Graphics Technology contains 406 observations on the following 8 variables: MPG (miles per gallon), number of cylinders, engine displacement (cu. Inches), horsepower, vehicle weight (lbs.), time to accelerate from 0 to 60 mph (sec.), model year (modulo 100), and origin of car (1. American, 2. European, 3. Japanese). � REF _Ref403210411 \h ��Figure 24� shows a parallel coordinate Mural of a subset of the data, showing variables in order from the left: MPG, displacement, horsepower, weight, acceleration, and model year. � REF _Ref403210435 \h ��Figure 25� shows the standard parallel coordinate view without the Mural. In � REF _Ref403210472 \h ��Figure 26�, color has been overlaid on the Mural according to the number of cylinders attribute (3 = red, 4 = orange, 5 = yellow, 6 = green, 8 = cyan). Notice how the data tuples with fewer cylinders (red and orange) tend to have higher MPG (the 1st axis from the left, points at the top), smaller displacement (2nd axis from the left, points at the bottom), less horsepower (3rd axis from the left, points at the bottom), and longer acceleration times (5th axis from the left, points at the top).

� INCLUDEPICTURE "cars.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �24�: Mural of a parallel coordinate view of automobile data showing: MPG, engine displacement, horsepower, weight, acceleration, and model year (1970-1982).

� INCLUDEPICTURE "cars_nomural.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �25�: Standard parallel coordinate view of the data in � REF _Ref403210411 \h ��Figure 24�.

� INCLUDEPICTURE "cars_color.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �26�: Color overlaid on � REF _Ref403210411 \h ��Figure 24� for number of cylinders (3 = red, 4 = orange, 5 = yellow, 6 = green, 8 = cyan).

The value of the Mural technique in this example is probably not worth the overhead of including it in a parallel coordinate display. Typical parallel coordinate displays provide interactive controls to brush on and off different ranges of attributes, which makes relationships in the data apparent to the user. The Mural technique does, however, eliminate the “last one drawn appears on top” ordering effect that occurs when drawing colored lines (similar to the problem with the ParaGraph view described above). In this case the only value of the Mural appears to be aesthetic in nature, yet the “look” of a view certainly is a factor in its perceived value.

Information Visualization

Many other forms of information can be displayed using Information Murals. Two such applications, geographic data and text documents, are described below.

Geographic Information

Organizations such as the U.S. Census Bureau create maps of various census statistics such as population distributions. A common technique used to illustrate geographic data like this is the chloropleth map [� NOTEREF _Ref404420535 \h ��67�]. A chloropleth map breaks down a geographic area into smaller regions that are then given a grayscale shade or color to indicate some value over that region. How to do this area breakdown is one of the challenges of map-making. Is the breakdown purely spatial/geographic or is a unit such as city, county or state used? A second issue is how many shade or color levels are used to render the illustration, and how data are mapped to those levels.

When very large data sets are used, such as continental USA population figures, and the display region is relatively small, creating a meaningful visualization that adequately conveys population densities can be challenging. The Census Bureau creates wall-sized maps by placing points on the map for every N people in a given census block (which is geographically the size of several city blocks square). If a block contains a population of size 10 x N and the area of the block in the map is less than 10 x N points, the algorithm simply overflows the representation into surrounding blocks. Thus, error accrues and the geographic size of dense urban areas can be exaggerated. While these techniques work reasonably well for wall-sized maps (N = 1000), the overwhelming scale reduction to display the information on a computer screen causes their algorithm to produce extremely inaccurate results. The Information Mural technique computes information density automatically, making the display of a population density map on a computer screen quite easy. � REF _Ref403211037 \h ��Figure 27� illustrates an Information Mural of US population data taken from the 1990 Tiger Mapping Service U.S. Places File, created from the Census file STF-1A.

� INCLUDEPICTURE "map.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �27�: Mural of population density distribution, using data from the 1990 census.

To generate the Mural shown here, the entire census block population was considered to be at the geometric center of the census block, and its contribution was added to the appropriate individual screen pixel (see � REF _Ref403211230 \h ��Efficient Algorithm�). Ten shade values of an equalized intensity color scale from blue to red, and a logarithmic mapping of population to shade was used in order to provide better resolution of smaller populations.

The Mural provides a form of detailed chloropleth map with an individual pixel as the area sub-unit. When the data is very large, fine-grained, and organized purely geographically (as opposed to structural or political area aggregation such as population by county), the Information Mural appears to provide a good tool for cartographers. How population values are then classified or mapped to the resulting image’s shades or colors is still a critical issue, however. [� NOTEREF _Ref404420535 \h ��67�] describes how varying that mapping can result in markedly different presentations.

Text Documents

While SeeSoft [� NOTEREF _Ref404419555 \h ��25�] from AT&T’s Bell Laboratories introduced a revolutionary miniature representation for text documents, it did have a limit. One row of pixels (or part of a row in later versions [� NOTEREF _Ref405016594 \h ��3�]) is required for every line in the file. The Information Mural technique can go beyond this limit, allowing many lines in a file to map to a single row of pixels in the miniature representation. On top of a grayscale Mural representation of a document, color can be used to indicate attributes of the text, such as comments, sections, or keywords.

� REF _Ref403312045 \h ��Figure 28� is a sample text editor with a Mural in the background of the scrollbar. Color is used to indicate sections in the LaTeX document being browsed. The Mural is constructed by examining the position of each character in the file, scaling that position into the scrollbar, and mapping the resulting density of characters to the intensity scale.

Several previous visualization systems have used the background of a scrollbar to display information about textual documents. The Edit Wear and Read Wear technique colored lines in a scrollbar to represent the reading and writing history of lines in a text file [� NOTEREF _Ref404420958 \h ��38�]. It is not clear how attributes of lines in large files would be displayed, as one attribute could occlude another. The Information Mural technique would help an application display attributes for files which have more lines than there are rows of pixels in the scrollbar, although the Mural can only show a single attribute value at a given

� INCLUDEPICTURE "editor.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �28�: Text editor containing LaTeX document. Mural of the entire file is shown in the background of the scrollbar, with text colored according to section.

pixel. Chimera’s Value Bars have a similar problem when trying to display attributes of lists with more members than there are rows of pixels in the display [� NOTEREF _Ref404421101 \h ��14�].

Information Murals can also be used to visualize the distribution of keywords in a set of documents retrieved from a search. � REF _Ref403212019 \h ��Figure 29� shows the distribution of keywords in three papers after a search for “visualization” (yellow), “object-oriented” (green), and “OO” (cyan) was performed.

(a) � INCLUDEPICTURE "key1.gif" * MERGEFORMAT \d ��� (b) � INCLUDEPICTURE "key2.gif" * MERGEFORMAT \d ��� (c) � INCLUDEPICTURE "key3.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �29�: Murals showing keyword distribution for search on “visualization” (yellow), “object-oriented” (green), and “OO” (cyan) in three documents.

The document in � REF _Ref403212019 \h ��Figure 29�(a) seems to be about “visualization”, and talks a little about “object-oriented” in the beginning. � REF _Ref403212019 \h ��Figure 29�(b) talks about both “visualization” and “object-oriented” throughout the document, and � REF _Ref403212019 \h ��Figure 29�(c) discusses “object-oriented” and “visualization” in the beginning and in the end. Miniature views such as these could be utilized in search applications to display the results of a search and give users more information about the documents retrieved. This information would aid a user in determining document relevance, in addition to a simple numerical ranking.

For example, the TileBar visualization technique uses grayscale tile images which correspond to a thematic breakdown of a document to visually display relevance information to a keyword search [� NOTEREF _Ref404421114 \h ��35�]. This technique is more complicated and can require more space than just visually depicting the location of the keywords using an Information Mural. It does, however, make the direct comparison of keyword locations possible across documents of different lengths.

Discussion and Evaluation

The previous section presented a number of different applications of the Information Mural technique. All share the notion of visualizing a large information space in a “small” display window. The examples span many domains: software visualization, sun spot activity, automobile data, census data, text files, etc. But more importantly, the examples differ in the fundamental task being conducted and the role or function of the Mural. Three fundamental tasks and accompanying Mural roles are evident in these examples:

browsing or navigating through information spaces with the aid of a global overview

discovering attributes or relationships within multidimensional data from a visualization

studying geographic or spatial data to understand its characteristics

The first task involves browsing large information spaces. The Information Mural technique itself is not a solution to this problem. Rather, a Mural can be used as the global overview in a browser system. Plaisant, Carr and Shneiderman describe different styles of information browsers [� NOTEREF _Ref404420237 \h ��72�], many of which (Single Coordinated Pair, Tiled Multilevel, Free zoom and multiple overlap, and the Bifocal view) utilize global overviews. The authors note, “Dense global views provide experts with direct access to details that would otherwise require several zooming operations (even if these global views appear unreadable to others!).” Often creating the global overview itself is the most difficult part of constructing an information browser. Information Murals provide a technique for showing overviews with high fidelity to the way the viewer envisions the data set, thus they are ideal in this application.

Plaisant, Carr and Shneiderman further identify five classes of tasks that can be accomplished via browsing: image generation, open-ended exploration, diagnostic, navigation and monitoring. As is true with most visualization techniques, it is difficult to assess how applicable a Mural itself is to each of these tasks without actually implementing a Mural for each particular style of browser. The previous section discussed a number of examples (software visualization, sun spots, text file) where a Mural was used as an aid to a browsing task. Experience during this thesis research is primarily with software visualizations; Murals have invaluably provided navigation context and helped identify interaction patterns in several case studies that have been performed.

The second main task for which a Mural can be used is as a data analysis tool to help uncover relationships within large data sets. The sun spot, river flow, and car data are examples of this task. Many other data graphing or visualization techniques do exist, such as averaging, aggregation, box plots, level plots, and curve smoothing. Some, such as parallel coordinates, have even been combined with a Mural, as shown earlier. See [� NOTEREF _Ref404420494 \h ��17�] for an introduction to many of these techniques.

For discovering particular attributes or relationships of data, Information Murals will be inferior to specific instances of other existing techniques. For example, Cleveland describes a plot of time series data of melanoma cases in the state of Connecticut over many years (an Information Mural will be similar to this type of data plot). Viewing this graphic allows one to see the upward trend. But only by graphing the residuals of a loess trend fit to the data is one able to observe periodic oscillations within the data. A Mural provides no notion of this data attribute.

 An Information Mural is best used to give an overall impression and appreciation for the individual elements from a large data set—revealing patterns and anomalies. Contrast this with an averaging technique that generates one pixel as the display element for a set of 50 data points. Clearly, an infinite number of sets of 50 different values all could sum to that same average. The Mural technique better illustrates how individual values contribute to the overall visualization.

Another advantage that some of the traditional graphing techniques may hold over the Mural is the amount of time to render the image. The simpler algorithms for illustrating averages, aggregations, or box plots could display more quickly than a Mural. This difference may be noticeable on repeated changing redisplays of extremely large data sets.

The third main task for which an Information Mural is applicable is the presentation of geographic or spatial data. The US Census data example and, to a certain degree, the keywords in text documents example fall within this area. As discussed earlier, a Mural provides a foundation for implementing a type of pixel-oriented chloropleth map of detailed spatial data. Many specialized mapping software packages are available for this task, and the Mural is not a replacement for these. However, this example does illustrate the flexibility of the Mural technique for different types of applications; the Mural widget automatically recalculates and renders the census plot as the window is resized, and the actual application always constructs the Mural in an application-defined coordinate space. Other potential visualization techniques for illustrating geographic or spatial data include level plots and 3-D terrain diagrams.

Overall, the best application for an Information Mural is as a global overview for navigation in a browser. The Mural algorithm is relatively straightforward to implement and it adapts well for different data domains. Murals can also be helpful tools in data visualization and analysis tasks, but they are clearly not a substitute for existing techniques. Rather, a Mural is one more tool among the analytical toolbox that scientists employ for examining and understanding large data sets.

The next chapter presents the model and process resulting from the visualization research described in Chapter III. This framework has been realized in the final generation of the visualization prototypes, called ISVis.

chapter V

Framework for Behavioral Understanding

As described in Chapter III, this thesis work began with the hypothesis that visualizing interactions in object-oriented program executions can assist with software engineering tasks requiring program understanding. The interactions seemed especially important because the behavior of OO systems is more difficult to understand than static information about class and object data, and because the behavior cannot typically be determined until run-time. Through several generations of visualization frameworks and prototypes, it was observed that execution traces of object-oriented programs were made up of repeated sequences and sub-sequences of messages. While initially focusing on the object-oriented paradigm, the notion of interactions between functions and components became useful for understanding behavior in the procedural paradigm as well. The identification and analysis of recurring interactions in program execution scenarios constitutes the final visualization framework in this research, and is presented in this chapter.

Program analysis to support software understanding takes one of two forms: static, where the program code itself is analyzed, and dynamic, where the program is executed to learn how it behaves. Although static analysis is commonly practiced and entirely appropriate for determining structural properties such as architectural components, dynamic analysis is a better method for determining behavioral properties such as component interaction scenarios. The model and process presented here are instantiated in the Interaction Scenario Visualizer described in the next chapter.

Model

A formal model is extremely useful when analyzing the behavioral design or architecture of a system. As such, the visualization framework developed as part of this thesis research utilizes the following formal model.

An actor is defined as an entity in a system, having some “object-like” meaning and being associated with the source code of the program. An actor might be a class, function, object, file, package, thread, or data item. As the last possibility suggests, actors can be passive as well as active computational entities. An actor has a location (the position of the actor’s definition in the source code) and a type (the actor’s syntactic type). A grouping, or containment, hierarchy exists among actors, which is a useful abstraction mechanism for analyzing interactions. For example, a file groups classes and functions, but not objects. A class contains all methods (functions) of that class and groups all objects of that class. A method (function) groups all objects that provide that function.

To allow for more arbitrary grouping of actors, a component actor is defined to be any user-defined set of actors. Typically a component has a corresponding abstract role that it serves in the architecture. The job of an analyst during design recovery tasks is to locate and define components in the source code by composing actors or previously recognized components.

The behavior, or dynamic portion of the model is derived from the low-level events that occur during program execution. An event is a discernible unit of program execution. These can be generic, like the invocation of a function or method, function return, object creation or deletion, or data reference; or they can be specified by an analyst, indicating specific execution events that the analyst wishes to track. An event has a timestamp (a record of when the event took place), providing a serial ordering to events. An event also has a type, which is an analyst-specified identifier enabling similar events to be associated. An event trace is a record of the events that occurred during a particular execution of a program.

Events take place in the context of one or more actors. For example, an event might be the invocation of one function actor by another. The combination of an event with its associated actors makes up an interaction. An interaction is thus a dynamic relation between actors, directed from one actor to another (possibly the same) actor. These might be a message passed from one actor to another, the instantiation/deletion of a class or object actor by another actor, or the referencing of one actor’s data by another actor.

An interaction scenario is then a sequence of interactions that occurs as a program executes. A sequence of interactions obeys the time ordering of its constituent events, but those events are not necessarily contiguous in the underlying event trace. Also, one scenario can be interleaved with another.

Interaction patterns are recurring interaction scenarios, manifested as repeated sequences of messages (function call/return) and/or recurring instantiation of objects. The pattern specifies an ordered list of interactions. Interaction patterns are similar to regular expressions over the interaction alphabet, used for pattern matching in scenarios�. As such, some components of an interaction pattern can be specified with wildcards. At a low level, interaction patterns can result from implementation aspects such as iteration through a linked-list data structure. They also exist at the design level, where they result from semantic operations such as class-uses-class associations. At a very high level, recurring interactions can be seen due to repeated usage of a system.

A usage scenario is the execution of a subject program with a given set of input test data, generating an event trace to be analyzed.

While these definitions are purposefully object-oriented in nature, procedural program concepts can be characterized as a subset of those actors and interactions defined above. It is also possible to consider classes of the aforementioned definitions, and then find instances of any of these classes during the behavior analysis process. For example, actors and events have primitive type information as part of their attributes. Components, interactions, and scenarios are composed from actors and events and, consequently, derive from them a unique type signature. It is possible to think, therefore, of the class of all actors of integer type. Another example is the class of all interaction scenarios involving two interactions, the first of event type call and the second of event type return where the four associated actors (caller, callee, returner, and returnee) have identical locations. This latter class of scenarios might be called recursive invocations. Such “class” definitions form a meta-level concept hierarchy enabling an analyst to overlay abstractions on the underlying events and actors in the formal model.

Process

The overall process of using visualization to facilitate program understanding during design recovery, validation, and reengineering tasks is shown in � REF _Ref403214442 \h ��Figure 30�. It comprises a static analysis of the subject system, instrumentation of that system to track interesting events, execution of the instrumented system in particular usage scenarios to generate event traces, and visualization and abstraction of the event traces. Design models can also be provided as input into the visualization in the form of interaction diagrams to compare with actual system behavior. This process is followed in the various visualization prototypes described in Chapter III and in the ISVis framework detailed in the next chapter.

� INCLUDEPICTURE "process.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �30�: General process for using visualization to support program understanding tasks.

chapter VI

Interaction Scenario Visualizer

The model and process for behavioral understanding set forth in Chapter V has been embodied in a program visualization and understanding tool called the Interaction Scenario Visualizer (ISVis). ISVis is intended to support design recovery, design/implementation, and reengineering tasks. It represents the culmination of the visualization research described in Chapter III and has been used in several case studies to test and validate the thesis described in this dissertation (see Chapter VII). ISVis has also been released for free distribution to the academic research community.

Overview

The purpose of ISVis is to support the browsing and analysis of execution scenarios derived from actual program executions. The key features of ISVis are its use of visualization techniques to depict the large amounts of information available to a user, and the notion of recurring scenarios, or interaction patterns, as abstractions which help bridge the gap between low-level event traces and high-level design models. Users of ISVis might be software designers, programmers, testers, or maintainers.

While this system was originally intended to handle object-oriented (OO) programs, its architecture allows for “global” functions, meaning that a completely procedural program can be analyzed as well. The interactions being analyzed include function invocation/return and can be extended to object creation/destruction and data read/write.

This framework is intended to support design recovery, design/implementation validation, and reengineering type tasks. Some examples include the following:

An implemented system is to be examined by the implementers to validate its correspondence to the intended design. The system is instrumented and exercised with specific usage scenarios and trace files generated. Design level scenarios are entered into ISVis and compared with the implementation behavior. As the behavior is examined, areas of divergence and incorrect or non-optimal behavior become apparent. The implementation is reengineered based on these observations.

The functionality of a legacy system is to be modified. Before this can be done, the architecture and design of the existing system must be established and understood. By using the instrumented system in various scenarios, trace files are generated. In the trace, repeated patterns of interactions are observed. As these patterns are examined and understood, higher-level scenarios are created. Eventually, design-level scenarios are created from the low-level interaction scenarios.

Features of ISVis include the following:

analysis of program execution traces numbering over 1,000,000 interactions

simultaneous analysis of multiple traces from the same program

views of actor and interaction lists and relationships, scenarios, and source code (via XEmacs)

use of Information Mural visualization techniques to portray global overviews of entire interaction scenarios

abstraction of actors through containment hierarchies and user-defined components

selective filtering of single or all occurrences of a particular interaction

construction of higher-level scenarios using repeated sub-scenarios (interaction patterns)

use of interaction patterns to locate the same or similar scenarios in executions

user-specifiable scenarios, including regular expression wildcards for actors, used as patterns

capabilities for saving and restoring analysis sessions

Architecture

� REF _Ref403215086 \h ��Figure 31� shows an architectural diagram of ISVis, including its components, connectors, and input/output files. The Static Analyzer reads the Source Browser database files produced by Solaris compilers and generates a static information file. The Instrumentor takes the source code, the static information file, and information supplied by the analyst about what actors to instrument (saved for re-use in the trace information file), and generates instrumented source code. This source must be compiled externally to the ISVis framework. When the instrumented system is executed in particular usage scenarios using relevant test data, event traces are generated. The Trace Analyzer in ISVis uses the trace information files and the Event Stream to read event traces and convert them into scenarios, stored in the Program Model. As scenarios are created by the analyst, the actors involved are also added to the Program Model. The user interacts with the Views of the Program Model to do the analysis. A Program Model and analyzed traces can be stored for later use in a session file. The format of each input/output file is included as Appendix I.

� INCLUDEPICTURE "isvis_arch.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �31�: ISVis framework architecture.

The Program Model for ISVis follows the model for events, actors, interactions, and scenarios presented in the previous chapter. The model was designed and implemented as a C++ class structure, including iterators to allow public access to the actor and scenario lists in the Program Model. � REF _Ref403284290 \h ��Figure 32� is included to show the formal object model implemented in ISVis.

� INCLUDEPICTURE "isvis_model.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �32�: Object model diagram for ISVis Program Model.

Process

The basic process for using ISVis was described in general terms in Chapter V. In summary, the process of using ISVis requires several phases. With the exception of step #3, all steps are performed using the ISVis graphical user-interface:

static analysis of the subject program

instrumentation of the source code to track interesting events

compilation of the instrumented system and usage of the instrumented system to generate program event traces

analysis of the event traces using the ISVis graphical views, with the possible addition of user-specified scenarios

storing of models created by the user for later analysis sessions

While using ISVis to support particular program understanding tasks, certain analysis and usage tactics will emerge. Chapter II describes in detail important tactics that were uncovered during the use of ISVis in two case studies to validate the thesis presented in this dissertation. Because design recovery and design/implementation validation are complex activities, heuristics for supporting these activities must be considered part of the ISVis program understanding process. Another important part of the analysis process is the choice of usage scenarios in which to exercise the subject system. This choice is obviously dependent on the task being performed by the analyst.

Views

ISVis provides two views, the Main View and the Scenario View. � REF _Ref403215627 \h ��Figure 33� is a snapshot of the Main View during the Mosaic case study described in Chapter VII. The top portion of the Main View lists the actors in the Program Model, including user-defined components, files, classes, and functions. The middle portion includes lists of the scenarios and interactions in the Program Model, as well as an area for displaying information about the item in primary focus (selectable with the middle mouse button). In � REF _Ref403215627 \h ��Figure 33� the mo_pull_er_over_virgin function is in primary focus, shown with a red border. The GLOBAL class actor and the Mosaic component actor can be seen in secondary focus, with orange borders. Secondary focus is used to show actors related to the primary focus. If a function actor is primary, then its class, file, and any component actors containing it are secondary.

The key area in the lower right of the Main View provides a key for focus and interactions and allows users to assign colors to actors or interactions that have been selected using the left mouse button. The bottom portion of the view is a shell for textual information input/output, where the analyst is prompted for information. Note that each of the scrollable lists of actors and interactions uses an Information Mural [� NOTEREF _Ref404418824 \h ��41�,� NOTEREF _Ref404420092 \h ��42�] to display a graphical overview of the selected and colored items in the list, as evident in the scenario and interaction lists of � REF _Ref403215627 \h ��Figure 33�.

The left mouse button can be used to select actors or interactions. Shift-clicking allows multiple selection. Once a group of actors has been selected, a menu option allows the user to group them as a user-defined component. Component actors are created while building higher-level models of subject program behavior.

The Main View includes a menu bar for entering commands, from which a static analysis of a program can be performed, a program can be instrumented, an event trace can be read into ISVis, and a Scenario View for each scenario in the Program Model can be opened. � REF _Ref404441924 \h ��Table 2� specifies the menu commands available in the Main View.

� INCLUDEPICTURE "main_big.gif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �33�: ISVis Main View of a Mosaic program execution described in case study of Chapter VII. At the top of the view is the main menu. Below this are the four actor lists: components, files, classes, and functions. Next are scenario and interaction lists, an area for focus information, and the key. At the bottom is the text command area.

Table � SEQ Table * ARABIC �2�: ISVis Main View menu commands.

Session�Program�Scenario�Actors��Open: load previously saved session�Perform static analysis: specify source code to statically analyze�New: create scenario including selected actors or from specified event trace�New: create new component actor from a set of selected actors��Save: save current session for later use�Instrument source: specify functions, classes, and files to instrument�View: open view of selected scenario�View Source: of primary actor in XEmacs window��Quit: exit ISVis�Read trace: read in previously generated event trace��Add: selected actor to primary component�����Remove: selected actor from primary component��

� REF _Ref403216398 \h ��Figure 34� shows a Scenario View from the Mosaic case study described in Chapter VII. A Scenario View is in fact a Temporal Message Flow Diagram (TMFD) [� NOTEREF _Ref404421246 \h ��15�], sometimes called an interaction diagram or event-trace diagram. Actors in the view are assigned columns, and interactions are drawn as lines from source to destination actor in descending time order. A global overview of the scenario appears on the right of the view, and is used to navigate through the interactions in the scenario. The overview is created using an Information Mural (see Chapter IV), which provides effective global overviews of scenarios containing hundreds of thousands of interactions. The Mural of a scenario uses techniques much like anti-aliasing to preserve visual characteristics as if the analyst could see the entire Scenario View from a distance. This allows the analyst to observe various phases in the scenario including repetitive visual patterns, indicating the presence of interaction patterns in the subject program execution being analyzed. As interactions are selected and colored in either the Main View or the Scenario View, the Mural is colored as well, helping an analyst locate where particular interactions occur in a program's execution.

� INCLUDEPICTURE "scenario1.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �34�: ISVis Scenario View of Mosaic program execution from case study described in Chapter VII. At the top is the menu bar, below which there are three option menus. The focus area of the view shows interactions drawn connecting source and destination actors. The Information Mural on the right shows a global overview of the entire scenario, and can be used to navigate the focus area. The analyst has colored certain interactions blue and magenta.

When a Scenario View of an event trace is opened it is read-only, because a scenario based on an event trace cannot be edited (interactions added/removed) and the original event trace(s) in an analysis session should always be available. However, from the Scenario View menu a copy of the event trace-based scenario can be made, which can then be edited using the full features of the Scenario View.

The Scenario View provides many powerful features to help an analyst build abstract models of the subject system and to localize behavior. An option menu allows the actors in the scenario to be grouped by containing file, class, or component actors. Another option affects how interactions are selected using the mouse, allowing the user to select a single instance of an interaction or the entire class of all interactions represented by the one selected. If a selected class of interactions is irrelevant to the program understanding task, they can be removed from the scenario. Or, if they seem important, a sequence of highlighted interactions can be defined as a scenario and added to the Program Model--during this process the analyst provides a name and description of the scenario. Then, all occurrences of that sequence of interactions in the original scenario can be replaced with a reference to the newly defined scenario.

While a simple interaction is shown as a line connecting the source and destination actors (with a “dot” at the destination), a sub-scenario that occurs within the Scenario View appears graphically as a rectangle containing all of the actors involved in the scenario (see � REF _Ref403217410 \h ��Figure 35�). � REF _Ref404439881 \h ��Table 3� shows a description of the menu commands available in the Scenario View.

The Scenario View also includes features to find interaction patterns in a scenario, in a manner similar to regular expression matching. For example, given an interaction scenario, the user can instruct ISVis to look for one of the following:

an exact match in the scenario, where the actors and interactions found are exact matches and in the exact sequence

an interleaved match, where all interactions in the pattern occur exactly, but others may be interleaved

a contained exact match, where actors in the scenario contain the actors in the pattern, and the interactions occur in exact order

a contained interleaved match, where actors in the scenario exactly match or contain actors in the pattern, interactions occur in sequential order, but others may be interleaved

Additionally, actors in an interaction pattern may be specified with wildcards, meaning they match any actor.

The last of the pattern features includes the ability to ask ISVis to look for repeated sequences of interactions that occur in the scenario. This helps an analyst locate sequences of interactions that may have a higher-level (design level) meaning in the system, in addition to the analyst noticing these patterns visually in the global overview or while browsing through the scenario. The user first constrains the search, limiting it both in number of interactions searched, minimum length of pattern searched for, and maximum length of pattern searched for. Then, the user can search for any repeated sequence of interactions, or, more usefully, repeated sequence of interactions that starts with a call interaction and ends with the corresponding return interaction.

Table � SEQ Table * ARABIC �3�: ISVis Scenario View menu commands.

View�Scenario�Actors�Interactions��Always update mural: toggle button to always update Mural overview when change is made to the view scenario�New: create a new scenario as a copy, from selected interactions, less selected interactions, or less leaf messages�Order by clustering: order the actors along the horizontal axis such that actors with more interaction are clustered together�Pattern settings…: specify the pattern search criteria: min / max # of interactions in pattern and distance in scenario to search��Close: close the Scenario View�Find: find next instance of specified scenario in the view scenario�Add: add an actor to the view scenario�Find: find next instance of the specified interaction in the view scenario���Find match: find next set of interactions in the view scenario that are an exact, interleaved, contained exact, or contained interleaved match with a specified scenario�Remove: remove selected actors from the view scenario, along with any interactions involving them�Find pattern: find the next set of interactions in the view scenario, either a message sequence or a message context (starts with call and ends with corresponding return), that meets pattern search criteria���Replace match: replace all sets of interactions in the view scenario that exactly match the specified scenario with a graphical reference to that scenario�Replace contained: replace all actors in the view scenario which are contained by the specified set of actors with the specified actors�Append: add an interaction to the end of the view scenario, involving the selected source and destination actors���Expand: replace the graphical reference to a scenario with the interactions making up that scenario, in the current view ��Remove: remove the selected interactions from the view scenario��

� INCLUDEPICTURE "scenario2.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �35�: Another Scenario View of the Mosaic program execution. Notice the HT save and execute .ps and MIME put character 2 interaction scenarios shown in this scenario, represented with rectangles containing involved actors.

Note that ISVis' two Views have a Subject-View relationship with the Program Model such that any selection or modification done in one view is immediately reflected in the other. Also, it is possible to save the current Program Model and event traces that have been read in for later analyses. Another useful feature is the ability to view source code for actors via a menu option in the Main View. XEmacs is launched by ISVis to display the source code in a text view, allowing the analyst to examine the subject system source and uncover reasons for observed behavior in the Scenario Views.

� INCLUDEPICTURE "scenario3.tif" * MERGEFORMAT \d ���

Figure � SEQ Figure * ARABIC �36�: Scenario View of Mosaic execution with actors projected across components the analyst has created during the case study (Chapter VII). Note four bright areas in the Mural representing the start of each web page Mosaic displayed during the execution scenario. The bottom of the Mural shows the interactions during the display of a PostScript file.

ISVis has been used to assist with several software engineering tasks that require program understanding. Two case studies validating its usefulness are presented in the following chapter.

chapter vii

case studies

In order to validate the thesis embodied in this research, several case studies were performed using the ISVis framework to support program understanding tasks. As mentioned previously, this work is focused on assisting design recovery, design/implementation validation, and reengineering tasks. The results of the two case studies show that visualizing interaction patterns in program executions can facilitate program understanding during design recovery and design/implementation validation tasks.

Case I: Reengineering View Redraw Mechanisms in GUI Applications

The first case arose because of the difficulty of correctly designing the drawing and layout mechanisms in X Windows applications. In response to a user manipulating windows on the screen, different expose and resize events are generated and forwarded to the appropriate X applications. The applications are responsible for redrawing the contents of so-called “drawing area” widgets, if necessary. Information visualization applications are increasingly being used with larger and larger data sets, and redrawing the visual representations of such large data sets can be expensive even with today’s processor speeds. It is important that such visualization applications be designed to perform changes to the visual display as efficiently as possible.

This case was divided into two parts, using two different subject visualization applications built using X Windows and Motif. The first application was the ISVis tool itself, developed as part of this research and presented in Chapter VI. The second was an algorithm animation application built using the Polka toolkit. The analysis task during this case was to see if the applications were correctly and efficiently managing their visual displays as users manipulate their windows, and if not to suggest possibilities for reengineering. Additionally, by examining two different systems that utilize the X Window system, the analyst’s hypotheses regarding its behavior could be validated. These program understanding tasks can be characterized as design/implementation validation and reengineering.

Details

This section details the steps performed in the first case study and can be skipped if the reader wishes to read only the summary of results from the case. The analyst for this case was the author of the first subject system itself. Thus, the person performing the analysis had (or thinks he had) an intimate knowledge of the subject system. Before beginning the use of ISVis to analyze itself, it was clear that the redraw and layout mechanisms were not operating correctly. The focus area of the Scenario View was not drawn at all when the window first popped up, but the Mural area was drawn. The designer’s hypothesis about how the X Window system generated events was that uncovering part of a window on the screen leads to an expose event, resizing a window smaller leads to a resize event, and resizing a window larger leads to a resize event and an expose event. The ISVis drawing and layout system was architected based on this hypothesis.

The remainder of this section summarizes the sequence of activities during the case study, followed by the case study log. The log indicates the steps performed during the case study. Labels on the left include pre-conditions, actions taken using the ISVis tool (marked “ISVis”), actions performed externally to ISVis (marked “external”), usage scenarios of the instrumented subject system, and conclusions or hypotheses formed.

Part I of the case study began with the pre-conditions mentioned above. The first step was to compile ISVis using the Solaris compiler, with the option set to generate the Source Browser database. ISVis was then run on the ISVis executable itself, bringing up the ISVis Main View. Using the Program menu, Perform static analysis command, all files of ISVis were analyzed. Next, the Instrument source command was used to instrument all of the source files, tracing all functions. Externally to ISVis, the analyst then compiled the instrumented version of ISVis. Now the executable could be used to generate event trace files.

Usage scenario 1 involved using the annotated ISVis to read in an event trace file generated previously during a different session of ISVis—this file was called “bsort.trace.” Once the trace was read, a Scenario View was opened, but nothing was drawn in the focus area. When the mouse was used to resize the window smaller, the focus area was still not drawn. But, when the mouse was used to resize the window larger, the contents of the Scenario View focus area were drawn.

Now the analyst went back to ISVis, and used the Program, Read trace command to read in the first usage scenario trace file. When a Scenario View was opened for this trace, an extremely high volume of GetAppContext messages were noticed. The mouse was used to select the interaction, and since the selection mode was all, all instances of that interaction became highlighted. Then the Scenario, New, less selected interactions command was used to create a new scenario, called “isvis”, without those messages. To make viewing the scenario easier, the actors were then grouped by class using the Actors option menu.

The analyst noticed a recurring interaction pattern in the Mural and scrolled the Scenario View to an instance of it. Changing the selection mode to single, the interactions making up that pattern were highlighted using the mouse and Scenario, New, from selected interactions used to define a new scenario called “redraw mural work proc.” This scenario was clearly the work done to redraw the Mural in the background as an X work procedure. Now, the Scenario, Replace match, exact command was used to replace all instances of interactions making up this scenario with a graphical reference to the scenario in the Scenario View.

Next the analyst defined scenarios for the expected behavior of ISVis during window resize and expose handling. Scenarios were created for “resize”, “resize + layout”, “resize + layout + expose”, “expose”, and “expose + draw” behavior as follows. From the Main View, actors were first selected for the classes involved in an expected scenario. Then, Scenario, New was used to define and name a new scenario. After selecting that new scenario from the scenario list, Scenario, View was used to open a Scenario View for that new scenario (which had no interactions at this point). Then, the appropriate interactions were appended to the scenario in order, by 1) selecting the involved actors, 2) choosing the Interactions, Append command, and 3) entering the appropriate interaction name and direction. Once these scenarios were defined, instances of them could be searched for in the “isvis” scenario.

To search for one of the expected scenarios in the “isvis” observed scenario, that scenario was selected in the Main View, and then in the Scenario View of the “isvis” scenario, Scenario, Find match, exact interleaved, was used. This command looks for matching sequences of interactions in the viewed scenario, but allows for other interactions to be interleaved. The analyst found “resize + layout”, “resize + layout”, and “expose + draw”, as a result of the window interactions performed during the usage scenario. In browsing the “isvis” scenario the analyst concluded several things: 1) the calls to draw and layout the Scenario View when it opens clearly did nothing since the view was not drawn, yet the Mural was drawn when it was exposed, 2) the implemented mechanism to “force” an expose and draw the view during “resize + layout” (which results from resizing the view smaller), did not seem to be working, and 3) resizing larger results in “resize + layout” followed by “expose + draw”, which did draw the view.

The next step was to use the Main View to consult the ISVis source code. Appropriate function actors were selected, and Actor, View source used to bring up an XEmacs window to view the source. The analyst was able to compare the Mural drawing and layout functions with the Scenario View drawing and layout functions and find a solution to why the Scenario View was not being redrawn in response to the X expose event generated when the view first opens. The ISVis code was then modified and at produced a core dump. This version of ISVis was again analyzed and instrumented, and the first usage scenario performed to generate another trace file. The analyst then found a problem where the Scenario View draw routine was called, and then the layout routine, which should have created the backing buffer for the view; however, the layout was not done and the draw continued without a buffer—thus, a core dump. This was then fixed to be more like the Mural code, recompiled, analyzed, instrumented, and usage scenario 1 performed again. This time the Scenario View was drawn correctly upon opening. Not only that, but a “resize + layout + expose” scenario was found, followed by “resize + layout” and “expose + draw”. This indicated that the mechanism to force an expose when the window is shrunk was now working as well.

The second part of the case study was performed on another X Windows application, a Polka depth-first search algorithm animation. This application appeared to be behaving correctly, although the analyst did not design or implement it. As with the first part of the case study, the application was analyzed, instrumented, re-compiled, and executed in a particular usage scenario. Usage scenario 2 involved starting and stopping the Polka animation, resizing the window smaller, then larger, covering and uncovering the window, resizing it smaller, and then smaller again.

When the ISVis Main View of the Polka system was first opened, the analyst noticed function actors such as pauseCB, refreshCB, and resizeCB, which he hypothesized would be the callback functions used to handle particular X events. By selecting one of these interactions and then using Interactions, Find in the Scenario View, the analyst was able to locate these interactions in the observed trace. Subsequently, he was able to construct scenarios called “pauseCB”, “refreshCB”, and “resizeCB” specifying interactions observed in the trace-based scenario. The order that these scenarios occurred in the trace was determined using Scenario, Find match, exact interleaved, as follows: “pauseCB”, “refreshCB”, “resizeCB”, “refreshCB”, “resizeCB”, “refreshCB”, “refreshCB”, “refreshCB”, “resizeCB”, “refreshCB”, “resizeCB”. Now the analyst compared this sequence to the window operations that were performed during the usage scenario, and attempted to map actions in the usage scenario to the occurrences of scenarios in the trace. Two things were concluded: 1) the Polka view was refreshed in response to both expose and resize events, because View::Refresh was called in both the “resizeCB” and the “refreshCB” scenarios, and 2) based on the analyst’s hypothesis of how window actions generate X events, a consistent mapping of observed behavior to expected behavior could not be constructed. Why did resizing smaller lead to a resize, then a refresh, except for the last one? Why were there two refreshes when the window was uncovered?

To try and answer these questions, the analyst executed the instrumented Polka application in another usage scenario. Usage scenario 3 involved covering and uncovering the window, resizing smaller vertically, resizing smaller horizontally, resizing smaller horizontally, and resizing smaller vertically. These actions were chosen to try and answer the questions from the previous paragraph.

When this trace was read into ISVis, the analyst again looked for the “refreshCB” and “resizeCB” scenarios. This time after mapping actions he found that when the window was resized smaller an expose and then a resize was generated. Of course, this conflicted with his expected behavior of the X Window system, but it was also confirmed by looking back at usage scenario 2 and regrouping actions. When this was done, it appeared that resizing a window larger led to and expose event, a resize event, and another expose event. Given this conclusion, the Polka system was redrawing the window three times when the window was expanded and twice when it was shrunk. When the Polka designer was informed of this inefficiency, he contrived a mechanism that would only redraw the view once in response to resize events, and let the refresh response just be to blit the window’s backing buffer to the screen (since no changes to the view layout need to be done).

The last part of this case study involved going back to the ISVis usage scenario to confirm the analyst’s new hypothesis of X Window event generation. In fact, it was observed in the ISVis trace that an expose event always occurs before a resize event and that resizing a window larger always triggers an expose event after the resize event. Thus, the design to “force” an expose after the window was resized smaller is correct and necessary. The full case study log was as follows.

CASE STUDY LOG

Part I: Examining ISVis

	pre-conditions:	-	Scenario View focus area not drawn on window creation

		-	Scenario View mural drawn on creation

	external:	-	compile ISVis with Solaris compiler option to generate static

			information database

	ISVis:	-	run on ISVis executable

		-	do static analysis

		-	instrument all files related to views and X

	external:	-	recompile to generate instrumented ISVis

	usage scenario 1:	-	run instrumented ISVis

		-	read in bsort.short trace

		-	open Scenario View (nothing drawn in focus area)

		-	resize window smaller (nothing drawn in focus area)

		-	resize window larger (contents of focus area drawn)

	ISVis:	-	run on ISVis executable

		-	read trace from usage scenario 1

		-	notice high volume of GetAppContext messages, create new scenario

			w/o them called “isvis”

		-	notice recurring message pattern which is doing the mural redraw in

			the background, select it and create a scenario “redraw mural work

			proc”

		-	replace exact occurrences of “redraw mural work proc” in “isvis”

		-	create scenarios for expected behavior of ISVis:

				“resize”	=	View::resizeCB,

						ScenarioView::layout

						(layout not done)

				“resize+layout”	=	View::resizeCB,

						ScenarioView::layout,

						View::setDirty (layout done)

				“resize+layout+expose”	=	View::resizeCB,

						ScenarioView::layout,

						View::setDirty,

						ScenarioView::draw

				“expose”	=	View::exposeCB,

						ScenarioView::draw

						(draw not done)

				“expose+draw”	=	View::exposeCB,

						ScenarioView::draw,

						View::isDirty (draw done)

		-	browse trace and find exact interleaved occurrences of above

	scenarios in “isvis”, notice following sequence of messages:

				within ViewManager::openScenarioView:

					ScenarioView::update, ScenarioView::draw (not done)

					ScenarioView::show, View::resizeCB,

					 ScenarioView::layout (not done)

				View::exposeCB, ScenarioView::draw (not done)

				Mural::ExposeCB, Mural::Draw, Mural::WindowCreated,

				 Mural::Layout, Mural::SetDirty, Mural::Draw, Mural::IsDirty, 				 ScenarioView::muralRedrawNeededCB

				“resize+layout”

				“resize+layout”

				“expose+draw”

	conclusions:	-	calls to ScenarioView::draw and ScenarioView::layout as a result of

			ViewManager::openScenarioView do nothing

		-	first View::exposeCB event when window is created does not draw

			contents

		-	first Mural::ExposeCB event does draw contents of mural

		-	user resizing window smaller results in a single “resize+layout”

			which does not draw contents of focus area

				-	the mechanism in the design which “forces” an expose by calling

					ScenarioView::draw from ScenarioView::layout if the window has

					shrunk does not seem to be working

		-	user resizing window larger results in “resize+layout” followed by

			“expose+draw” in which the contents of the focus area are drawn

	ISVis:	-	consult source code:

				-	in Mural::Draw, if window buffer isn’t created calls a routine

					which checks if the widget is realized and then calls

					Mural::Layout which creates buffer

				-	in ScenarioView::draw, if buffer isn’t created just returns

						-	however, window should be valid if expose was generated, so

							should call layout then and create the buffer

	conclusions:	-	putting a call to ScenarioView::layout in the ScenarioView::draw

			function to be called if the buffer isn’t created should solve the

			problem in which the focus area is not drawn as a result of the

			first View::exposeCB

	external:	-	made above change to code

		-	executed ISVis and got a core dump

	ISVis:	-	instrument modified code

	external:	-	recompile instrumented ISVis

	usage scenario 1b:	-	perform usage scenario 1 again

	ISVis:	-	read trace from usage scenario 1b

		-	ScenarioView::draw called, buffer has not been created so

			ScenarioView::layout is called, the layout is not done (buffer not

			created), and then draw continues without a buffer and core dumps

	conclusions:	-	need to check buffer again after ScenarioView::layout, like is done

			in Mural::Draw

	external:	-	make change to code

execute and problem solved!! Scenario View focus area is drawn

	when window pops up

	ISVis:	-	instrument modified code

	external:	-	recompile

	usage scenario 1c:	-	perform usage scenario 1 again

	ISVis:	-	read trace from usage scenario 1c

		-	find exact occurrence of “resize+layout+expose”:

				“resize+layout+expose”

				“resize+layout”

				“expose+draw”

		-	browse and look for other problems:

				ScenarioView::layout called but not done in ScenarioView

				Constructor ViewManager::updateViews called after constructor

				completes, why?

	conclusions:	-	mechanism to “force” expose when window is shrunk is working

			properly

		-	no reason to layout Scenario View in constructor

		-	ViewManager::updateViews should not be called in

			ViewManager::openScenarioView, this remained from an earlier

			Version in which the Program Model was modified in the Scenario

			View constructor

	

Part II: Examining Polka depth-first search animation

	pre-conditions:	-	behavior seems correct

	external:	-	compile Polka and dfs animation using Solaris compiler to generate

			static information database

	ISVis:	-	run on dfs executable

		-	do static analysis

		-	instrument all files

	external:	-	recompile to generate instrumented dfs

	usage scenario 2:	-	run instrumented dfs with dfs1.in input file, press start, press

			pause, resize window smaller, resize window larger, cover and

			uncover window, resize window smaller, resize window smaller

	ISVis:	-	run on dfs executable

		-	read trace from usage scenario 2

		-	create scenarios to find “pauseCB”, “refreshCB”, and “resizeCB”,

			sequence:				predicted v1	predicted v3

				pauseCB				pause		pause

				refreshCB, View::Refresh	??		smaller

				resizeCB, View::Refresh	smaller		smaller

				refreshCB, View::Refresh	smaller		larger

				resizeCB, View::Refresh	larger		larger

				refreshCB, View::Refresh	larger		larger

				refreshCB, View::Refresh	expose		expose

				refreshCB, View::Refresh	expose		smaller

				resizeCB, View::Refresh	smaller		smaller

				refreshCB, View::Refresh	smaller		smaller

				resizeCB, View::Refresh	smaller		smaller

	conclusions:	-	view is redrawn in response to both expose and resize events

based on hypothesis of X event generation, group events as resulting from user actions predicted in column v1

				-	why does resizing smaller sometimes lead to a resize and a

					refresh but not for the last one?

				-	why are there 2 refreshes for the expose?

	usage scenario 3:	-	run instrumented dfs with dfs1.in input file, uncover window,

			resize smaller vertically, resize smaller horizontally, resize

			smaller horizontally, resize smaller vertically

	ISVis:	-	run on dfs executable

		-	read trace from usage scenario 3

		-	create scenarios to find “pauseCB”, “refreshCB”, and “resizeCB”,

			sequence:				predicted v2

				pauseCB				pause

				refreshCB, View::Refresh	expose

				refreshCB, View::Refresh	smaller

				resizeCB, View::Refresh	smaller

				refreshCB, View::Refresh	smaller

				resizeCB, View::Refresh	smaller

				refreshCB, View::Refresh	smaller

				resizeCB, View::Refresh	smaller

				refreshCB, View::Refresh	smaller

				resizeCB, View::Refresh	smaller

	conclusions:	-	according to user actions in usage scenario must group events as in

			predicted column v2

		-	look back at usage scenario 2 and construct predicted v3

both of these groupings imply that resizing a window smaller leads

			to an expose and a resize, and resizing a window larger leads to an

			expose, a resize, and an expose

		-	the Polka design redraws the entire window in response to both

			resize and expose events, so that if a window is resized larger the

			window is redrawn three times, and if a window is resized smaller

			the window is redrawn twice

				-	could use a dirty flag and an offscreen buffer like in ISVis

					design to only redraw once and then just blit to refresh

				-	when Polka designer told about the problem, says “Aha, I can

					just move the drawAll call into the resizeCB and take it out of

					View::Refresh because refresh blits the offscreen buffer

					already, as long as View::Refresh is not called anywhere

					else...”

	ISVis:	-	check that in fact the View::Refresh is only called by resizeCB and

			refreshCB for the two usage scenarios

Part III: Back to ISVis

	ISVis:	-	run on ISVis

		-	read in usage scenario 1c

		-	check that an expose always occurs before a resize, and that the

			resize of a window larger also triggers an expose afterwards:

			yes!!

	conclusions:	-	design of ISVis to “force” generation of an expose when

			ScenarioView::layout indicates window was resized smaller is

			correct

		-	hypothesis that a window resize smaller in X triggers an expose and

			a resize, and that a window resize larger triggers an expose,

			resize, expose is valid

Results

The first case study demonstrated the effectiveness of the ISVis tool in facilitating dynamic program understanding during design/implementation validation of the ISVis tool itself, design recovery of Polka, and reengineering of both applications. Results can be summarized as follows:

improper design of the ISVis Scenario View drawing mechanism was revealed and through comparison with Mural drawing mechanisms reengineered to function correctly

several inefficiencies in the design of ISVis were eliminated by examining its behavior

the ISVis designer’s mental model of X Window system events generated as a result of window manipulation was determined to be wrong and a new correct model was gleaned by examining the behavior of ISVis and Polka applications

inefficient but correct drawing and layout mechanisms in the Polka application were revealed

the Polka designer was enlightened by new model of X event behavior and reengineered a solution to fix a design inefficiency

Case II: Design Recovery of Mosaic WWW Browser

The second case study involved reverse engineering the behavior of the Mosaic World Wide Web (WWW) browser. This case study arose as part of a larger effort to support the evolution of legacy systems (the MORALE project [� NOTEREF _Ref405016312 \h ��1�]). Given an existing system and a new set of requirements, the idea is to support the reengineering process by identifying: 1) what the system can do in its current state, 2) what needs to change to support the new requirements, and then 3) suggest how the system should be changed to accomplish the new mission. The first system analyzed as part of this work was NCSA Mosaic version 2.4, with a new requirement of being able to handle user-configurable external viewers.

A part of the MORALE process involves establishing the current architecture of the subject system as it relates to the particular change scenarios. This is a design recovery task, and might be called architectural localization. Without a correct model of the current system, the rest of the reengineering process cannot proceed with any accuracy. During this case study, the ISVis tool helped an analyst construct an accurate model of the system’s behavior in given scenarios, and helped validate hypothesized models of the system.

Details

As with the first case study, this section provides details regarding the case in the form of a description followed by a case log. The general strategy during this case was to uncover the behavior of Mosaic, but specifically those parts of the system that would have to be modified as part of the change scenario. After compiling Mosaic with the Solaris compiler, using ISVis to statically analyze and instrument all files�, and re-compiling the instrumented Mosaic, the first usage scenario was performed. Usage scenario 1 involved starting Mosaic at the College of Computing home page, following the People link, following the PhD link, scrolling to Dean Jerding, following the Dean Jerding link to Dean’s home page, selecting the resume link to open Ghostview on a local PostScript file, following the paper link in the same manner (a file:/// link), and then again selecting the resume link. This scenario was chosen to understand how Mosaic behaves when a link is followed, and more specifically, how it decides to launch an external viewer.

ISVis was then used to read in the trace, open the scenario, and then Scenario, New, copy was used to create a working copy of the scenario. The Scenario View was initially very crowded with lots of actors, so the analyst decided to create component actors grouping those functions in the libXmx, libhtmlw, and libwww3 subdirectories of the Mosaic source code. This was done by selecting all files in one of those subdirectories in the Main View file list, and choosing Actor, New component, from selected actors. Then the newly created “libXmx”, “libhtmlw”, and “libwww3” component actors were selected, along with all files in Mosaic/src. Moving to the Scenario View, the option menu to view actors by those selected was chosen, effectively making the actors in the Scenario View be those selected actors.

Then the analyst began browsing the Scenario View and selecting interactions that seemed unimportant to the task at hand. When these were selected in the all mode, they were colored magenta using the color button in the key of the Main View, and then Interaction, Remove selected done to remove them from the scenario. During this process, recurring interactions were discovered in the view, selected, and defined as a new scenario. Then, Scenario, Replace exact was used to replace all instances of those interactions with a reference to the scenario--abstracting the viewed scenario up to a higher level. Sometimes the names and sequence of the interactions involved were enough for the analyst, who was familiar with the WWW domain, to understand what the scenario was doing and enter this as a description when the scenario was defined. At other times, viewing the actor source was necessary to help understand what an interaction or scenario was doing. Even then, sometimes the analyst could only really make a guess at the behavior.

Soon several important discoveries were made. First, the anchor_cb function was found, and using Interaction, Find was determined to occur six times in the scenario. This corresponded to the six links, or anchors, that were visited during the usage scenario. In the interactions following the anchor_cb for the PostScript links, it was discovered that HTLoadAbsolute calls HTLoad, which calls HTLoadHTTP, except for the link specified as a file:///, in which case HTLoadFile was called. In the actor list near HTLoadFile, HTLoadExtensionsConfigFile and HTLoadTypesConfigFile were found. Back in the Scenario View, these interactions were found at the beginning of the trace, along with ProcessMailcapFile and HTSetPresentation—looking at the source code for the latter actor it was storing presentation information for various formats, including Ghostview for PostScript. Thus, this function is where the external viewer was defined for the various file formats.

The presentation information was stored in a list, and accessed using the HTListObjectAt function that occurred after HTLoadFile. In the Main View, the HTListObjectAt interaction was selected as primary focus with the middle mouse button. This highlighted HTFilesSuffix as the source actor, or the caller. When HTFilesSuffix was made primary focus, HTSaveAndExecute was found to be its caller. The analyst then viewed the source for HTSaveAndExecute, and this was where the decision was made to invoke an external viewer on a temporary file, based on the file’s extension. According to the source, a function pointer was stored to be called later. It was still unclear when that function pointer was actually called.

The end_document function had occurred at the end of each link processing (after HTLoad…). The source code for this also used the HTListObjectAt function to look at presentations. In browsing the end_document source, this was where the function pointer was checked and executed! The entire process of discovering this information had taken the analyst four hours, and the Session, Save command was used to save the scenarios constructed thus far.

Upon returning to the analysis, the analyst used Session, Load to restore the previous session. He then made a copy of the working scenario, naming it “m3 design.” The next goal was to abstract the scenario up to a higher level, closer to the design. He needed to identify components among the various function actors to that the information he had uncovered could be related to the architecture. This time irrelevant interactions were colored blue as they were removed. More interesting actors were found, such as get_physical where the protocol for the anchor is determined, and HTAccess that keeps a list of protocols. A scenarios was defined to describe the processing of anchors for files, called “get physical file.” The already defined scenario “get physical image” actually was more broadly occurring for all http links. The session was saved again after three more hours.

For the next analysis session, the analyst decided to start by creating another usage scenario to see how Mosaic opens dialog windows. This would be important should functionality have to be added for allowing a user to configure external viewers used to present different file formats. Usage scenario 2 involved starting at the College of Computing home page, opening the hotlist window, scrolling it, dismissing it, opening the window history dialog box, and dismissing it. This trace was then read into the previously saved session and a copy of the scenario created as “m4 working.”

The return interaction named fire_er_up, which the analyst had found in the first session, was found again in this scenario. Following it there was a menubar_cb and then a mo_post_hotlist_window. Making the mo_post_hotlist_window function actor primary in the Main View showed the analyst that the function was defined in the hotlist.c file, so apparently putting up the hotlist window was a responsibility of the hotlist component itself.

Then the analyst used Interaction, Find to find the next menubar_cb, which was followed by a mo_post_history_win. Similarly, this function was in the history.c file, but not in the global history. Thus, each Mosaic window must keep its own history, in addition to the global history. The session was saved again after ½ hour.

Using all the information and scenarios defined thus far, the analyst started the next session trying to group all functions and/or files into components. To get an idea for the type of architecture he should be looking for, the analyst referred to a box-and-arrow architectural diagram proposed previously by a SAAM [� NOTEREF _Ref404424251 \h ��46�] analysis of Mosaic. Some subdirectories of Mosaic source ended up separated into components, such as libwww2/HTAccess.c as the Access Manager, libwww2/HTInit.c and libwww2/HTFormat.c as the Presentation Manager (kept track of MIME types and how to display them), and libhtmlw/HTML.c as the HTML widget. Additionally, some files seemed to contain multiple components, such as src/globalhist.c, which contained functions assigned to the Global component (for global history) and some assigned to the Cache component, for caching many different histories. A Stream component was defined containing functions in libwww2/HTMIME.c (parsed html, HTTP), as well as libwww2/HTTCP.c, which seemed to be used by all protocols (TCP/IP was “underneath” HTTP, FTP, etc.). The Protocol Manager grouped all protocol-related functionality such as libwww2/HTTP.c, libwww2/HTFTP.c, and libwww2/HTFile.c. Finally, a UI component was defined for GUI functionality.

During the last session, the analyst viewed the “m3 design” trace using the selected component actors defined previously. Still more component mappings were made as unassigned files and functions were browsed, both in the Scenario View and in XEmacs views launched from the Main View. It turned out that 15 components were identified during the entire nine hour analysis.

CASE LOG

	usage scenario 1:	-	run instrumented Mosaic, starts at CoC home page, follow People

			link, follow PhD link, scroll to Dean Jerding, follow Dean Jerding

			link, follow resume (local PS file) link (opens ghostview), follow

			paper (“file:” PS) link (opens ghostview), follow resume (local PS

			file) link (opens ghostview)

				-	generated m3.trace

	ISVis:	-	start ISVis on Mosaic 2.4 executable

		-	read in m3.trace

		-	create m3 working scenario as a copy of m3.trace

		-	create components for the libXmx, libhtmlw, libwww3 subdirectories

		-	view scenario with those components and all files in Mosaic/src

		-	browse through scenario, removing messages which seem unrelated

			(color them magenta)

		-	notice “image resolve” scenario for images being processed, by

			finding occurrences of ImageResolve at recurring patterns in the

			global mural

		-	mo_open_window done once during start up

		-	view source of HTSACopy, it is a string management, done a lot,

			remove

		-	notice “HTMIME put character” and “anchor visited predicate”

			scenarios

		-	url_canonicalize done in mo_www.c

		-	globalhist.c seems to cache data, as in the “cache image” scenario

			--this is done after each “image resolve”

		-	find an anchor_cb, then find it six times--this is the click on

			anchor in Mosaic callback

		-	mo_set_text starts parsing page of html text

		-	mo_load_window_text is done for all anchor_cb’s, as is

			mo_pull_er_over--created scenario for each “anchor_cb”

			-	difference is there is an HTSimplify in the anchor_cb for the

				“file:” PS

for html pages, after return from mo_pull_er_over,

	mo_do_window_text is called

		-	for PS, mo_here_we_are_son, mo_redisplay_window,

			mo_done_with_icon, and mo_not_busy

		-	looking for the decision context to display ghostview:

			-	seems to be mo_load_window_text? view the source in

				gui_documents.c

			-	a flag use_this_url_instead indicates to mo_here_we_are_son

is path in line 720 taken? is new text = <mosaic-access-

			override>?

				-	view mo_pull_er_over, do_it, and _HTMLInput

					-	aha, htmlw is the html widget--saw that in HTML.c

			-	where is the damn ghostview call?

			-	look at HTLoadAbsolute source, in HTLoad there is an indirect

				function call to load the document depending on the protocol

				-	HTLoadFile called once for the “file:” protocol, all the rest

					use HTLoadHTTP

					-	find HTLoadExtensionsConfigFile (extensions for filenames)

				-	find HTLoadTypesConfigFile, ProcessMailcapFile, and

					HTSetPresentation in the beginning of the trace

					-	storing presentation info for various formats, including

						ghostview for PS

			-	now using the primary and related focus, finding callers of

				HTListObjectAt, which is HTFilesSuffix, which is called by

				HTSaveAndExecute

				-	this sounds interesting, view source

					-	BINGO!, this is where the decision is made to invoke an

						external viewer on a temp file

					-	the actual call is made in HTLoad... when the pointer in the

						end_document of the presentation structure is looked at

				-	HTSaveAndExecute is called within HTFTPLoad (file: PS) and

					HTLoadHTTP for rest

	Elapsed time: 4 hours--save session m3.session5

	ISVis:	-	restore session m3.session5

		-	now try and abstract up to design level, make “m3 design” scenario

			as copy of “m3 working”

		-	remove Xmx.c, Xmx2.c -> core dump (fixed bug in

			InteractionImpl::removeActor)

		-	don’t do that, because will remove scenarios involving those

			actors...

		-	browse “m3 design” scenario again, removing unrelated interactions

			(color blue) and use find pattern to locate repeating scenarios

		-	get_physical is where the protocol for the anchor is set

		-	HTAccess keeps list of protocols

		-	HTFormatInit initializes format conversions

		-	what does StreamStack do?

		-	fire_er_up is done once at beginning to create the window for the

			local home page

		-	the previously created scenario “get physical image” is not done

			just for images

		-	expand scenario causes core dump...

		-	processing of presentation list done all over

		-	identify several “image resolve 2” scenarios, which differ only in

			calling context

		- save session m3.session9

		-	during the processing of the third link followed in the scenario,

			there is an “image resolve” scenario that causes HTFileInit to load

			suffixes

		-	found an anchor_cb ‘ scenario for other PS files opened

			-	in first, HTSaveAndExecute calls HTFileSuffix

			-	the second PS file is brought over using HTLoadFile (it is a link

				with a “file:” reference)

				-	this is a “get physical file” scenario

			-	“get physical image” scenario should be “get physical http”

			- get_physical is where the protocol decision is made as to what to

				load

Elapsed time: 7 hours--save session m3.session10

	usage scenario 2:	-	run instrumented Mosaic, starts at CoC home page, open hotlist,

			scroll, dismiss, open window history, dismiss

				-	generated m4.trace

	ISVis:	-	read in m4.trace and save a copy as “m4 working”

		-	find return from fire_er_up

		-	found a menubar_cb, then a mo_post_hotlist_window

			-	this is in the hotlist file, seems that putting up the hotlist

				window is the responsibility of the hotlist component

			-	mo_load_hotlist_list to fill window, using the default_hotlist

				data structure

		-	found another menubar_cb, then a mo_post_history_win

			-	responsibility of the history component (not global history)

			-	mo_load_history_list to fill window

			-	each Mosaic window data structure keeps its own history, in

				addition to the global history

Elapsed time: 7.5 hours--save session m34.session

	ISVis:	-	now using all the information and scenarios defined thus far, try

			and group functions and files into components

			-	analyst is also guided by the proposed SAAM architecture

		-	history related components:

			-	global	(globalhist.c)

			-	window	(history.c)

			-	cache		(globalhist.c)

		-	“par” is personal annotations

		-	libhtmlw/HTML.c is the html widget

		-	mo_www.c manages loading of documents

		-	libwww2/HTAccess.c is Access Manager

		-	libwww2/HTAlert.c lets Mosaic know progress of loads

		-	libwww2/HTInit.c initializes formats with HTFormat.c

			-	the latter keeps track of MIME types and how to display them

			-	these are the Presentation Manager

		-	libwww2/HTMIME.c is stream/message parsing for html, HTTP

			-	goes in Stream component

		-	Protocol Manager

			-	libwww2/HTTP.c speaks http

			- HTFile.c, HTFTP.c also

			-	HTTCP.c used by all, it goes in Stream component

		-	gui.c and gui_documents.c and gui_menubar.c are UI related

Elapsed time: 8.25 hours--save session m34.session2

		-	HTFormat.c involved in reading FTP using HTGetCharacter

			-	Stream component also includes some HTFormat functions

		-	HTMosaicHTML sends characters over the Mosaic (mo_www.c)

		-	browse through remaining unassigned files and functions, look at

			comments, and determine possible component mapping

		-	end up with 15 components (1st 15 in list)

		-	note that end_document is called in HTLoadHTTP and HTFTPLoad

			-	this is where ghostview is executed based on what is stored in

				HTSaveAndExecute

Elapsed time: 9 hours--save session m34.session3

Results

During the second case study, the ISVis tool assisted with the reverse engineering of a legacy system’s behavior in particular usage scenarios. Over a period of nine hours, an analyst unfamiliar with the system being examined and somewhat familiar with the domain was able to construct a component architecture grouping source code entities by the role they played in the particular usage scenarios. Almost fifty interaction patterns were identified and understood during the session. The analyst identified the scenarios in two ways: 1) the global overviews provided initial insight to similar locations in the traces, and by navigating to these locations similar sequences were observed, selected, and defined as scenarios, and 2) the automatic detection capabilities located repeated message sequences, which if appropriate, were selected and defined as scenarios. When questions arose during the examination of traces, being able to open views of the source code proved indispensable for understanding in more detail the role of specific functions and data.

The component grouping facilities allowed the analyst to map the functions and files in the system into 15 separate components that seemed to divide the functionality of the subject system in the particular usage scenarios. Creating the interaction scenarios and building a “higher-level” view of the execution traces allowed this behavioral understanding task to be accomplished. Without the ISVis tool (using only textual traces, a debugger, and source code) such a behavioral understanding of the system would have required many times as much effort, if possible to achieve at all.

chapter vIII

Related Work

In a broad sense, this thesis research involves two separate disciplines in computer science research: visualization and software engineering. The main concentration of this work is in software visualization, or the use of graphical techniques to present information about computer software. Generic information visualization techniques are also relevant. Research in the field of program understanding and methods for program analysis were required. Some of the programs examined were object-oriented in nature, so the field of object-oriented software development is obviously important, as is the relatively new field dealing with pattern languages of programming. This chapter discusses related work, first by listing those efforts that are most closely related to those described here. This is followed by a more broad description along the lines of the aforementioned categories.

Closely Related Work

The work of De Pauw, Helm, Kimelman, and Vlissides [� NOTEREF _Ref404419487 \h ��21�,� NOTEREF _Ref402428387 \h ��22�] was published when this thesis research was in its developmental stages and helped motivate this work. They developed visualization techniques and a tool for presenting dynamic attributes of object-oriented systems, more specifically, C++ programs. The authors created instrumentation techniques that are portable and can extract the required information about a program's execution. They also developed views, mostly chart-like, to present summary information about the execution. Their views display instance creation and destruction, inter- and intra-class calls, allocation histories, and so on. These views are quite effective for analyzing program performance and class relationships in terms of the amount of interaction between classes and objects. However, the information they capture is mostly cumulative summary information, whereas this thesis research sought to uncover the sequence of the interactions and the resulting program behavior. The authors made a compromise when they decided not to store incremental information about the execution in favor of storing more cumulative information. Thus, they cannot reconstruct the call trace based on their database.

Just as this thesis research uncovered the usefulness of interaction patterns to analyze program behavior, DePauw, Lorenz, Vlissides, and Wegman continued the work described above by creating the notion of an execution pattern in their visualizations [� NOTEREF _Ref404422211 \h ��23�]. The goal is similar to that of this thesis: to help bridge the gap between a program’s static specification and its dynamic behavior. The authors use a variation on Jacobson’s interaction diagrams [� NOTEREF _Ref404422227 \h ��40�] by representing execution patterns as trees, with time going left-to-right and top-to-bottom. Columns are not used for a particular objects or classes, but can represent many objects depending on how the tree is unfolded. When the execution pattern view is zoomed out to see the entire execution, the view appears much like that of an Information Mural (and could take advantage of that technique as well). The authors have also attempted to perform pattern-detection for the user, allowing a pattern to be generalized. They used a similar hashing mechanism to the hash consing that was described in the v4.0 visualization prototype mentioned earlier [� NOTEREF _Ref404418920 \h ��45�]. Their database is more robust, however, supporting generalized queries over classes, methods, and objects in order to find patterns at different levels. Their suite of visualizations, however, does not fully support particular program understanding tasks like those presented in this dissertation.

Murphy, et al. have developed an approach which lets software engineers specify high-level models of a system and how the source code maps into that model [� NOTEREF _Ref404422275 \h ��68�]. Then a reflexion model is computed which uses call graph and data referencing information to determine where the model agrees and disagrees with the actual implementation. A box-and-arrow type diagram is used to depict the specified models and their differences. This approach has helped with design reengineering and conformance tasks. This work is directed toward reverse engineering and validating static, architectural component models, whereas this thesis focuses on sequential, behavioral interaction models. However, both efforts seek to uncover higher-level models from the actual implementation of a system and to compare such models to those provided by system designers/maintainers.

Citrin et al. have attempted to formalize the notations used to describe communication between entities in systems with the notion of a temporal message-flow diagram (TMFD) [� NOTEREF _Ref404421246 \h ��15�]. They have built tools to display and edit TMFDs, to generate TMFDs from event traces, and to simulate the operation of a system using TMFDs. Their work is much more general than that of this dissertation, handling systems in which messages can be sent and received in an interleaved, non-deterministic sequence. The interaction diagrams used as part of this visualization research are in fact TMFDs. A significant difference between Citrin’s work and that of this thesis is ISVis’ identification of patterns in the event traces as a mechanism for building higher-level TMFDs.

Sefika, Sane, and Campbell have done work in architectural visualization of systems with goals similar to those of this thesis research [� NOTEREF _Ref404422317 \h ��89�]. Their views seek to portray the operation of a system from various architectural levels, and they have developed an unobtrusive instrumentation system to efficiently gather event trace data. However, some of their views are tightly coupled to the domain of the subject system rather than generic to software architectures-possibly because their subject program is an operating system.

The work of Eick's group at Bell Laboratories also relates to the goals of this dissertation research in that they have developed innovative, useful ways of portraying large software systems, using tools such as SeeSoft [� NOTEREF _Ref404419555 \h ��25�,� NOTEREF _Ref404422348 \h ��3�]. Their work focuses more on depicting software engineering metrics than on visualizations of the program behavior. The techniques used to fit large amounts of information on the screen are particularly attractive and the research described in this dissertation (notably the Information Mural) could extend the capabilities of their visualizations.

Software Visualization

Visualization can generally be defined as the use of graphical techniques to depict information on a computer display. The area of software visualization is more specific in nature, focusing on visualization of the structure and function of computer software [� NOTEREF _Ref404422411 \h ��91�,� NOTEREF _Ref404422429 \h ��73�,� NOTEREF _Ref404422442 \h ��83�]. Many efforts have attempted to integrate graphical support for programming with code development environments or debuggers, or to provide stand-alone visualization systems. These systems typically provide multiple textual or graphical views of aspects of the software.

However, a major limitation with the work thus far is the inability handle large, real-world sized systems. This failing is either with the graphical display metaphors used to convey information about the program or with the techniques used to gather and store information to support the displays. While statically or dynamically gathered information has been depicted using graph-oriented displays, useful views of incremental program behavior have not been created. Both the scale problem and the dynamic visualization issues were major foci of this thesis work. The remainder of this first section describes several software visualization efforts.

Several programming environments have been developed that include visualization capabilities. PECAN [� NOTEREF _Ref404422457 \h ��80�] and PROVIDE [� NOTEREF _Ref404422470 \h ��65�] were early program development systems that utilized graphical views such as data structure displays, a call-graph, and the call stack. The PROVIDE system in particular was the first to address the problem of storing historical state information about a program's execution to support debugging tasks.

More recent work includes Reiss' FIELD system [� NOTEREF _Ref404422487 \h ��79�]. FIELD contains an extensive set of tools for developing and maintaining C++ programs. These tools include graphical aids such as class browsers and flow graphs, and the recent thrust of the work has been on 3D display views [� NOTEREF _Ref404422500 \h ��78�]. A cross-referencing relational database which stores program information is the backbone of the system, interfaced with a text editor for modifying the source code and with the various graphical views [� NOTEREF _Ref404422524 \h ��57�].

The PV program visualization system provides concurrent, coordinated, and multi-layered views of program behavior [� NOTEREF _Ref404422792 \h ��47�]. The time-oriented system and process state information views use pixel-level color strips which extend over time to present state history. These views scroll to the right as the program executes, and can be zoomed in to decrease the scale of the strips. Other memory views use colored pixel bands to represent the contents of different memory locations. The Information Mural technique could be used in these views to help alleviate over-plotting problems and to allow the views to depict occluded information density when fully zoomed out.

Several commercial products have now incorporated some of these types of views, especially of the class hierarchy. Some examples are DEC's FUSE and CenterLine's ObjectCenter. The support provided by these tools is almost exclusively static in nature, dealing with class relationships inherent in the source code. One exception is the LOOK! system by Objective Software Technology. It is the only truly dynamic commercial OO visualization tool, designed to run along with subject programs much like a debugger. LOOK! can parse C++ executables and display dynamic object diagrams of executing applications. Most of these views are textual or graph-oriented in nature, including an object creation view, message view, reference view, and source code view. Scalability seems to be a major problem; views simply add a scroll bar if there is not enough screen space to fit the entire view..

In addition to support for programming, visualization tools have been developed to support maintenance as well. The PUNDIT system is a program understanding tool that provides static and dynamic views of C programs [� NOTEREF _Ref404422814 \h ��69�]. The importance of dynamic information in assisting the understanding process is emphasized by integrating debugging capabilities with code browsing type views. Animation is used to display the dynamic call graph, and comprehensive data structure and cross-referencing information is available. Most of the views involve tree or graph structures, and the authors recognize that the problem of scaling to large programs is not handled well.

The OO!CARE tool is the C++ version of the CARE environment which supports C program understanding [� NOTEREF _Ref404422827 \h ��59�]. The idea of the OO!CARE system is to extract and visualize dependencies between classes, objects, and methods in the program, as well as the control and data flow dependencies. The system includes a code analyzer, a dependencies database, and a display manager. A column-oriented view called a collonade presents data-flow dependencies. The dependencies are extracted statically, so in the case of a virtual function call in C++ a “dummy” member function is created to represent all the possible run-time bindings. While the views provide zooming and panning capabilities plus hierarchical decomposition, the examples given do not demonstrate that they scale to handle large programs.

The BEE++ [� NOTEREF _Ref404422841 \h ��13�] object-oriented application framework supports dynamic analysis of distributed programs. It provides a platform for event monitoring, visualization, and graphical debugging, but not the tools themselves. The analysis tools can be distributed across nodes, providing significant performance gains during visualization. The focus of this work is on the framework for the monitoring of events. The framework does not provide support for annotating source code to generate the events.

Some work has focused specifically on visualizing OO program executions. Kleyn and Gingrich [� NOTEREF _Ref404422858 \h ��48�] sought to go beyond static displays by examining the dynamic behavior of object-oriented systems written in a Common Lisp-style language. Their GraphTrace tool illustrates structural and behavioral views of object-oriented systems by recording message traffic for subsequent replay. The tool's displays mainly involve graph diagrams consisting of nodes and arcs. Animation of the execution is done by simply highlighting and annotating graph nodes. This work does not seem to scale to large programs, and the practicality of animating execution behavior is questionable.

Böcker and Herczeg provide more extensive animation of Smalltalk-80 traces with the Track system [� NOTEREF _Ref404419704 \h ��10�]. Track allows programmers to control message tracing and visualize the results as a debugging aid. At execution time, the system presents an animation of the messages sent between objects. Again, scalability and usefulness are issues here.

Koike explores the use of 3D graphics to illustrate object-oriented systems [� NOTEREF _Ref404422878 \h ��49�]. His techniques portray message traffic in a system with respect to the class hierarchy and the method list. This is accomplished by encoding the information within one 3D structure, which when viewed down the z-axis (the x-y plane) presents the class hierarchy, and when viewed down the x-axis (the y-z plane) presents the method list. Koike's technique is a novel way to encode much information within one view, although this immediately causes scalability problems.

Work by Vion-Dury and Santana involves visual debugging of distributed OO systems [� NOTEREF _Ref404422889 \h ��97�]. These views, called virtual images, utilize a 3D spatial model to present objects, represented by polyhedrons. Attributes of the polyhedrons, such as shape, color, orientation, size, etc., map to attributes of the objects such as class, ownership, state, and memory size. The authors developed a mapping from object name to shape, resulting in a unique shape to represent each object. The system is built upon the Guide project, which provides a distributed execution model for application designers. The views provide visualizations of the object distribution, composition, and activities, as well as the call graph and memory mapping of objects in each activity. The views attempt to bridge the gap between the language architecture and the execution model, which causes many design errors.

The Program Explorer is a C++ program understanding tool that is focused on class and object centered views [� NOTEREF _Ref404422909 \h ��55�]. The authors have developed a system for tracking function invocation, object instantiation, and attribute access. The views show class and instance relationships (usually focused on a particular instance or class) and short method-invocation histories. The system is designed to execute the program for a while, stop execution, and then focus on particular classes or objects. It is not intended as a global understanding tool, so the users must know what (or where in the execution) they are interested in before they start. Examples of using the system to uncover design patterns in real-world sized systems are given.

Information Visualization

Information visualization is the use of graphics and visual techniques to present information and data spaces using computers. Plaisant, Carr, and Shneiderman provide a good taxonomy of systems for presenting and browsing information visualizations [� NOTEREF _Ref404420237 \h ��72�]. Much of the recent research in this area has centered on so-called focus+context views. In such a view, information of particular interest in displayed in detail while the rest of the information provides context by taking on a smaller representation relative to the areas of focus. The purpose of this technique is to provide both global context and local detail, which is one of the goals of this thesis research.

The most well-known of the focus+context views is the fish-eye display concept, where the size and position of information in a display is calculated using a degree-of-interest (DOI) function [� NOTEREF _Ref404422946 \h ��27�]. The DOI function is typically defined using distance from the current focus and a priori importance.

Various focus+context visualizations are described in the following list:

The Perspective Wall of the Information Visualizer shows a detailed section of an information space in 2D, while also showing the remaining information in a 3D perspective [� NOTEREF _Ref404422961 \h ��62�]. It works well for linear information spaces that are much larger in one dimension than the other. Using the 3D perspective view allows more information to be displayed than would be possible with just two dimensions.

Sarkar and Brown developed fish-eye views of planar graphs [� NOTEREF _Ref404422979 \h ��86�]. This work was extended to more general layouts using rubber sheet stretching metaphors [� NOTEREF _Ref404422993 \h ��88�]. By placing handles on objects in a view, areas of detail can be defined and sized using a stretching metaphor. The remainder of the information is then compressed or enlarged to fit in the rest of the display.

The Document Lens applies the Perspective Wall technique to general 2D information spaces [� NOTEREF _Ref404089930 \h ��81�]. The strategy shows a 2D focus area (or lens) at a detailed scale, and distorts the rest of the information in perspective using a truncated pyramid.

Magic Lens filters change the graphical display of information by applying a viewing operation to the underlying data [� NOTEREF _Ref404423024 \h ��93�]. These movable lens can show different details within arbitrary regions of interest, while still preserving context outside of those regions.

The Table Lens applies fish-eye viewing techniques to table-oriented data [� NOTEREF _Ref404423045 \h ��77�]. By combining symbolic and graphical representations, various rows, columns, or cells can be shown at different levels of focus. The Information Mural technique can be used to extend the scalability of the Table Lens.

An alternative to a single focus+context view is to separate the detailed view from the global view. Beard and Walker use a navigational or map window to show a miniature version of the entire information space along with some sort of “you-are-here” indicator [� NOTEREF _Ref404423057 \h ��7�]. In their system, the global map window supports roaming and zooming over the entire information space, which contains a balanced binary tree of words. Experiments confirmed that user performance during navigational tasks was improved using the map window instead of horizontal and vertical scrollbars.

Program Understanding

The concept of program understanding applies to several areas of software engineering, including the development life cycle and reverse engineering. There are many theories as to how program comprehension is performed. Brooks originally proposed the idea that comprehension is essentially a maintainer reconstructing the mappings that the programmer originally created [� NOTEREF _Ref404423071 \h ��12�]. These mappings are often categorized as plans, or sequences of semantic actions performing some function. Plans are typically at a lower level than an algorithm, and higher level than the statements in the code. The notion of an interaction pattern as put forth here in this dissertation is analogous to plans in that both are used to bridge an abstraction gap between low-level representations and higher-level models. Much work in this area helps formalize the program understanding process, a process that must be understood before interactive visualizations can be designed to support it.

The program understanding process may proceed in a bottom-up [� NOTEREF _Ref404423071 \h ��12�,� NOTEREF _Ref404423123 \h ��6�,� NOTEREF _Ref404423138 \h ��71�] manner, with plans being constructed based on code, and high-level goals being inferred based on the plans. The top-down [� NOTEREF _Ref404423152 \h ��90�] approach holds that given domain knowledge about the goals of the program, plans are constructed and connected to statements in the code. More likely, program comprehension is some combination of both [� NOTEREF _Ref404090068 \h ��58�,� NOTEREF _Ref402511832 \h ��98�,� NOTEREF _Ref404423196 \h ��75�], depending on the available cues, the type of maintenance [� NOTEREF _Ref402511832 \h ��98�], and the maintainer's syntactic and semantic knowledge base [� NOTEREF _Ref404423218 \h ��100�]. The process might also be systematic--an attempt to understand the entire program, or as-needed, where only the parts of a program necessary to carry out a particular task are investigated [� NOTEREF _Ref404423228 \h ��60�].

Another view holds that program understanding takes place in a feedback loop [� NOTEREF _Ref402428387 \h ��22�] where the program implementation is compared to the maintainer's conceptual model of how the program should solve the problem. Research in the area of program comprehension has focused on providing tools which make this feedback loop more effective. Two main approaches have been followed here: 1) to allow maintainers access to knowledge about the design of the program, as in [� NOTEREF _Ref404423218 \h ��100�], and 2) to provide an analysis of the many inter-dependencies existing in a program, including data-flow and control-flow, as in [� NOTEREF _Ref404422827 \h ��59�,� NOTEREF _Ref404423285 \h ��61�]. Both of these approaches are often based upon creating some internal representation of a program from which information can be extracted and presented to the user.

Biggerstaff defines the concept assignment problem as the process of a person understanding a program by relating structures in the code to human oriented concepts in the real world [� NOTEREF _Ref404423298 \h ��9�]. These high-level, informal concepts must be assigned to the low-level programming language implementations. This process, Biggerstaff argues, is opportunistic and non-deterministic. The DESIRE design recovery system is a tool to aid program understanding. Graphical views provide the user with information based on suggestive data and function names, or clusters of inter-related data and functions. In addition to this supplemental information, an “intelligent agent” can be asked to scan parts of the code and present the user with a list of candidate concepts based on a database of domain knowledge.

In order to take full advantage of the object-oriented paradigm, software developers must be provided with tools that support an understanding of the system being developed. Wilde and Huitt have identified several areas in which tool support is needed: tracing dynamic message binding, analyzing dependencies between classes, understanding high-level aspects of a system, locating system functionality, and resolving polymorphism [� NOTEREF _Ref404423311 \h ��99�]. The visualization tools mentioned in Chapter III have begun to address these problems.

Object-Oriented Systems

The object-oriented paradigm emphasizes data rather than control, as opposed to procedural and functional approaches. While this means that the objects in the system can more easily reflect real-world systems, it also means that the dynamics of the system are harder to design.

Many models for object-oriented development have been put forth, the most well-known being Rumbaugh, et al.’s OMT [� NOTEREF _Ref404423323 \h ��85�] and the work of Booch [� NOTEREF _Ref404423331 \h ��11�], Jacobson[� NOTEREF _Ref404422227 \h ��40�], and the subsequent combined efforts toward a Unified Modeling Language (UML) [� NOTEREF _Ref404917879 \h ��75�]. Within these models, there has been a good deal of research on graphical presentation of object-oriented programs. Much of the research to date has focused on graphics as a design aid in building, testing, or teaching object-oriented systems.

Graphical notation and diagrams are used extensively in the work mentioned above. Additionally, Beck and Cunningham [� NOTEREF _Ref404423356 \h ��8�] present CRC cards as a means for describing the class structure and collaborations in OO programs. The statecharts of Harel [� NOTEREF _Ref404423363 \h ��34�], extended by Coleman, Hayes, and Bear [� NOTEREF _Ref404423371 \h ��18�], attempt to graphically characterize the dynamics of OO systems. The static diagramming techniques developed through this work can be quite helpful as a specification aid. However, there are currently no systems that generate diagrams of this type from existing implementations. This thesis research uses visualizations to extract information of the type present in these design techniques, creating views such as event traces and interaction diagrams from actual program executions.

While OO design models capture the “object-ness” of a system in a well-defined manner, OO languages do not provide good support for capturing the associations and relations among objects. These associations are often manifested at run-time as objects interact to accomplish plans. These dynamic interactions are thus difficult to design and understand. In fact, research efforts exist which attempt to make these associations first-class objects [� NOTEREF _Ref404423399 \h ��51�].

The object-oriented paradigm has also introduced new problems for software testing, similar to those encountered during maintenance. Kung, et al., have developed a reverse engineering approach to testing of OO software using a graphical model which guides the testing process [� NOTEREF _Ref404090264 \h ��52�,� NOTEREF _Ref404423418 \h ��53�]. The model consists of an object relation diagram (inheritance, aggregation, association, etc.), block branch diagrams which describe control flow within functions, and object state diagrams that describe state dependent behavior of the objects. The diagrams are intended to help testers understand the structures and relations of the system, and to guide the preparation of test cases and processes. It appears that the relations are determined from static analysis, which means that certain assumptions must be made for non-deterministic dynamic behavior.

Due to the power and complexity of the OO paradigm, many efforts have developed to teach OO design and programming. While most of these efforts are lecture-driven courses, Robertson, et al., have designed an interactive, scenario-based learning environment to teach OO principles [� NOTEREF _Ref404423435 \h ��82�]. Users of the system are guided through the OO design process by analyzing scenarios for a given problem domain. The goal is to develop an object model based on the dynamic scenarios. Scripts are created by the user to test the sequence of transactions between objects in their model, thereby simulating steps in the scenarios. Graphical views are provided which support the learning process. The authors intend to incorporate visualization support for education about the patterns identified by Gamma, et. al [� NOTEREF _Ref404419617 \h ��28�].

Pattern Languages of Programming

In the last few years, many of the leading researchers in object-oriented design have been working on establishing a body of literature discussing patterns that occur in programs. A design pattern is generally described as a “solution to a problem in a context”, which can be reused. The pattern concept has roots in the architectural work of Christopher Alexander [� NOTEREF _Ref404423998 \h ��1�]. Similarly, interaction patterns discovered by this dissertation are so named because they are repeatable entities, because they can be described by a regular expression, and because they create visual patterns on the screen. The two types of patterns reinforce each other because interaction patterns result from instances of design patterns and can be seen as low-level evidence for their existence.

The documentation of patterns at various levels, from organizational process down to language idioms, serve as a way of documenting experience which can be reused by other developers. The seminal work in this field is a catalog of design patterns found in object-oriented software [� NOTEREF _Ref404419617 \h ��28�]. The proceedings of the first pattern languages conference documents patterns in different types of applications, designs, and organizations [� NOTEREF _Ref404424039 \h ��20�].

By definition, design and implementation patterns will result in patterns of interaction between objects in an object-oriented program. Thus, this thesis research can be seen as a sort of “pattern mining” exercise in that visualizing message and instantiation patterns can validate and/or show the existence of these higher level patterns.

Program Analysis

Much research has been conducted to analyze static and dynamic properties of software, some of which is incorporated in program understanding tools. This thesis research requires methods to statically analyze C and C++ code and to instrument source code to track dynamic events. The related work discussed in this section represents various tools that support such analyses.

Cia++ extracts static information from C++ source code and stores it in a relational database for access by other tools [� NOTEREF _Ref404424059 \h ��32�]. Cia++ stores attributes for five different entities: files, macros, types, variables, and functions. Relationships include inheritance, friendship, inclusion, and reference. Applications can be built on top of the database to perform queries and display results.

According to Rosenblum and Wolf, the creation of static analyzers such as cia++ would be easier if a standard semantic representation of C++ code existed [� NOTEREF _Ref404424081 \h ��84�]. Creating cia++ required some difficult modifications to the cfront compiler that would not have been necessary if code to be analyzed could be translated into an intermediate form that includes semantic information. REPRISE is such a representation, an abstract semantics graph of C++ code. Edges in the graph connect entity uses with entity declarations; the traditional abstract syntax tree is a sub-graph of the REPRISE representation.

Gen++ is a tool for generating C++ source code analyzers, based on a language independent specification language and generation system called GENOA [� NOTEREF _Ref404424103 \h ��24�]. Gen++ provides a language through which users can write queries to be performed on source code. These queries typically traverse an intermediate representation of the code, called the abstract semantics graph, and take appropriate actions depending on the query. The user can then generate an executable analyzer which will perform that query.

O'Riordan discusses problems C++ introduces for debugging, including how to instrument C++ code [� NOTEREF _Ref404424118 \h ��70�]. He describes how a simple tracing object can be declared in the first line of every function to track function invocation and return. He also advocates the importance of automatic instrumentation to support object level debugging tasks. ISVis’ instrumentation scripts use O’Riordan’s idea and inserts tracing objects after the “{“ that begins each function.

One method of instrumenting source code is to parse the code and annotate it to produce a new version. This technique is often referred to as source-to-source translation. The NEWYACC translation tool [� NOTEREF _Ref404424153 \h ��74�], derived from the UNIX yacc tool, retains the yacc parse tree and allows the user to traverse it and perform additional actions. Given a grammar, translation rules can be added to the productions that instrument interesting parts of the code. Of course, this approach relies on having an accurate grammar for the language in question, which is a problem for C++.

Mohr describes a tool for profiling C++ code built on top of the Sage++ library for building C++ code restructuring tools [� NOTEREF _Ref404424165 \h ��66�]. The system parses C++ code into the Sage++ internal representation. This representation can then be walked using calls to the Sage++ library. A utility then generates new C++ code based on the modified C++ code. The instrumentor can be selectively invoked on different files of a program, to insert hooks for direct function profiling or function tracing. The parsers and instrumentors can be integrated into the compilation process through the MAKE utility.

Larus and Ball describe another method for instrumenting code, that of rewriting an executable file [� NOTEREF _Ref404419682 \h ��56�]. The Quick Profiling and Tracing tool (qpt) inserts instrumentation into executables to perform basic block profiling and to trace a program's instruction and data references. The authors discuss trade-offs of doing the instrumentation during various phases of the compile cycle: to the source code during source-to-source translation, to the object code during compilation, to the object code during linking, and to the executable after linking.

Paradyn is a performance tool for large-scale parallel applications [� NOTEREF _Ref404424208 \h ��64�]. By using dynamic instrumentation and automating the search for performance bottlenecks, it can measure long-running applications on production-sized data sets. Paradyn can automatically instrument PVM applications while they are executing, and then search for causes of performance problems. The authors cite cases where Paradyn has successfully isolated the part of the program that is responsible for the problem.

The LOOK! C++ dynamic visualization tool trace executing C++ applications. Information from the symbol table generated with the -g flag is used to drive the annotation process. Certain compilers do not provide enough information in the symbol table, in which case the source code itself must sometimes be consulted. The ISVis tool too relies on a compiler to generate the static information used in its internal program model.

The next chapter closes the dissertation. It includes conclusions, contributions, and future work.

chapter ix

conclusions

The techniques and methods embodied in the visualizations built during the course of this research have been tested in several case studies, revealing the usefulness and effectiveness of the ISVis framework. The results of the these studies, along with published research accomplishments, have validated the thesis of this work: visualizing interaction patterns in program executions can facilitate program behavioral understanding during design recovery, design/implementation validation, and reengineering tasks.

CONTRIBUTIONS

The ISVis framework and process provides an analyst the means to build an abstract model of program behavior during particular usage scenarios. Its visualizations of the voluminous event trace information provide a framework within which the analyst can use cognitive skills to make many of the abstraction decisions. The Information Mural technique is a major contribution, allowing the creation of ISVis views to navigate large event traces, observe phases, and find patterns. By supporting the abstraction process via interaction pattern definition, search, and replace, ISVis performs the more compute-intensive processes and allows the analyst to make the identification of which patterns are semantically important, a task-dependent decision. An analyst can take advantage of application-domain and programming knowledge, as well as the source code itself, to make inferences that a completely automated tool could not make. The notion of an interaction pattern, defined within the formal behavioral model manifested in the ISVis framework, is another major contribution of this research. Interaction patterns provide a mechanism to bridge the abstraction gap between low-level program events and higher-level models of program behavior. The combined application of visualization techniques and interaction patterns to support understanding program behavior during design recovery and design/implementation validation tasks is the third major contribution of this research. In summary, the contributions of this thesis research are the following:

The Information Mural technique for displaying global overviews of large information spaces, which allows the creation of ISVis views to navigate large event traces, observe phases, and find patterns.

The notion of an interaction pattern and the accompanying model, which allows low-level program event traces to be abstracted up to design-level models of program behavior.

The combined application of visualization techniques and interaction patterns in the ISVis framework, which supports understanding program behavior during design recovery and design/implementation validation tasks.

LIMITATIONS

An important dependency for the success of the ISVis analyses is the choice of usage scenarios to exercise the subject system. The particular event traces that are examined directly affect the efficiency with which an analyst can localize behavior. Despite the significant advances provided by the interaction pattern abstraction and the Information Mural technique, the size of an event trace that can be analyzed is still a limiting factor. At some point the size of the Program Model will exhaust available memory, or the ability of the Information Mural to effectively portray the entire interaction sequence will be exceeded. Additionally, there is a trade-off between the detail of the information gathered and the perturbation to the operation of the system caused by instrumentation. Other visualization research has focused more on effective information gathering techniques whereas this research is directed more toward the visualization and analysis techniques.

Another shortcoming of ISVis is the complexity of the user interface. While ISVis was designed to be user-friendly, there is a marked trade-off between the powerful features available to the analyst and the ease with which these features can be learned. A usability study and feedback from a public release will shed some light in this area.

Clearly there are other program understanding approaches that accomplish some of the same goals as ISVis, even as simple as examining a static call graph or “grep'ing” source code for particular keywords. For example, when the analyst began using XEmacs to view source code while constructing component mappings of Mosaic source code, he could have taken advantage of other tools which display calling relationships graphically to help with that task. In the end, it will be a combination of tools and techniques that help an analyst solve reverse engineering problems requiring program understanding. The ISVis approach is another useful technique specifically aimed at understanding the temporal behavior of a program, which purely static understanding techniques cannot provide.

Future Work

The success of ISVis during the two case studies raises several issues related to the future development and applicability of this research. Among these are further scalability, extensibility, and interoperability with other tools. Additionally, an empirical study on the effectiveness of ISVis should also be performed.

Scalability

Design recovery, design/implementation validation, and architectural extraction and localization are interesting problems only if the system being analyzed is sufficiently large and complex. This research has significantly addressed scalability problems, but it is still a limitation. Hence, it is important for the analyst to be able to determine and specify the degree of resolution in the event trace necessary to capture essential information without overwhelming storage and computational resources. Changing which parts and to what degree the program behavior is monitored should be part of the analysis process.

Extensibility

The ISVis architecture was designed to be extensible in two ways. First, the underlying set of actors with which it can deal is not dependent on a particular programming language. In fact, if appropriate static analysis tools are available, ISVis can use any primitive set of actors. For example, ISVis was originally designed to analyze programs written in the C++ language. However, Mosaic is written in C. In this case, using ISVis was simply a matter of ignoring class actors (only the “global” class exists). Moreover, the generality also works in the other direction. New actors, such as modules or subsystems, can be added without effecting the underlying ISVis process.

The second form of extensibility has to do with event traces. The only classes of events used in case studies thus far have been function calls and returns. However, the ISVis model allows for different types of interactions, based on different types of events. The exact type is unimportant to the pattern matching ISVis provides. For example, interactions for object creation/deletion and data reference could be added to ISVis quite easily as long as the capability for monitoring the related events was available. However, adding these interactions also requires the development of new visual representations, e.g. dotted lines for intantiation interactions.

Interoperability

The ISVis framework can be extended to interoperate with other tools, such as static analyzers. Several opportunities to collaborate with other research exist. Two specific examples can be given. The first has to do with the problem of detecting architectural connectors. A useful connector is one that characterizes common component interactions. However, the abundance of event data from log files makes determining commonality difficult. Internally, ISVis supports several straightforward heuristics to detect patterns. However, other tools are available that may do a more sophisticated job at this task. In particular, the Balboa tool [� NOTEREF _Ref404424234 \h ��19�] is capable of applying several machine-learning techniques to the problem of describing complex event traces. Balboa produces as output a finite state machine that is capable of generating the event sequence. To the extent that the machine and its corresponding regular language are much smaller than the event trace, they provide a candidate abstraction for the ISVis analyst to use. Balboa could be connected to the ISVis pattern detection to see how this enhancement extends the power of ISVis analyses.

The second form of interaction that could be investigated is with an architectural analysis tool such as SAAMTool. SAAM [� NOTEREF _Ref404424251 \h ��46�] is an architectural analysis method that uses scenarios to guide analysts in making decisions about the desirability of a proposed enhancement to a software system. SAAMTool supports this process by, among other things, providing a graphical display tool for architectures. SAAMTool itself does not generate architectural models, so it is natural to use ISVis for that purpose. A common architectural description language such as ACME [� NOTEREF _Ref404424260 \h ��29�] could be used as an interoperability mechanism for communication between ISVis and SAAMTool.

AppendiX I

ISVis File Formats

Components File

Future implementation, for describing user-defined components in terms of actors in Static Info File.

Session File

Internal binary representation of the ISVis session, used to record scenarios, interactions, actors, etc. currently being analyzed for future use; not useful externally to ISVis.

Static Info File

ASCII file containing static information about the subject system.

FILE <full filename>

CLASS <class name> <full filename> <line number>

INHERITS <class name> <parent class name>

MEMBER_FUNC <function name> <class name> <full filename> <line number>

GLOBAL_FUNC <function name> <full filename> <line number>

Trace File

ASCII event trace file generated from executing instrumented system. First line is trace information file used to generate trace file, then subsequent lines describe execution events such as “C”all, “R”eturn, “I”nstantiation, and “D”estruction.

<trace information filename>

C <timestamp> <function name> <class name> <object id> <filename> <line number>

R <timestamp>

I <timestamp> <object id> <class name> <object name> <filename> <line number>

D <timestamp> <object id> <filename> <line number>

Trace Info File

ASCII file describing files, classes, and functions instrumented to generate a particular trace file.

FILE <full filename>

CLASS <class name>

FUNCTION <function name> <class name>

NOTES

� Message pattern refers to repeated sequences of messages, or function calls and returns. The notion of a message pattern was later expanded to include other types of interactions such as object creation/deletion, and thus the term interaction pattern.

� Hash-consing is a method in functional programming where trees built using cons cells are given a hash value. While a given sub-tree is being constructed, its hash value is computed and checked in the hash table of sub-trees. If a duplicate sub-tree has already been built, the new one is represented by the tree already constructed. Thus, only one instance of a unique tree exists.

� An equalized intensity scale varies both from low to high in intensity (luminence) and from violet to red in hue. At one end is dark violet, in the middle is medium green, and the other end is bright red (almost white).

� Vz is a proprietary cross-platform visualization framework developed and used at Bell Laboratories.

� This data was compiled from published meteorological data by Tessema Astatkie and used for nonlinear time series modeling in his Ph.D. Thesis, Queens University (1994) “Modulated Threshold Time Series Models.”

� Interaction patterns are not regular expressions because they do not support alternation.

� Details of how these tasks are performed using ISVis can be found in the Details of the first case study.

�PAGE �vii�

[�] Abowd, Gregory, Ashok Goel, Dean F. Jerding, Michael McCracken, Melody Moore, J. William Murdock, Colin Potts, Spencer Rugaber, and Linda Wills. MORALE—Mission Oriented Architectural Legacy Evolution. Proceedings of the International Conference on Software Maintenance, 1997.

[�] Alexander, Christopher, Sara Ishikawa, Murray Silverstein, Max Jacobson, and Ingrid Fiksdahl-King. A Pattern Language. New York: Oxford University Press, 1977.

[�] Ball, Thomas and Stephen G. Eick. Software Visualization in the Large. IEEE Computer, vol. 29, no. 4, 1996, pp. 33-43.

[�] Ball, Thomas and Stephen G. Eick. Visualizing Program Slices. Proceedings of the 1994 IEEE Symposium on Visual Languages, 1994, pp. 288-295.

[�] Barros, Jose and Henry Fuchs. Generating Smooth 2-D Monocolor Line Drawings on Video Displays. Proceedings of the 1979 SIGGRAPH Conference, vol. 13, no. 2, 1979, pp. 260-269.

[�] Basili, V. R. and H. D. Mills. Understanding and Documenting Programs. IEEE Computer, Oct. 1982.

[�] Beard, David V. and John Q. Walker. Navigational Techniques to Improve the Display of Large Two-Dimensional Spaces. Behaviour and Information Technology, vol. 9, no. 6, 1990, pp. 451-466.

[�] Beck, Kent and Ward Cunningham. A Laboratory For Teaching Object-Oriented Thinking. Proceedings of the ACM OOPSLA '89 Conference, 1989, pp. 1-6.

[�] Biggerstaff, Ted J. The Concept Assignment Problem in Program Understanding. Proceedings of the Working Conference on Reverse Engineering, 1993, pp. 27-43.

[�] Böcker, Heinz-Dieter and Jurgen Herczeg. What Tracers Are Made of. Proceedings of the ECOOP/OOPSLA '90 Conference, 1990, pp. 89-99.

[�] Booch, Grady. Object-Oriented Design with Applications. Benjamin Cummings, 1991.

[�] Brooks, Robert. Towards a Theory of the Comprehension of Computer Programs. International Journal of Man-Machine Studies, vol. 18, 1983, pp. 543-554.

[�] Bruegge, B., T. Gottschalk, and Bin Luo. A Framework for Dynamic Program Analyzers. SIGPLAN Notices: Proceedings of the 8th Annual ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, vol. 28, no. 10, 1993, pp. 65-82.

[�] Chimera, R. Value Bars: An Information Visualization and Navigation Tool for Multiattribute Listings (demo summary). Proceedings of the ACM SIGCHI '92 Conference on Human Factors in Computing Systems, 1992, pp. 293-294.

[�] Citrin, Wayne, Alistair Cockburn, Jurg von Kanel, and Raineer Hauser. Using Formalized Temporal Message-flow Diagrams. Software Practice and Experience, vol. 25, 1995, pp. 1367-1401.

[�] Cleveland, William S. The Elements of Graphing Data. Pacific Grove, CA: Wadsworth and Brooks/Cole, 1985.

[�] Cleveland, William S. Visualizing Data. Summit, NJ: Hobart Press, 1993.

[�] Coleman, Derek, Fiona Hayes, and Stephen Bear. Introducing Objectcharts or How to Use Statecharts in Object-Oriented Design. IEEE Transactions on Software Engineering, vol. 18, no. 1, 1992, pp. 9-18.

[�] Cook, J. E., and A. L. Wolf. Discovery and Validation of Processes. Proceedings of the NSF Workshop on Workflow and Process Automation in Information Systems: State-of-the-Art and Future Directions, 1996, pp. 53-57.

[�] Pattern Languages of Program Design, James O. Coplien and Douglas C. Schmidt eds. Addison-Wesley, 1995.

[�] De Pauw, Wim, Richard Helm, Doug Kimelman, and John Vlissides. Visualizing the Behavior of Object-Oriented Systems. Proceedings of the ACM OOPSLA '93 Conference, 1993, pp. 326-337.

[�] De Pauw, Wim, Doug Kimelman, and John Vlissides. Modeling Object-Oriented Program Execution. Proceedings of the European Conference on Object-Oriented Programming, 1994, pp. 163-182.

[�] De Pauw, Wim, David Lorenz, John Vlissides, and Mark Wegman. Execution Patterns in Object-Oriented Visualization. IBM T. J. Watson Research Center Whitepaper, 1997.

[�] Devanbu, P. GENOA- A Customizable, Language and Front-end Independent Code Analyzer. Proceedings of the International Conference on Software Engineering, 1992, pp. 307-317.

[�] Eick, Stephen G., Joseph L. Steffen, and Eric E. Sumner Jr. SeeSoft: A Tool for Visualizing Line Oriented Software Statistics. IEEE Transactions on Software Engineering, vol. 18, no. 11, 1992, pp. 957-968.

[�] Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics Principles and Practice. Reading, MA: Addison-Wesley, 1990.

[�] Furnas, George W. Generalized Fisheye Views. Proceedings of the ACM SIGCHI '86 Conference on Human Factors in Computing Systems, 1986, pp. 16-23.

[�] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison -Wesley, 1995.

[�] Garlan, David, Robert Monroe, and David Wile. ACME: An Architecture Description Interchange Language. Carnegie Mellon University, Computer Science Department White Paper, February, 1997.

[�] Goldberg, Adele. Smalltalk-80, The Interactive Programming Environment. Reading, Pa: Addison-Wesley, 1983.

[�] Graham, S. L., P. B. Kessler, and M. K. McKusick. An Execution Profiler for Modular Programs. In Software Practice and Experience, vol. 13, 1983, pp. 671-685.

[�] Grass, Judith E. and Yih-Farn Chen. The C++ Information Abstractor. Proceedings of the USENIX C++ Conference, 1990, pp. 265-277.

[�] Haeberli, Paul and Kurt Akeley. The Accumulation Buffer: Hardware Support for High-Quality Rendering. Proceedings of SIGGRAPH '90, 1990, pp. 309-318.

[�] Harel, David. On Visual Formalisms. Communications of the ACM, vol. 31, no. 5, 1988, pp. 514-530.

[�] Hearst, Marti A. TileBars: Visualization of Term Distribution in Full Text Information Access. Proceedings of ACM SIGCHI '95 Conference on Human Factors in Computing Systems, 1995, pp. 59-66.

[�] Heath, Michael T. and Jennifer A. Etheridge. Visualizing the Performance of Parallel Programs. IEEE Software, vol. 8, no. 5, 1991, pp. 29-39.

[�] Heath, Michael T., Allen Malony, and Diane Rover. Parallel Performance Visualization: From Practice to Theory. IEEE Parallel and Distributed Technology, vol. 3, no. 4, 1995, pp. 44-60.

[�] Hill, William C., James D. Hollan, Dave Wroblewski, and Tim McCandless. Edit Wear and Read Wear. Proceedings of the Conference on Human Factors in Computing Systems, 1992, pp. 3-9.

[�] Inselberg, A. and B. Dimsdale. Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry. Proceedings of the 1990 IEEE Visualization Conference, 1990, pp. 361-370.

[�] Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software Engineering: A Use-Case Driven Approach. Reading, Massachusetts: Addison-Wesley, 1992.

[�] Jerding, Dean F. and John T. Stasko. The Information Mural: A Technique for Displaying and Navigating Large Information Spaces. Proceedings of the IEEE Visualization `95 Symposium on Information Visualization, 1995, pp. 43-50.

[�] Jerding, Dean F. and John T. Stasko. The Information Mural. Georgia Institute of Technology Technical Report #GIT-GVU-96-25, 1997.

[�] Jerding, Dean F. and John T. Stasko. Using Information Murals in Visualization Applications. Proceedings of the 1995 Symposium on User Interface Software and Technology (Demonstration), 1995, pp. 73-74.

[�] Jerding, Dean F. and John T. Stasko. Using Visualization to Foster Object-Oriented Program Understanding. Georgia Institute of Technology Technical Report #GIT-GVU-94-33, July, 1994.

[�] Jerding, Dean F., John T. Stasko, and Thomas Ball. Visualizing Interaction Patterns in Program Executions. Proceedings of the International Conference on Software Engineering, 1997, pp. 360-370.

[�] Kazman, R., L. Bass, G. Abowd, and M. Webb. SAAM: A Method for Analyzing the Properties of Software Architectures. Proceedings of 16th International Conference on Software Engineering, 1994, pp. 81-90.

[�] Kimelman, Doug and Bryan Rosenburg. Strata-Various: Multi-Layer Visualization of Dynamics in Software System Behavior. Proceedings of the IEEE Visualization '94 Conference, 1994, pp. 172-178.

[�] Kleyn, Michael F. and Paul C. Gingrich. GraphTrace - Understanding Object-Oriented Systems Using Concurrently Animated Views. Proceedings of the ACM OOPSLA '88 Conference, 1988, pp. 191-205.

[�] Koike, Hideki. An Application of Three-Dimensional Visualization to Object-Oriented Programming. Proceedings of the 1992 International Workshop on Advanced Visual Interfaces, 1992, pp. 180-192.

[�] Kraemer, Eileen and Stasko, John T. The Visualization of Parallel Systems: An Overview. Journal of Parallel and Distributed Computing, vol. 18, no. 2, 1993, pp. 105-117.

[�] Kristensen, Bent Bruun. Complex Associations: Abstractions in Object-Oriented Modeling. Proceedings of ACM OOPSLA '94, 1994, pp. 272-283.

[�] Kung, C. H., J. Gao, P. Hsia, J. Lin, and Y. Toyoshima. Design Recovery for Software Testing of Object-Oriented Programs. Proceedings of the Working Conference on Reverse Engineering, 1993, pp. 202-211.

[�] Kung, David, Jerry Gao, Pei Hsia, Yasufumi Toyoshima, Chris Chen, Young-Si Kim, and Young-Kee Song. Developing an Object-Oriented Software Testing and Maintenance Environment. Communications of the ACM, vol. 38, no. 10, 1995, pp. 75-87.

[�] Laffra, Chris and Ashok Malhotra. HotWire -- A Visual Debugger for C++. Proceedings of the USENIX 6th C++ Technical Conference, 1994, pp. 109-122.

[�] Lange, Danny B. and Yuichi Nakamura. Object-Oriented Program Tracing and Visualization. IEEE Computer, vol. 30, no. 5, May, 1997, pp. 63-70.

[�] Larus, James R. and Thomas Ball. Rewriting Executable Files to Measure Program Behavior. University of Wisconsin-Madison, Computer Sciences Technical Report #1083, 1992.

[�] Lejter, Moises, Scott Meyers, and Steven Reiss. Support for Maintaining Object-Oriented Programs. IEEE Transactions on Software Engineering, vol. 15, no. 12, 1992, pp. 1045-1052.

[�] Letovsky, S. “Cognitive Processes in Program Comprehension”, In Empirical Studies of Programmers, E. Solloway and S. Iyengar eds. 1986, pp. 58-79.

[�] Linos, Panagiotis, Philippe Aubet, Laurent Dumas, Yan Helleboid, Patricia Lejeune, and Phillippe Tulula. Facilitating the Comprehension of C Programs: An Experimental Study. Proceedings of the 2nd Workshop on Program Comprehension, 1993, pp. 55-63.

[�] Littman, D. C., J. Pinto, S. Letovsky, and E. Soloway. “Mental Models and Software Maintenance”, In Empirical Studies of Programmers, E. Solloway and S. Iyengar eds., 1986, pp. 80-98.

[�] Livadas, Panos E., and Scott D. Alden. A Toolset for Program Understanding. Proceedings of the 2nd Workshop on Program Comprehension, 1993, pp. 110-118.

[�] Mackinlay, Jock, George G. Robertson, and Stuart K. Card. The Perspective Wall: Detail and Context Smoothely Integrated. Proceedings of the ACM SIGCHI '91 Conference on Human Factors in Computing Systems, 1991, pp. 173-180.

[�] Martin, Allen R. and Matthew O. Ward. High Dimensional Brushing for Interactive Exploration of Multivariate Data. Proceedings of the 1995 IEEE Visualization Conference, 1995, pp. 271-278.

[�] Miller, B. P., J. K. Hollingsworth, M. D. Callaghan, J. J. Dongarra, and B. Tourancheau. The Paradyn Parallel Performance Tools and PVM. Proceedings of the 2nd Workshop on Environments and Tools for Parallel Scientific Computing, 1994, pp. 201-210.

[�] Moher, Thomas G. PROVIDE: A Process Visualization and Debugging Environment. IEEE Transactions on Software Engineering, vol. 14, no. 6, 1988, pp. 849-857.

[�] Mohr, Bernd. A Portable Dynamic Profiler for C++ based Languages. University of Oregon, 1993.

[�] Monmonier, Mark. How to Lie with Maps, 2nd Ed. Chicago, IL: University of Chicago Press, 1996.

[�] Murphy, Gail C., David Notkin, and Kevin Sullivan. Software Reflexion Models: Bridging the Gap Between Source and High-Level Models. Proceedings of the Foundations of Software Engineering, 1995, pp. 18-28.

[�] Olshefski, David P. and Alan Cole. A Prototype System for Static and Dynamic Program Understanding. Proceedings of the Working Conference on Reverse Engineering, 1993, pp. 93-106.

[�] O'Riordan, Marign J. Debugging and Instrumentation of C++ Programs. Proceedings of the USENIX C++ Conference, 1988, pp. 227-242.

[�] Pennington, N. “Comprehension Strategies in Programming”, In Empirical Studies of Programmers: Second Workshop, G. M. Olsen, S. Sheppard, and E. Soloway ed., 1987, pp. 100-113.

[�] Plaisant, Catherine, David Carr, and Ben Shneiderman. Image-Browser Taxonomy and Guidelines for Designers. IEEE Software, vol. 12, no. 2, 1995, pp. 21-32.

[�] Price, Blaine A., Ronald M. Baecker, and Ian S. Small. A Principled Taxonomy of Software Visualization. Journal of Visual Languages and Computing, vol. 4, no. 3, 1993, pp. 211-266.

[�] Purtilo, James J. and John R. Callahan. Parse-Tree Annotations. Communications of the ACM, vol. 32, no. 12, 1989, pp. 1467-1477.

[�] Quatrani, Terry. Visual Modeling with the UML: A Rational Approach. New York: Addison-Wesley, 1997.

[�] Quilici, Alex. A Hybrid Approach to Recognizing Programming Plans. Proceedings of the Working Conference on Reverse Engineering, 1993, pp. 126-133.

[�] Rao, Ramana and Stuart K. Card. The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information. Proceedings of the ACM SIGCHI '94 Conference on Human Factors in Computing Systems, 1992, pp. 318-322.

[�] Reiss, Steven P. A Framework for Abstract 3D Visualization. Proceedings of the 1993 IEEE Symposium on Visual Languages, 1993, pp. 108-115.

[�] Reiss, Steven P. Interacting with the FIELD Environment. Software--Practice & Experience, vol. 20, no. S-1, June 1990, pp. 89-115.

[�] Reiss, Steven P. PECAN: Program Development Systems that Support Multiple Views. IEEE Transactions on Software Engineering, vol. SE-11, no. 3, 1985, pp. 276-285.

[�] Robertson, George G. and Jock D. Mackinlay. The Document Lens. Proceedings of the 1993 ACM Symposium on User Interface Software and Technology, 1993, pp. 101-108.

[�] Robertson, Scott P., John M. Carroll, Robert L. Mack, Mary Beth Rosson, Sherman R. Alpert, and Jurgen Koenemann-Belliveau. ODE: A Self-Guided, Scenario-Based Learning Environment for Object-Oriented Design Principles. Proceedings of ACM OOPSLA '94, 1994, pp. 51-64.

[�] Roman, Gruia-Catalin and Kenneth C. Cox. Program Visualization: The Art of Mapping Programs to Pictures. Washington University Technical Report #WUCS-92-06, February, 1992.

[�] Rosenblum, David S. and Alexander L. Wolf. Representing Semantically Analyzed C++ Code with Reprise. Proceedings of the Third USENIX C++ Conference, 1991, pp. 119-134.

[�] Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen. Object-Oriented Modeling and Design. New York: Prentice Hall, 1991.

[�] Sage++: A Class Library for Building Fortran 90 and C++ Restructuring Tools. University of Indiana, November, 1993.

[�] Sarkar, Manojit and Marc. H. Brown. Graphical Fisheye Views of Graphs. Proceedings of ACM SIGCHI '92 Conference on Human Factors in Computing Systems, 1992, pp. 83-91.

[�] Sarkar, Manojit, Scott S. Snibbe, Oren J. Tversky, and Steven Reiss. Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens. Proceedings of the 1993 ACM Symposium on User Interface Software and Technology, 1993, pp. 81-91.

[�] Sefika, Mohlalefi, Aamod Sane, and Roy H. Campbell. Architecture-Oriented Visualization. Proceedings of ACM OOPSLA ’96, 1996, pp. 389-405.

[�] Soloway, Elliot, Beth Adelson, and Kate Ehrlich. "Knowledge and Processes in the Comprehension of Computer Programs", In The Nature of Expertise, M. Chi, R. Glaser, and M. Farr eds. Lawrence Erlbaum Associates, 1988, pp. 129-152.

[�] Stasko, John T. and Charles Patterson. Understanding and Characterizing Software Visualization Systems. Proceedings of the 1992 IEEE Workshop on Visual Languages, 1992, pp. 3-10.

[�] Stasko, John T. and Eileen Kraemer. A Methodology for Building Application-Specific Visualizations of Parallel Programs. Journal of Parallel and Distributed Computing, vol. 18, no. 2, 1993, pp. 258-264.

[�] Stone, Maureen C., Ken Fishkin, and Eric A. Bier. The Movable Filter as a User Interface Tool. Proceedings of the ACM SIGCHI '94 Conference on Human Factors in Computing Systems, 1992, pp. 306-312.

[�] Topol, Brad, John T. Stasko, and Vaidy S. Sunderam. Monitoring and Visualization in Cluster Environments. Georgia Institute of Technology Technical Report #GIT-GVU-96-10, March, 1996.

[�] Tufte, Edward R. Envisioning Information. Cheshire, CT: Graphics Press, 1990.

[�] Tufte, Edward R. The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press, 1983.

[�] Vion-Dury, Jean-Yves and Miguel Santana. Virtual Images: Interactive Visualization of Distributed Object-Oriented Systems. Proceedings of OOPSLA '94, 1994, pp. 65-84.

[�] von Mayrhauser, A., and A. M. Vans. From Program Comprehension to Tool Requirements for an Industrial Environment. Proceedings of the 2nd Workshop on Program Comprehension, 1993, pp. 78-86.

[�] Wilde, Norman, and Ross Huitt. Maintenance Support for Object-Oriented Programs. IEEE Transactions on Software Engineering, vol. 18, no. 12, 1992, pp. 1038-1044.

[�] Younger, E. J., and K. H. Bennett. Model-Based Tools to Record Program Understanding. Proceedings of the 2nd Workshop on Program Comprehension, 1993, pp. 87-95.

