Depth Layers from Occlusions

http://www.cc.gatech.edu/cpl/projects/depthfromocclusion

- Brostow, Essa, ICCV 1999
 - → Presegment scene
 - → Edges form regions of common depth
 - \rightarrow Touch = is behind of
- Stauffer et al. 1997
 - → Assume blob is a person, identify head
 - → With calibrated
 - ground plane object position known

Problem underconstrained

Only relative depth recoverable

 Any depth assignment corresponds to possible scene

Depth assignment using MDL

- Scene boundary pixels hit more often than object boundary pixels
- Use MDL to find simple explanation of observation
- $\rightarrow\,$ Devise encoding that exploits scene boundaries
- → Find assignment of frames to layers with short encoding

back layer region $= \cup$ back layer blobs

 $E_{B} = b_{L} \log s$

front layer region

= U all blobs

 $+\frac{b_o}{b_o} \log l$ +(b_s+b_o) log (b_s+b_o) - b_s log b_s - b_o log b_o

Lab sequence - 2 layers

Arno Schödl, Irfan Essa Georgia Institute of Technology College of Computing - GVU Center

a ay er

Optimizing layer assignments

- sequence of $b_t \longrightarrow t$
- Wanted
- → number of layers
 → assignments of blobs to layers
- Divide sequence in half
- Adjust depth of halves
- Divide sequence into quarters
- Ådjust depth of quarters
- ... `
- Final pairwise collapse

Lab sequence

Construction sequence

Future work

- Suppress still images
 → consecutive images must have minimum
 - difference, otherwise delete

- Accretion/deletion
- Image edges
- Semi-rigid shape constraint

