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Abstract. Non-negative spectrogram factorization has been proposed
for single-channel source separation tasks. These methods operate on
the magnitude or power spectrogram of the input mixture and estimate
the magnitude or power spectrogram of source components. The usual
assumption is that the mixture spectrogram is well approximated by
the sum of source components. However, this relationship additionally
depends on the unknown phase of the sources. Using a probabilistic rep-
resentation of phase, we derive a cost function that incorporates this
uncertainty. We compare this cost function against four standard ap-
proaches for a variety of spectrogram sizes, numbers of components, and
component distributions. This phase-aware cost function reduces the es-
timation error but is more affected by detection errors.

Key words: audio processing, source separation, sparse representations,
time-frequency representations, unsupervised learning

1 Introduction

Non-negative spectrogram factorization (NSF) has been proposed for single-
channel source separation [1–3], music transcription [4, 5], and speech recogni-
tion [6]. The input mixture is first transformed into a time-frequency representa-
tion such as the short-time Fourier transform (STFT). Because of phase-invariant
aspects of human hearing the phase information in the STFT is removed yield-
ing the absolute value or absolute square of the STFT (i.e., magnitude or power
spectrogram) [2]. The resulting spectrogram matrix is then factored into the
sum of rank-one component spectrograms using independent component anal-
ysis (ICA) or non-negative matrix factorization (NMF). Each component com-
prises a static spectral shape and time-varying amplitude envelope. Ideally, each
component contains information unique to a particular source for separation or
a particular event for transcription. We focus on this basic approach although
various other algorithms incorporate sparseness, convolution, or multiple chan-
nels [4, 7, 8].

NSF methods commonly assume that the mixture magnitude or power spec-
trogram is well approximated by the sum of source components. ICA forces this
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relationship while maximizing the independence of the spectral components [1],
whereas NMF minimizes a cost function between the mixture spectrogram and
the sum of spectral components [9]. However, because of the nonlinearity of
the absolute value function a mixture spectrogram is not the sum of the compo-
nent spectrograms. Instead, the mixture spectrogram depends on the component
spectrograms and their phases. We derive a cost function suitable for NSF by
treating the phase as a uniform random variable and maximizing the likelihood
of the mixture spectrogram. In previous work, we derived the explicit likelihood
function for the case of two components [10]. In this paper, we extend this result
to the case of more than two components and show that it is analogous to the
multiplicative noise model employed by Abdallah and Plumbley [4]. Even though
this cost function is specifically tailored to non-negative spectrograms, the Eu-
clidean distance or generalized Kullback-Leibler divergence is more commonly
used for NSF. We compare each cost function based on its ability to estimate
the component spectrograms for a variety of spectrogram sizes, numbers of com-
ponents, and component distributions.

2 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) was first proposed for the decompo-
sition of images [11]. Image data is inherently non-negative and a single image
can be regarded as a linear combination of underlying image parts. NMF esti-
mates these components by minimizing the distance between a set of mixture
images contained in the columns of a matrix, A, and the sum of the component
matrices, B. The two common distance functions are the Euclidean distance:

‖A−B‖2 =
∑

ij

(Aij −Bij)2 (1)

and a generalized version of the Kullback-Leibler divergence:

D(A‖B) =
∑

ij

(
Aij log

Aij

Bij
−Aij + Bij

)
. (2)

When applied to non-negative spectrograms, A represents the mixture spec-
trogram and B represents the sum of component spectrograms. Instead of decom-
posing multiple images, spectrogram factorization decomposes multiple spectral
frames contained in the columns of A. Although magnitude or power spectro-
grams are non-negative they are not a linear combination of underlying com-
ponent spectrograms because of the nonlinearity of the absolute value function
used to generate them.

3 Non-negative Spectrograms

A popular way to transform an audio signal into a series of image-like represen-
tations is to extract its frequency spectrum at multiple time-points. We consider



Phase-Aware Non-Negative Spectrogram Factorization 3

the case of one mixture signal and model it as the sum of R source component
signals:

x(t) =
R∑

r=1

sr(t) . (3)

The short-time Fourier transform (STFT) is a linear transformation into the
frequency domain that preserves this relationship:

Fx(k, t) =
R∑

r=1

Fsr
(k, t) . (4)

The magnitude spectrogram is the absolute value of the complex-valued STFT:

Xkt = |Fx(k, t)| [Sr]kt = |Fsr (k, t)| . (5)

The original STFT contains additional phase information:

Fx(k, t) = Xkt(cos Θkt + i sin Θkt) =
∑

r

[Sr]kt(cos [Θr]kt + i sin [Θr]kt) . (6)

When applied to non-negative spectrograms, ICA and NMF estimate rank-one
component spectrograms. The columns of a K×R matrix W specify the spectral
shapes and the rows of an R × T matrix H represent the amplitude envelopes
of all the component spectrograms:

[Sr]kt = WkrHrt . (7)

The various algorithms for NSF vary in the way that they estimate W and H.

4 Non-negative Spectrogram Factorization

The vast majority of NSF methods treat each column of a magnitude or power
spectrogram matrix as though it were an image and use ICA or NMF to esti-
mate the components. To our knowledge, there has been only one cost function
specifically designed for non-negative spectrograms, namely that of Abdallah
and Plumbley [4]. They derive a divergence function based on a multiplicative
noise model for estimating the variance (i.e., power) at each time-frequency
bin. In this paper, we define the mixture magnitude spectrogram in terms of
the component magnitude spectrograms and their phases. Using a probabilistic
representation of the phase, we derive an analogous divergence function.

Both ICA- and NMF-based techniques implicitly assume that the mixture
non-negative spectrogram, X, is well approximated by the sum of the spectral
components, Sr. However, by incorporating the phase of the components, Θr,
we make this relationship precise:

Xkt =
√∑

qr

[Sq]kt[Sr]kt cos ([Θq]kt − [Θr]kt) . (8)

The mixture magnitude spectrogram does not equal the sum of component mag-
nitude spectrograms unless at most one component is active at a time or all
active components have the same phase.



4 Phase-Aware Non-Negative Spectrogram Factorization

5 Probabilistic Representation of Phase

Given the mixture spectrogram’s dependence on the phase in Equation 8, we
represent the phase as a uniform random variable. We also make the simplifying
assumption that the phase is independent at different time-frequency points.
To some degree, this is true. However, the unwrapped phase of a steady state
signal can be approximated from the previous two time-steps [12]. Although this
violates the independence assumption, we have found that the resulting approach
works well in practice.

We wish to maximize the likelihood of the mixture magnitude spectrogram
as a function of the source component magnitude spectrograms. For the case of
two components, Equation 8 is a function of one random variable (i.e., Θd =
Θ1 −Θ2) and it is relatively straightforward to derive p(X|S1, S2) directly [10].
However, for more components it becomes increasingly difficult to derive the
precise likelihood function. Instead, we estimate the likelihood using the central
limit theorem to capture the shape of the distribution for a large number of
components.

The probability density function for a complex random variable with mag-
nitude Sr and uniform random phase has a mean of zero and a variance of S2

r .
According to the Lindeberg-Feller central limit theorem [13], the sum of many
such variables tends toward a complex Gaussian with zero mean and a variance
of

∑
r S2

r . This theorem is valid under the Lindeberg condition, which states
that the component variances, S2

r , are small relative to their sum [13]. Applied
to magnitude spectrograms we have the following:

p(Fx|S1, . . . , SR) =
∏

kt

1
πΛkt

exp
(
−X2

kt

Λkt

)
, (9)

where Λkt =
∑

r [S2
r ]kt. We find the likelihood of X by integrating with respect

to phase, resulting in a Rayleigh distribution:

p(X|S1, . . . , SR) =
∏

kt

2Xkt

Λkt
exp

(
−X2

kt

Λkt

)
. (10)

6 Maximum Likelihood

In order to estimate Sr, we propose minimizing the negative log likelihood of X:

− log p(X|S1, . . . , SR) = −
∑

kt

[
log

(
2Xkt

Λkt

)
− X2

kt

Λkt

]
. (11)

For comparison, we frame our maximum likelihood approach in terms of a diver-
gence function. The minimum of Equation 11 is 1− log (2/Xkt) at Λkt = X2

kt. By
subtracting this value we find a divergence function that is non-negative reaching
zero only when all Λkt = X2

kt:

Ds = D(1‖X2/Λ) =
∑

kt

X2
kt

Λkt
− 1 + log

(
Λkt

X2
kt

)
, (12)
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which is equivalent to Equation 8 in Abdallah and Plumbley [4]. We derive the
gradient for Ds with respect to W 2

kr and H2
rt:

∂Ds

∂(W 2
kr)

=
∑

t

H2
rt

(
Λkt −X2

kt

Λ2
kt

)
∂Ds

∂(H2
rt)

=
∑

k

W 2
kr

(
Λkt −X2

kt

Λ2
kt

)
, (13)

where Λkt =
∑

r W 2
krH

2
rt. Although Ds is not convex with respect to W 2

kr or
H2

rt, we find local minima using the following multiplicative update rules:

W 2
kr ← W 2

kr

∑
t H2

rtX
2
kt/Λ2

kt∑
t H2

rt/Λkt
H2

rt ← H2
rt

∑
k W 2

krX
2
kt/Λ2

kt∑
k W 2

kr/Λkt
. (14)

7 Results

We compare the phase-aware cost function, Ds, to four other cost functions
based on Euclidean or Kullback-Leibler divergence for magnitude or power spec-
trograms. Figure 1 plots the shape of the likelihood functions for each of the cost
functions with X = 1. Magnitude spectrogram methods (Em and Dm) reach a
maximum on the line S1 + S2 = X. Power spectrogram methods (Ep, Dp, and
Ds) reach a maximum on the circle S2

1 + S2
2 = X2. When X = 1, the sum of

S1 and S2 must be greater than one. Ds encourages this result by penalizing
solutions near the origin more than the other cost functions.
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(a) Em = ‖X −WH‖2
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(b) Dm = D(X‖WH)
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(c) Ep = ‖X2 − Λ‖2
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(d) Dp = D(X2‖Λ)
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(e) Ds = D(1‖X2/Λ)

Fig. 1. The shape of the likelihood functions derived from the 5 labeled cost functions
for the case of two components and X = 1.
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In our experiment, we evaluate the performance of the cost functions for a
variety of spectrogram sizes, numbers of components, and component distribu-
tions. Specifically, we construct square spectrograms and vary their size with
K = T ∈ [32, 64, 128, 256, 512, 1024], R ∈ [1, . . . , 30], and W and H drawn from
the uniform, positive normal, or exponential distribution. After drawing W and
H from the specified distribution, we construct X using Equations 5–7 with uni-
formly distributed random phase, Θr. We then estimate W and H using each
cost function with multiplicative update rules derived in Section 6 or by Lee and
Seung [9]. Because scaling W by α and H by 1/α produces the same cost, we
normalize the rows of H to unit L2 norm after every update.

We evaluate each cost function according to the mean square error between
the original and estimated {Sr}. Because the factorization technique is permu-
tation invariant, we must determine the mapping between each estimated and
original Sr. For this purpose, we use a greedy algorithm that matches the two
most similar components (one original and one estimated) and then removes
them from consideration. The process repeats until the mapping is complete.
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Detection Rate and Estimation Error vs. Problem Difficulty
(Uniform dist.)
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Fig. 2. Estimation error and detection rate for the five cost functions.
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Figure 2 plots the average performance over ten trials for each configuration
of parameters. For space considerations, we only show R ∈ [1, . . . , 10] and W
and H drawn from the uniform distribution. Each of the 60 [R,K] pairs are
sorted along the x-axis in order of increasing minimum error among the five cost
functions. Clearly, the problem becomes more difficult as R increases or as K
decreases.

The bottom of Figure 2 plots the mean square estimation error. For simpler
versions of the problem, Ds outperforms the rest. However, toward the right
of the plot the performance becomes markedly worse and Em and Dm perform
better. This inversion of performance is linked to the detection rate.

The top of Figure 2 plots the detection rate. When each estimated compo-
nent uniquely matches a real component, the detection rate is 100%. However,
when none of the estimated components match one of the real components, that
component is not detected. We compute the detection rate as the fraction of real
components that are the closest match (in the mean square sense) for at least
one estimated component. At [R, K] = [4, 32], the detection rate for Ds drops
below 100% for the first time and this corresponds to the first large increase in
estimation error. After that, the estimation rate for Ds accelerates until it is the
worst of the group. We speculate that if 100% detection could be maintained,
Ds would continue to outperform the others.

The underlying distribution of W and H also affects estimation and detec-
tion. As presented, the cost functions implicity assume a uniform prior distri-
bution on W and H in the maximum likelihood framework. Therefore, as the
component distributions diverge from the uniform distribution (e.g., become
more sparse) the maximum likelihood approach becomes less realistic. The ag-
gregated mean square error for the uniform, positive normal (more sparse), and
exponential (most sparse) distribution is 0.036, 0.19, and 0.44, respectively. How-
ever, sparseness has the opposite effect on detection. All of the cost functions
attain 100% detection for more problems as sparseness increases. Table 1 lists
the number of problems that resulted in 100% detection and the number of times
each algorithm provides the best estimation error for each of the distributions
and R between 2 and 10.

Table 1. Summary of detection rate and lowest estimation error for R = [2, 10].

Distribution: Uniform Positive Normal Exponential
Cost func. 100% det. Best est. 100% det. Best est. 100% det. Best est.

Em 27 9 37 3 44 0
Dm 34 8 43 6 47 6
Ep 23 0 29 0 30 0
Dp 33 0 38 4 41 3
Ds 35 37 40 41 42 45

Total 152 54 187 54 204 54
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8 Conclusion

We present a new derivation of a divergence function, Ds, specifically tuned
to non-negative spectrogram factorization. We compare its performance against
four standard approaches for a variety of spectrogram sizes, numbers of compo-
nents, and sparseness. We show that this divergence improves the estimation of
the source components. However, it is more affected by detection error. Algo-
rithms aimed at improving detection rates (e.g., a prior distribution on W and
H) are likely to improve Ds.
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