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Ram Rao, Jonathon Su, Halûk Ayd�no�glu, Joey and Jon Arrowood, Balu Santhanam, and

Je� Price.

Most importantly, I am eternally grateful for my family for their unconditional love,

steadfast support and unsel�sh sacri�ce throughout my life. I owe them the world for their

faith in me and for teaching me, by example, how to love and to live. Thank God that I

come from a family that believes in prayer. I love them endlessly. I would also like to thank

my loved ones who have preceded me in death for the love and encouragement they showed

me while they were here. I love them all dearly. Last but not least, I owe countless thanks

to all of my friends for sharing their love and lives with me. Thanks for helping me to grow

and enjoy life.



v

Contents

Acknowledgments iii

Contents v

List Of Tables xi

List Of Figures xii

Summary xviii

1 Introduction 1

1.1 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background & Motivation 6

2.1 An Overview of Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Recognition of Human Interactions . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Representations for Interactions . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Computer Vision Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Feature Extraction & Representation . . . . . . . . . . . . . . . . . . . 11

2.4.2 Analysis Methods for Motion Characterization . . . . . . . . . . . . . 12

2.4.3 Classi�ers for Motion Recognition . . . . . . . . . . . . . . . . . . . . 16

2.4.4 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



3 ObjectSpaces: A Framework for Vision Recognition Tasks 19

3.1 The Role of Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 ObjectSpaces: An Architecture for Context Management . . . . . . . . . . 22

3.2.1 Other Frameworks for Recognition . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Using Object-Oriented Principles . . . . . . . . . . . . . . . . . . . . . 26

3.3 Building Context Models for Representation . . . . . . . . . . . . . . . . . . 28

3.3.1 The Article Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 The Person Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 The Scene Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Using Multiple Layers for Context Abstraction . . . . . . . . . . . . . . . . 32

3.4.1 The Extraction Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 The Object Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3 The Scene Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.4 Object-based Event Handling . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Generalized Class Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Hand Motion Analysis 40

4.1 Tracking People . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Finding People . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Finding and Tracking the Hands . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Context-Enhanced Linear Prediction of Hand Centroids . . . . . . . . 49

4.1.4 Detecting Interaction with Articles . . . . . . . . . . . . . . . . . . . . 53

4.2 Characterizing Actions using Hidden Markov Models . . . . . . . . . . . . . 55

4.2.1 Background & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 HMM Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Observation Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Training Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 HMM Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.4 Model Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.5 Viterbi Parsing of Observations . . . . . . . . . . . . . . . . . . . . . . 64

vi



5 Evaluating Evidence for Recognition Tasks 67

5.1 Extracting Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Image-based Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.2 Object-based Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.3 Action-based Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Evaluating Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Bayesian Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Evaluating Evidence for Single-Tasked Activities . . . . . . . . . . . . 75

5.2.3 Evaluating evidence for classifying unknowns . . . . . . . . . . . . . . 78

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Experiment I: Capturing Experiences . . . . . . . . . . . . . . . . . . 84

5.3.2 Experiment II: Object Recognition from Available Evidence . . . . . . 85

5.3.3 Experiment III: Object Recognition from Action . . . . . . . . . . . . 87

5.3.4 Experiment IV: Object Recognition of Background Objects . . . . . . 87

6 Recognizing Multitasked Activities 91

6.1 Characteristics of Multitasked Activities . . . . . . . . . . . . . . . . . . . . 92

6.2 Modeling Multitasked Activities . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Representing Multitasked Activities using Stochastic Context-Free Gram-

mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Parsing SCFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.1 String Generation from Event Detection . . . . . . . . . . . . . . . . . 100

6.4.2 The Earley-Stockle Parsing Algorithm . . . . . . . . . . . . . . . . . . 104

6.4.3 Calculating Forward and Inner Probabilities . . . . . . . . . . . . . . . 110

6.4.4 Viterbi Parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Parsing and the ObjectSpaces Framework . . . . . . . . . . . . . . . . . . . 113

6.5.1 Parsing in Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.2 Parsing Separable Activities . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.3 Error Detection & Recovery . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5.4 Parsing with Adaptive Grammar . . . . . . . . . . . . . . . . . . . . . 121

vii



6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6.1 Experiment V: Low-level Event Detection . . . . . . . . . . . . . . . . 127

6.6.2 Experiment VI: Error Detection & Recovery . . . . . . . . . . . . . . . 128

6.6.3 Experiment VII: High-level Behavior Assessment . . . . . . . . . . . . 130

6.6.4 Experiment VIII: Adaptive Grammar . . . . . . . . . . . . . . . . . . 131

6.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Conclusions 132

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4 Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Appendix A Three Key Problems of the Hidden Markov Model 137

A.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2 The Evaluation Problem . . . . . . . . . . . . . . . . . . . . . . . 138

A.2.1 The Forward Algorithm . . . . . . . . . . . . . . . . . . . . 139

A.2.2 The Backward Algorithm . . . . . . . . . . . . . . . . . . . 140

A.3 Training HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.3.1 The Baum-Welch Algorithm . . . . . . . . . . . . . . . . . . 141

A.4 Decoding HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.4.1 The Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . 144

A.4.2 HMM Topologies . . . . . . . . . . . . . . . . . . . . . . . . 145

Appendix B Blackjack \21" 147

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2 Rules of the Game . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2.1 Making bets . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2.2 Value of Cards . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.3 How the dealer plays his hand . . . . . . . . . . . . . . . . . . . . 149

B.4 Player Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

viii



ix

B.4.1 Hitting/Standing . . . . . . . . . . . . . . . . . . . . . . . . 149

B.4.2 Doubling Down . . . . . . . . . . . . . . . . . . . . . . . . . 149

Appendix C Vision Action Recognition System (VARS) 151

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Appendix D A Grammar Overview 157

D.1 Overview of Syntactic Pattern Recognition . . . . . . . . . . . . 157

D.2 Types of Grammars . . . . . . . . . . . . . . . . . . . . . . . . . 158

D.2.1 Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

D.3 Rule Probability Estimation for SCFGs . . . . . . . . . . . . . . 162

D.4 Specifying Activities with Grammar . . . . . . . . . . . . . . . . 162

D.5 Recursive Grammar . . . . . . . . . . . . . . . . . . . . . . . . . 163

D.6 Complexity of the Earley-Stolcke Algorithm . . . . . . . . . . . . 167

Bibliography 169

Vita 180



x

List of Tables

2.1 Several classi�cation schemes used by action and gesture recognition systems. Con-

tinued in Table 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Continued from Table 2.1: Several classi�cation schemes used by action and gesture

recognition systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Chart demonstrates hierarchical organization of information. . . . . . . . . . . . 25

3.2 Article class data variables for representing context, class properties, and behaviors. 30

3.3 Article class functions for manipulating data variables. . . . . . . . . . . . . . . 30

4.1 The eight extremal points. [63] . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Object-to-object hand transition matrix K for automobile domain. . . . . . . . . 72

5.2 Summary of single-tasked activities and corresponding recognition rates in three

domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Experiment I: OÆce, kitchen, & automobile objects with associated actions and

recognition accuracy, respectively. yClass with multiple appearance descriptions stored

in class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Snapshot of unprocessed, low-level object-oriented evidence collected by ObjectSpaces

during a Blackjack card game. Items in italics are objects containing more embedded

data. Corresponding screen capture illustrates actual VARS data in Figure C.5. . . 101

6.2 Earley parsing: (a) Example grammar (b) Parsing steps of the string ab. . . . . . 109

6.3 SCFG G21 for Blackjack/\21" card game: Production rules, probabilities, and de-

scriptions. Detectable domain-speci�c events make up the terminal alphabet VT of

G21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



6.4 Example strings from a game of Blackjack. Subscripts on each terminal denotes i)

ID of person making contact with object, and ii) ID of owner of object, respectively.

ID numbers: dealer(0), player A(1), and player B(2). . . . . . . . . . . . . . . . 117

6.5 a) Simple CFG grammar. A deletion error occurs in the detection of events aabc : : :;

input only contains abc : : : b) Shows the Earley chart after the �rst symbol is scanned.

The next scanned symbol, b, will cause parsing to fail under normal conditions. c)

Continuation of Earley Chart shows parser recovery attempts under di�erent error

assumptions. �Scan of hypothetical symbol is simulated to promote parsing step. . 122

6.6 Experiment V: Detection rate of domain-speci�c events which make up the terminal

alphabet VT of G21. Errors are categorized as insertion, substitution, and deletion,

respectively. yDenotes events with no signi�cance to legitimate Blackjack play, but

can be used to detect illegal occurrences. . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Experiment V: Detection and error rates for Corpus A with error recovery turned

on and o�. Error recovery improves overall detection rate by 33.8%. . . . . . . . . 128

D.1 Left Corner PL and Reexive Transitive Closure RL matrices for a simple SCFG. . 164

D.2 Unit Production PU and Reexive Transitive Closure RU matrices for a simple SCFG.166

D.3 Stolcke's example: (top) A simple SCFG with RL and RU . (lower) The left column

represents the parsing chart while the two right-most columns represent the forward

and inner probabilities, respectively, for each state. In both � and  columns, the

\�" separates old factors from new ones. \+" indicates multiple derivations of the

same state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xi



xii

List of Figures

2.1 (left): Eadward Muybridge (1830-1904) (right): Photographs of sledge hammering

taken by a process Muybridge invented that used a battery of still cameras [40]. . 7

2.2 Methods of feature representation from a sequence of images. . . . . . . . . . . . 12

2.3 Simpli�ed visualizations of Stoll's 3D model for a bowling motion. . . . . . . . . 13

3.1 Displacement (dx; dy) during circular hand motion. . . . . . . . . . . . . . . . . 21

3.2 ObjectSpaces is a top-down, bottom-up framework that facilitates information shar-

ing and knowledge discovery by passing information between layers using object-

oriented constructs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Generalized Class Models (GCMs) for the book and notebook class with actual

templates from examples. The GCM o�ers hierarchical organization of object types. 26

3.4 ObjectSpace's layered, object-oriented framework allows multiple activity domains

to be processed by a single system. Class model reuse is also encouraged. . . . . . 27

3.5 Highlighted articles: headphones, mouse, telephone, etc. from ceiling-mounted cam-

era. The hands are also highlighted. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Structure for a book article. Note arm span (circular shaded area) and hand regions

of person are superimposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 View-based model for a Person object is inspired by anatomical models. Here, Q

represents the area spanned by the hands. . . . . . . . . . . . . . . . . . . . . . 32

3.8 Schematic Diagram: Hand tracking algorithm labels colored regions to �t person

model: (top sequence) With only knowledge of the input image, tracking mislabels

region in frame n as hand is occluded by object; (bottom sequence) With scene and

person information, tracking determines a possible perimeter where right hand can

be even though it is occluded. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



3.9 Active Hand Zones: Zones with vertical lines indicate areas less likely to �nd hand

regions while diagonal zones suggests more likely zones. . . . . . . . . . . . . . . 37

4.1 Connected component labeling: (a) Original image I , (b) Color-based segmentation

using an under-speci�ed C produces B with many sparse pixels and several potential

groups (c) Subsampling with �m = 1 and m = 3 of B generates bB and two desirable

groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Comparison of the number of operations used in Connected Component Labeling

for various block sizes. For a 500 frame sequence of a pair of hands, increasing

block size from 3�3 to 5�5, 7�7, or 9�9 reduces operations by 63%, 80%, and 87%,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 (a) Original image, (b) Color-based segmentation and grouping of regions. . . . . 46

4.4 Diagram illustrates heuristic �lters used to determine likelihood of a colored blob

given pre-de�ned appearance-based parameters. . . . . . . . . . . . . . . . . . . 48

4.5 Context-enhanced estimation: Enhanced predictor x̂t+1 slides between �xt+1 (no

context, i.e., � = 0) to h (max. context, � = 1). . . . . . . . . . . . . . . . . . . 50

4.6 Linear Prediction versus Context-Enhanced Estimation: (a) Per Frame Error (b)

Context-Enhanced estimation reduces cumulative square error by 26.68% over Linear

Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Hand-object contact: Extremal points provide better region perimeters than bound-

ing boxes for various hand orientations. . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Portion of key frames illustrate blob tracking around article perimeter. . . . . . . 54

4.9 Markov chain - States with transition probabilities and deterministic output. State

sequence can be determined uniquely from output [130]. . . . . . . . . . . . . . . 56

4.10 HMM - States with transition probabilities and probabilistic output. State sequence

can not be determined uniquely from outputs. . . . . . . . . . . . . . . . . . . . 57

4.11 Gearbox uses translation matrix T to map bounding box coordinates back to origin.

No rotation is required, i.e., � = 0. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 (a) Our empirically derived 6 state, semi-ergodic HMM with skip transitions; (b)

image key frames that are representative of the 6 corresponding states of the \ip-

forward" action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



4.13 Other topological structures used to model actions. . . . . . . . . . . . . . . . . 63

4.14 Bu�er containing hand positions feeds observation vectors of variable length to class-

related HMMs, which are evaluated in parallel. . . . . . . . . . . . . . . . . . . 64

4.15 Maximum normalized probability per frame (smooth curve) with the corresponding

length T of the observation vector. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.16 \Flip Forward" HMM output: Mean log likelihood per frame (action is repeated). 66

5.1 Image-based Evidence: Background segmentation reveals newly introduced objects

that can be analyzed to recover appearance-based features, such as aspect ratio,

pixel area, orientation, the image template, and bounding region. . . . . . . . . . 69

5.2 The area spanned by the hands during the \ip forward" action helps to de�ne the

bounding box of a book that is initially part of the background. . . . . . . . . . . 73

5.3 To accommodate various scenarios, multiple Markov models are used to represent

some high-level activities, such as acceleration. . . . . . . . . . . . . . . . . . . . 75

5.4 Contact events and low-level hand actions feed into a bank of Markov models for

recognizing single-tasked activities. . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Belief network corresponding to a na��ve Bayesian classi�er for selecting the most

likely generalized class model (GCM). . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 (a) Probability of image evidence given class model P (�ijMk) (b) corresponding

mean variance over window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 (a) Initial background snapshot of scene includes known articles: chair and keyboard.

(b) Background after book, notebook, mouse, and printer articles are introduced.

(c) Background subtraction reveals newly introduced articles. . . . . . . . . . . . 85

5.8 From experiment II, as evidence from one of four unknowns Zi is collected, the

strength of belief is shown in proportional to horizontal grayscale bars: (a) oÆce

environment (b) kitchen environment . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 (a) from experiment III, mean log probability of GCM classi�cation over several

action events; (b) from experiment III, shows the accumulated likelihoods of several

actions as they occurred throughout the corresponding sequence, with the most

probable action per event highlighted (top) . . . . . . . . . . . . . . . . . . . . 89

xiv



5.10 from experiment IV, GCM Mean log probability of unknown object without image-

based segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Framework for SCFG-based classi�cation is an extension of ObjectSpaces. . . . . 91

6.2 Joint state of HMM generated by the cross-product of all possible component states

[31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Grammar derivation tree describes a single person juggling balls into the air. . . . 95

6.4 Shaded from white to black, small boxes indicate previous n hand positions (white

indicating the most recent). The minimum square distance between each hand

centroid and object centroid is found to determine the last person to touch an article.103

6.5 Each dealer-player group represents separable (independent) roles. Within each

group, individual roles are non-separable (dependent) and share the same grammar. 115

6.6 Using Corpus C, the complexity versus the length of the error burst is illustrated.

Here complexity refers to the amount of system resources used, including computa-

tion and memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7 Trained behavior pro�les of player strategy for novice and expert. . . . . . . . . . 130

A.1 Computation complexity grows exponentially as the number of states or state tran-

sitions are increased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2 Example topological structure: Fully-connected ergodic HMM . . . . . . . . . . 145

A.3 Example topological structure: Left-to-Right HMM with Skip Transitions . . . . . 146

C.1 VARS dialog for con�guring hand color distribution C: Using a manually placed

cross-hair cursor over the pixel of interest, the distribution adds all colors within the

standard deviation speci�ed by seed variation. . . . . . . . . . . . . . . . . . . 152

C.2 VARS dialog for con�guring HMM: Model topology and initial parameters are set

here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C.3 VARS dialog for con�guring hand region area (max. and min. ) and ration of

bounding box sides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

C.4 VARS dialog for con�guring scene: Know articles, activity zones, people, initial

background, etc. are set up here. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xv



xvi

C.5 Actual VARS screen capture shows evidence corresponding to data appearing in

Table 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D.1 From inspection, we expect the ? to be a cross, despite the fact that its closest

neighbors are mostly naughts. Syntactic pattern classi�er utilize structure whereas

conventional pattern recognition approaches tend to rely on quantitative measures

like distance. Provided courtesy of Michael Alder. . . . . . . . . . . . . . . . . . 158



xvii

Summary

In this dissertation, we address the problem of recognizing human interactions with objects

from video. Methods for recognizing these activities using human motion and information

about objects are developed for practical, real-time systems. We introduce a framework,

called ObjectSpaces, that sorts, stores, and manages data acquired using low-level vision

techniques into intuitive classes. Our framework decomposes the recognition process into

layers, i.e., a low-level layer for routine hand and object tracking and a high-level layer for

domain-speci�c representation of activities. Segmenting recognition tasks and information

in this way encourages model reuse and provides the exibility to use a single framework

in a variety of domains.

We present several ways of using context to aid in recognition problems. We ex-

ploit object context information (class, location, etc.) to help recognize hand-based actions

and to enhance hand tracking. To classify unknown objects, we evaluate action context

along with low-level image features and associations with other objects, where available.

Throughout these approaches, we combine stochastic methods for classi�cation of complex

activities. Low-level hand actions associated with objects are recognized using the hidden

Markov model. Markov chains are used to characterize a sequence of these low-level inter-

actions so that single-tasked activities can be classi�ed. At the very highest level, we use

stochastic context-free grammar to represent the structure in activities that involve multi-

ple objects and people over extended periods of time. We also provide extensions to the

Earley-Stolcke parsing algorithm that enable error detection and recovery as well as adapt

stochastic grammar to improve recognition. We also present methods of quantifying group

and individual behavioral trends in activities with separable roles.

We show results of activity recognition in various domains, including an automobile,



a kitchen, and an oÆce. Our approach is appropriate for locating and classifying both rigid

and deformable objects under a variety of conditions including partial or full occlusion.

We also provide results where both familiar and previously unseen objects are classi�ed

from action alone. From experiments with the card game, Blackjack, we produced high-

level narratives of multi-player games and successful identi�cation of player strategies and

behavior.
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CHAPTER 1

Introduction

\If you want to know the future, build it."

- Mark Weiser, [144]

Computer vision is a mechanism that will enable future generations of computers to be more

perceptive of their surroundings and more capable of interacting intelligently with people.

Vision-based technologies are posed to revolutionize the ways people relate to computers,

and likely, the ways computers relate to people. The range of applications, which include

automatic video surveillance and interactive spaces, is virtually unlimited.

In this dissertation, we focus on building computational awareness of human inter-

actions with objects from video. Speci�cally, we are addressing the need for methods to

recognize complex human activities as well as objects in the surroundings. Our research

targets the range of activities that

(a) exhibit regular patterns that follow well-understood rules or structure,

(b) can be de�ned semantically, and

(c) possess measurable, salient attributes that can be characterized.

To capture many of these experiences, recognition methods are needed that can ac-

commodate multiple users performing complex, coordinated tasks with several objects. As

vision systems attempt to solve more sophisticated problems, formal approaches for utiliz-

ing and managing information will be required. Moreover, a pragmatic system design that

recognizes interactions in real-time and over extended periods is also desirable.

To support computational perception of people and their interactions with objects,

we have developed methods for extracting low-level features from video that can be used to



assemble higher-level representations of activity. The �rst step towards activity recognition

requires a means of acquiring and analyzing motion-based events over time. Appearance-

based features, like color and shape, along with information about the environment, such

as the location of known objects, are assessed to track the hands during interactions. Our

correspondence algorithm features estimates that improve linearly predicted positions of

future hand locations using environmental information, and activity zones that use spatial

context to assess hand traÆc areas in the scene.

Hand motion is analyzed for recognition of low-level, pre-trained actions, which are

characterized using hidden Markov models (HMMs). Higher-level, single-tasked activi-

ties, which are represented by Markov chains, are recovered by evaluating the sequence

of low-level interactions generated by motion tracking and analysis. We demonstrate that

recognition of interactions is easier and more reliable if we know the object's class and other

contextual information.

We also prove that recognizing actions is useful for object discrimination. We o�er a

new approach to object classi�cation that exploits detected actions, low-level appearance

features, and object-based context to di�erentiate the class of unknown objects. A Bayesian

classi�er provides maximum likelihood classi�cation by adapting how image-, object-, and

action-based evidence is weighed as it is accumulated over time. Our approach is appropriate

for locating and classifying objects under a variety of conditions including full occlusion.

We have also developed new techniques for adapting stochastic grammar designed

to represent the structure of multitasked activities. Multitasked activities are complex

interactions that involve multiple sub-tasks (single-tasked activities), objects, and people.

High-level events of these activities are detected using heuristic models that take advantage

of domain knowledge and low-level image-, object-, and action-based evidence. We o�er

new event parsing strategies that provide error detection and recovery. We also show novel

methods of quantifying group and individual behavior in activities with separable roles.

These extensions to conventional stochastic parsing provide real-time recognition of rule-

based tasks.

To organize and exploit all of the information that is collected over the course of

complex activities, we introduce an object-oriented framework, called ObjectSpaces. Ob-
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jectSpaces is suitable for recognition tasks involving hand-based interactions with objects.

This top-down, bottom-up framework serves as a backbone for all tracking and recognition

processes by embracing intuitive policies for organizing, maintaining, and sharing data.

Object classes are created for objects, people, and the activity domain. Classes, which

are essentially containers for placing object-speci�c data and functions, provide hierarchical

categorization of complex information. By exploiting these features, we show that vision

applications can be decomposed into layers, which enable reuse of classes, provide design

exibility, and make recognition problems easier to solve. ObjectSpaces o�er several ad-

vantages over an ad-hoc system design, including:

� a self-maintaining database of class models,

� a scaleable, modular, and eÆcient architecture appropriate for real-time implementa-

tion, and

� object-based event handling and focus-of-attention.

To demonstrate the eÆcacy of our approach, we have constructed a real-time vision

system using Visual C++. We examine human activities in several domains, including an

oÆce, a kitchen, and an automobile, with average recognition rates exceeding 87%. We also

demonstrate detection and recognition of both familiar and previously unseen objects using

image-, object-, and action-based evidence. Similar experiments were also conducted using

only action-based evidence to classify both rigid and deformable objects. Experiments for

recognizing multitasked activities are also presented. Using stochastic context-free grammar

to parse events from the card game Blackjack, we produced high-level narratives of multi-

player games and successfully identi�ed player strategies and behavior.

Recognition of human interactions is a complex image and signal understanding prob-

lem that requires low-level image processing and pattern analysis as well as syntactic pattern

classi�cation to exploit high-level structure in activities. In this dissertation, we show that

our approach o�ers a compelling solution to the problem of computational awareness of

multitasked activities. Our work represents one of the �rst signi�cant contributions to

vision-based recognition of multitasked activities, so there is very little existing work with

which to compare our results. In summary, the major contributions of our research are:
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� methods for extracting and managing low-level information from video,

� action recognition from exploiting object and domain context,

� object recognition using action context, and

� recognition of multitasked activities using adaptive stochastic context free grammar

with error detection and recovery.

1.1 Organization of Dissertation

The remainder of this dissertation is dedicated to describing the challenges involved in

building perceptive, computer vision-based systems to recognize human interactivity.

Chapter 2 provides motivation for awareness of human activities by suggesting pos-

sible applications. We discuss human interactions and the fundamental components of

vision-based systems. Key challenges related to activity recognition are mentioned. We

conclude this chapter with a brief review of motion analysis, action recognition, and object

classi�cation methods.

Chapter 3 presents ObjectSpaces, our framework for facilitating recognition tasks.

ObjectSpaces, which handles context management and organizes extracted information,

serves as a backbone for various processes. We discuss aspects of the architecture, including

object-oriented design principles as well as basic constructs for object class development and

reuse. Layers for decomposing the recognition process and a class model database are also

highlighted.

Chapter 4 describes how hands are identi�ed and tracked using low-level image fea-

tures and environmental information. We continue with a brief overview of the hidden

Markov model and its applicability to human motion analysis. We also discuss issues re-

lated to implementation, such as initialization, topology, and computation.

Chapter 5 introduces evidence based on hand actions, image appearance, and objects

association to recognize single-tasked activities or to classify objects. We present Bayesian

decision theory and belief networks as the basis for recognition. We also provide experi-

mental results from a variety of domains and testing conditions.
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Chapter 6 de�nes \multitasked activity" and highlights its associated challenges. Af-

ter a brief review of stochastic context-free grammar, we present an approach to parsing

continuous, concurrent streams of events from multiple people and objects. Experiments

deal with rule-based activities like Blackjack (card game).

Chapter 7 provides a summary of contributions in this dissertation. Future work and

direction are also mentioned.

Appendix A describes the three key problems of the hidden Markov model in detail.

Appendix B is a reference for rules of the card game Blackjack/21.

Appendix C provides information on the Vision Action Recognition System (VARS),

a real-time vision analysis system implemented in Visual C++.

Appendix D provides on review of grammar and syntactic pattern recognition.
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CHAPTER 2

Background & Motivation

We hope to establish computer awareness of the environment, which is the �rst major step

toward developing truly intelligent systems. Systems that are aware of their surroundings

stand a much better chance of recognizing, learning and anticipating human activity. Sig-

nal processing and signal understanding represent key components of a solution to these

issues. Throughout this dissertation, we will present approaches for signal representations

that extend traditional signal- and image-based processing by leveraging knowledge-based

resources like contextual information. In addition to quantitative models to represent mo-

tion analysis, methods are needed to capture and exploit dynamic information about the

environment.

In this chapter, we begin by highlighting vision and several practical applications. We

continue with a review of many of the fundamental issues with image-based computer vision

systems, including feature extraction and motion analysis. We will also highlight several of

the challenges that we address in this research. Related and existing work on action and

object recognition will be surveyed.

2.1 An Overview of Computer Vision

Within the past few years, there has been a tremendous amount of interest in teaching

computers to understand human behavior from images and video. Surprisingly, the initial

impetus for today's work in human motion can likely be traced back over 112 years ago

when Eadweard Muybridge published \Animal Locomotion" in 1887 [101]. Muybridge,

regarded as the Father of Motion Pictures, was the �rst to capture photographic recordings

of humans and animals in motion for examination purposes. His work is one of the most



Figure 2.1: (left): Eadward Muybridge (1830-1904) (right): Photographs of sledge hammering

taken by a process Muybridge invented that used a battery of still cameras [40].

comprehensive analysis of movement ever undertaken and is still widely used today as a

source of illustration and for reference (see Figure 2.1).

However, it was Roberts' monumental work that began computer vision as it is known

today. In the early 1960s, he was able to characterize the three-dimensional structure and

arrangement of simple trihedral-vertex polyhedra from digital images [122]. Feeding on

this modest but celebrated achievement, researchers continued to enjoy several episodes of

moderate progress throughout the 1970s and 1980s, but not enough to satiate all of the hype

promoting vision. Compromised by their incredible expense and painfully slow operation,

most of the early vision systems lacked the robustness to do little more than recognize

simple geometric shapes in low-resolution monochrome images. The spotlight quickly faded

on those initial systems after the sobering realizations �nally started to sink in: vision is a

very diÆcult problem that can not be solved using simple, single-faceted strategies.

Although vision problems have not gotten any easier, researchers are much better

equipped today to address its issues. The catalyst for the latest renaissance in image un-

derstanding has likely come from more powerful computers, inexpensive cameras, and a

body of maturing knowledge. As proof of this trend, consider these few facts: standard

desktop compute power has increased by 1,333% in the last ten years [97]; the average price

of video capture hardware for the desktop has plummeted over 1,100% since 1989 [60, 143];
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as of September 1998, over 5,724 journal articles have been published in computer vision

since 1983 [68]. Moreover, the critical mass of complementary technologies needed to make

perceptive systems not only a reality, but pervasive, are arriving and should extend the

range of potential applications. These technologies include cheap but massive data stor-

age, standardization of digital media and formats, multimedia architectures and operating

systems, high-speed networks, distributed databases, and the Internet.

2.2 Applications

Arguably, there is no shortage of applications that can take advantage of human action

perception. For starters, human-computer interfaces using this technology will permit peo-

ple to interact with computers outside of the traditional desktop setting, paving the way

for computer-embedded environments. Many futurists envision environments driven by hu-

man behavior and situational context, making the underlying technology appear to work

e�ortlessly and transparently. Several potential application areas for vision include:

� automatic video surveillance [34, 52, 111];

� unsupervised annotation of video;

� content-based image storage and retrieval;

� interactive tutors that teach activities, such as cooking, by observing and responding

to user behavior;

� action-model based coding for scene indexing and annotation, for driving animation,

or for reconstructing scenes in a remote location;

� self-checkout stations in department stores and supermarkets to monitor customer

merchandise scanning [105, 106];

� human activity analysis in retail, banking, and industrial environments [105];

� video game user interface driven by user actions or gestures [111];
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� systems for monitoring and assisting people with disabilities, including the hearing

impaired and the elderly [115, 130];

� autonomous mobile robots and agents with environmental perception [58];

� and smart rooms for smart living areas [47, 49, 55, 81, 99, 100, 124].

2.3 Recognition of Human Interactions

In this dissertation, we primarily consider physical interactions between people and other

objects in the surroundings. We leverage what is already known about an object so that

we only have to look for associated interactions instead of attempting to classify the full

spectrum of human motion. In the following section, we review action recognition.

2.3.1 Action Recognition

Action recognition is closely related to gesture recognition, but typically involves a broader,

less structured class of animated body motions. While both are inexplicably connected

to the behavioral context in which they are used, most gestures that can be classi�ed are

reserved to augment communication between people. We concentrate on actions performed

on some object by a person. These actions are not only intentional, but serve some objec-

tive or motive with respect to some object. Recognition of human activities poses several

challenges that need to be addressed [45]:

� Repeated performances of the same activity by the same human vary even when all

other factors are held constant;

� Similar activities are performed by di�erent individuals in slightly di�erent ways;

� Parsing an individual activity from a continuous performance of action is often diÆ-

cult;

� Similar activities can have a variety of temporal durations;

� Di�erent activities can have similar temporal durations or motion pro�les;
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� Occlusion and self-occlusion of body parts can occur during activity performance;

� The projection of moving body parts, and hence the interpretation of action, is de-

pendent on the viewpoint;

� The distance between the camera and the human a�ect image-based measurements.

We deal speci�cally with common activities that take place in well-understood domains, i.e.,

oÆce work, card games, driving, etc. The bulk of our research involves the characterization

of hand-based motion although some full-body movement is studied.

There is a general tendency to use the words \action" and \activity" interchangeably,

but this may cause some confusion in future discussions. We refer to actions as the basic

building blocks of activities. An activity represents a family of actions that are coordinated

to accomplish related tasks. For example, the \atomic" actions cut, stir, and slice all �t

under the eating activity. People intentionally participate in a range of di�erent activities to

accomplish speci�c tasks. We divide the domain of activities into two camps: single-tasked

activities, where there is an ordered sequence of actions generated by a single user, and

multitasked activities, where multiple people and objects are involved.

2.3.2 Representations for Interactions

One of the predominant goals of this research is to exploit the relationship between an

object and a �nite set of possible interactions with that object. For example, the set of

actions associated with a chair might include sitting in it, pushing it, or even standing in

it. By constructing motion models for these three actions, we can appropriately describe

interactions with the chair. Naturally, there is also a complementary set of actions that

are not modeled, such as kicking or throwing the chair. Even without a motion model for

these actions, we may still be able to describe the interaction by measuring the consequence

of contact with the chair. Assessing the e�ects of contact will allow us to conclude that

the chair was moved although we can not determine how it was moved. In the worst case

scenario where there is neither a model nor adequate consequential information, we can only

establish that some contact between a person and object has occurred. However, over time
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we may be able to establish important contact patterns simply by observing the frequency

of interaction.

In any case, we combine context with the mode of contact to form interactive events

that represent interactions. These events use all available evidence to provide the most

descriptive account of the interaction. Chapter 3 will introduce an architecture for a vision

systems that handles this coupling of object and motion for representing interactions.

2.4 Computer Vision Systems

Computer vision problems are inherently diÆcult to solve because the units of observation

are not the units of analysis [63]. The unit of observation is essentially the pixel, which by

itself, o�ers virtually no information about the people, objects, and activities taking place

in the image. Building transformations that can map these observation units into a viable

space for analysis represents one of the primary objectives of computer vision research.

The human visual and cognitive system serves as a paragon for the vision community,

even though there remains a great deal about its operation and complexity that are still

vastly unknown. In attempting to mimic the human visual process, computer vision has

been primarily rooted in image processing, computational intelligence, and pattern classi�-

cation approaches [104]. In most cases, vision systems employ techniques for identifying and

extracting information from monochrome or color image sequences. Data that are pulled

from these sequences must be interrogated by a classi�cation process that labels observa-

tions accordingly. We will discuss this process in more detail in the following sections.

2.4.1 Feature Extraction & Representation

To build representations that accurately capture the activities taking place, image features

of people and objects must be carefully identi�ed and extracted. A sequence of extracted

features should be able to construct a meaningful representation of the action taking place

in the original image sequence. Figure 2.2 shows many of the most commonly used methods

for feature representation.

One of the most signi�cant constraints placed on real-time vision systems is the com-
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Figure 2.2: Methods of feature representation from a sequence of images.

putational overhead required to analyze an image and construct observations of important

features. Additionally, many systems attempting to assemble high-level descriptions of hu-

man behavior must manage several other greedy processes simultaneously; in which case,

there is ample motivation to utilize computational resources prudently. Such limitations

encourage our use of region- and trajectory-based representations because they can often

be processed in considerably shorter time than optical ow �elds. Typically, optical ow

patterns must be constrained by known 2D or 3D models before meaningful analysis can

take place. Region-based features are also much less sensitive to sensor noise and uc-

tuation in lighting conditions than optic ow �eld vectors. We use representations that

involve appearance-based features because they tend to be more stable in the presence of

noisy data. Moreover, region-based tracking serves as an appropriate means for extracting

information about human motion without supervision (after initialization).

2.4.2 Analysis Methods for Motion Characterization

Generally, there are two schools of thought that impact recognition of actions: motion

recognition from structure and motion recognition in the absence of structure. The latter

approach uses low-level features, such as the properties of colored blobs that represent

skin or clothes, to target and track objects. With suÆcient contextual information, this

strategy can be eÆcient and reliable. However, without the bene�t of structure to help

12



Figure 2.3: Simpli�ed visualizations of Stoll's 3D model for a bowling motion.

resolve problems like self-occlusion, the use of motion without structure can prove to be a

signi�cant limitation.

Conversely, motion recognition from structure builds on top of low-level features to

construct a 2D or 3D model of an object, such as a physics-based description of the human

body. The sequence of recovered parameters, perhaps joint-angles of arms, legs, torso, etc.

from the 3D model, are passed to a classi�er for recognition. An example of motion from

structure is provided by Stoll, who uses HMMs to match 3D models for recognition as seen

in Figure 2.3. This high-level approach can o�er more meaningful testimony of the action,

but is computationally more expensive and highly dependent on the recovery of low-level

primitives. Feature extraction directly inuences the methods used for analyzing movement,

whether they are probabilistic state-based representations, neural or fuzzy networks, or the

like. To minimize computation, the smallest and richest feature representation is desired.

Redundant features can help when uncertainty is high, but adding those that are prone to

large noise levels can degrade performance. Finding the most signi�cant measurements to

extract are highly correlated with the nature of the motion and the view from which it is

observed.

View-Based Representations

There is little consensus about which aspects of body movement and orientation are most

important for motion analysis, so consequently, most system designers take an ad hoc ap-

proach that is motivated by the intended application. Stereo or multi-camera systems can

provide unambiguous, three-dimensional object positions, but must contend with image

correspondence issues and camera calibration. To develop algorithms that are view inde-

pendent, a \world" model is required [25]. However, most vision systems rely on monocular
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Recognition Methodology Advantages Disadvantages Authors

Causal analysis of sequences Robust labeling even High-level approach Brand,
using �lters when undersampled requires supervision Essa [32]
Phase Space Constraints Invariance to speed Supervised learning Campbell,
(Motion Trajectories & Joint changes in body Bobick [38]
Angles from 3D Model) extension
Condensation Auto. extraction Requires trackable Black

of motion trajectory icons & supervised et al. [20],
initialization Isard [71]

Recognition of Oscillatory Prediction module Limited gesture Cohen
Motion using Position Vector allows real-time vocabulary et al. [41]
& Dynamic System Models recognition w/ > 85%

accuracy
Multi-class, Multi-variate Feature set is adaptive; Segmentation against Cui,
Discriminant Analysis to Can identify 28 static complex backgrounds Weng
select Most Discriminating hand signs from 805 takes 58.3 seconds [42]
Features which are classi�ed total images with per image
using recursive partition trees 93.1% accuracy
Neural Networks Decision available after Can not process a Schlenzig

every frame (real-time) sequence of frames et al. [126]
Time-Delay Neural Learns space-time Need lots of Yang
Networks patterns; shift invar. training data [149]
Motion-History Images Compact & eÆcient Sensitive to viewing Bobick
& Motion Energy Images templates for perspective; does not [22]

recognition handle spatial
variation

Dynamic Time Warping Time-normalization of Behaves poorly with Gavrila
(DTW)/Continuous Dynamic space trajectories easy non-spatial features Nagaya
Programming allow comparison to must be calculated at Nishimura

model every frame [57, 102, 109]
Active Gesture Recognition System can adaptively Redundant detection Darrell,
using Partially Observable learn from experiences Pentland
Markov Decision Processes [43]
Recognition from Orientation Fast; translation Rotation invariant; Freeman,
Histograms invariant Poor discrimination Roth [53]

from similar gestures

Table 2.1: Several classi�cation schemes used by action and gesture recognition systems. Continued
in Table 2.2.
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Recognition Methodology Advantages Disadvantages Authors

Hidden Markov Models Handles space-time No decision available Starner,
(continuous & discrete) variation using DTW; prior to observation Bobick

highly scaleable sequence completion [130, 21]
Model-Based Motion Average recognition w/ Subject must wear Hienz
Recognition using Color & 95% accuracy colored glove/markers et al. [64]
Rule-Based Classi�er
PNF Calculus for Handling Labeling (past, now ) Deals poorly with Pinhanez,
Causal Propagation of the & future of events w/ time variation Bobick [115]
states of Time Intervals loose structures
Recursive Learning using Fast recognition of 20 DiÆcult to generalize Schlenzig
Rule-Based Induction hand poses w/ 94% ; to other apps due to et al. [126]

accuracy incremental speci�c rules
learning possible

Range images Uses velocity vectors; only 5 gestures Umeda [141]
Easier than optic w used

Table 2.2: Continued from Table 2.1: Several classi�cation schemes used by action and gesture

recognition systems.
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image sequences, whose interpretation is directly tied to camera view (see [112] for a re-

view of visual interpretation of hand gestures). Collapsing 3D motion into a 2D image

representation presents special challenges for motion analysis such as:

� object occlusions caused by other objects or the object itself,

� scale or rotation variance,

� motion along lines of projection, and

� distortion caused by perspective foreshortening.

2.4.3 Classi�ers for Motion Recognition

The goal of the classi�er is to �nd the best match between image feature representations

and a recognition methodology. Proper action representation must demonstrate time-shift

invariance, i.e., time normalization, and order preservation [23]. Most importantly, this

representation must be able to quantify the progression in space and time so that its motion

signature can tolerate natural variation but still be distinguished from others.

First, however, we need methods to model human actions reliably. For a review of

motion analysis, see [4, 40, 59]. There have been a number of classi�ers that have be-

come popular for distinguishing spatio-temporal data generated by human motion. Several

of them are listed in Table 2.1 and Table 2.2. The temporal ordering of human motion

motivates the use of state representations, such as the hidden Markov model. The motion

models we consider are generally intended to characterize repeatable, individual, hand-based

actions.

State-based representations are usually a �nite state machine that attempts to seg-

ment and group motion into natural, ordered stages. One of the �rst state-based methods

used Dynamic Time Warping (DTW) to align gestures and actions in time by warping. This

process, which is similar to Continuous Dynamic Programming (CDP), works best when

considering spatially signi�cant data, such as motion recognition from structure parameters

or frames containing subjects against a solid background. In fact, Gavrila and Davis apply

dynamic time warping to joint angles taken from 3D models to force alignment of sequences
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[57]. Nagaya et al. also use dynamic programming to judge the shapes of approximated mo-

tion trajectories by matching them against trajectory templates [102]. Bobick and Wilson

[23] use a dynamic programming formulation to compute the minimum cost path between

two nodes in a graph produced by motion trajectories. Nishimura and Oka [109] extract in-

formation from undersampled binary images in a real-time gesture recognition system that

achieved 80% accuracy for eight di�erent gestures using dynamic programming. However,

their approach deals poorly with changes in the speed of gestures or the detection of �ne

motion. Most of these approaches use the dynamic programming algorithm to causally align

a stream of spatially generated data so that its time normalized space trajectory can be

equivocally compared to a prototype for recognition. While a powerful technique for com-

paring the physical displacement of hand motions, this same virtue is also a handicap, as

dynamic programming behaves poorly when non-spatial features are supplied. In addition,

dynamic time warping must be applied at every time instant since accurate segmentation

at motion boundaries can be diÆcult without supervision. Black et al. [19, 20] recently

introduced a method based on the Condensation algorithm [71, 72] to recognize gestures

and human motion. Human motions are modeled as temporal trajectories of estimated pa-

rameters over time. Condensation is used to incrementally match human trajectory models

to multi-variate input data.

A common thread in much of the recent work in action recognition has been the use

of the hidden Markov model (HMM) as a means of modeling complex actions [22, 31, 95,

130, 148]. HMMs exploit the temporal ordering of natural gestures and actions using a

probabilistic state-based representation. With proper training data, HMMs can eÆciently

characterize motion pro�les in spite of the broad variation in the space and time domains

in which actions are performed. In particular, the HMM has demonstrated a keen ability

to provide robust recognition over extended motion sequences produced by multiple users

[21, 31, 110]. With an impressive legacy in speech recognition [67], HMMs are well suited for

recognition of human actions. However, probabilistic �nite state machines, like HMMs, can

not handle complex actions that involve concurrent or parallel events, multiple sequencing

possibilities, and mutually exclusive intervals [5]. In Chapter 4, we take a closer look at the

HMM and describe how we use it to represent low-level hand actions.
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2.4.4 Object Recognition

As mentioned earlier, some of the �rst work done in computer vision was conducted in object

detection and classi�cation. The area continues to be a primary research focus. Ullman

chronicles most of the seminal contributions in object recognition since Roberts in [140].

While several approaches for object classi�cation have surfaced over the years, most

of these proposals require models or templates as the basis for constraining and mapping

extracted features. Generally, models for various classes of objects are de�ned using some

three-dimensional parametric representation. Projections of these 3-D structures are ren-

dered, often for a range of viewing conditions that take into account factors such scale and

illumination, so that their image features can be realized. This step becomes the prediction.

To describe 3-D objects from images, these features must be identi�ed using some unsu-

pervised segmentation process that also recovers 3-D surfaces using a range of approaches,

including shading, texture, motion, stereo, or line drawings. This description stage produces

a candidate class and attempts to match it to a known class.

There has only been a limited investigation into the use of action as the primary means

of recognizing objects. In an example, Duric et al. determine an object's function from its

motion using deductive reasoning [46]. In Chapter 5, we introduce the notion of recognizing

an object from how a person interacts with it. We consider our work as one of the �rst

contributions of object classi�cation from action. However, our interest is not to explore

the domain of problems in object recognition but to study interactions that may require

the classi�cation of unknown objects. Our work attempts to extend standard, low-level

methods for object recognition.
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CHAPTER 3

ObjectSpaces: A Framework for Vision

Recognition Tasks

In this chapter, we discuss the problem of information management and process design.

We argue that to provide high-level awareness of complex human behavior, methods are

needed to handle the enormous amount of dynamic information that is extracted from

video. All of this information requires facilities for organization, storage, and retrieval in

addition to policies for modeling, segregating, and integrating. Moreover, as the activities

that computers attempt to understand get more complicated and last longer, the complexity

of modeling these activities also grows.

We begin by discussing context and its role in solving recognition problems. To

address many of the issues mentioned above, we introduce a new object-oriented framework

called ObjectSpaces, which facilitates data management for recognition tasks. ObjectSpaces

sorts information by creating class models for objects, people, and activity domains. Object

and hand tracking generates low-level evidence, which is collected and organized according

to class, then passed up to another layer that analyzes interactions to recognize high-level

activities and unknown objects.

The design of complex recognition systems bene�ts from careful planning that permits

reuse and expansion, which are generally after-thoughts on ad hoc systems. Instead of us-

ing ad hoc design approaches to build task-speci�c systems, we present a methodology that

accommodates a wide range of high-level vision applications by decomposing the activity

domain and the entire recognition process into layers. Our design philosophy is pragmatic,

scalable, modular, and eÆcient enough to deliver real-time performance and o�er exi-

ble implementation. In addition to the bene�ts generally available in an object-oriented



paradigm, features of our architecture include:

� base class templates for sorting context information

� layered framework for decomposing recognition problems

� activity zones for evaluating the spatial context of activity and to improve hand track-

ing,

� image-based methods for tracking objects

� object-based event handling and focus-of-attention,

� appearance-based templates for action and object recognition, and

� a database of class models for use in object classi�cation.

As we reveal speci�c approaches to activity understanding over the next several chapters,

we will build on top of the foundation established by ObjectSpaces. By adopting a protocol

for representing and organizing information up front, we can leverage both information and

processes to develop high-level awareness.

3.1 The Role of Context

So far in our discussion, there has been a frequent reference to context. Indeed, many ideas

presented in this dissertation are motivated by using context to enhance the representation

of information extracted from video. So exactly what is context?

De�nition 3.1 We de�ne context as information that inuences the interpretation of

evidence. In essence, it captures the state of people, objects, and interactions by quantifying

the circumstances in which they occur.

Evidence refers to some set of values or data that is either provided beforehand or extracted

from video. Classi�cation involves the evaluation of evidence to make a decision. Any clas-

si�er, however primitive, must also have a model of context to properly evaluate candidate

solutions. For example, if we have evidence (in the form of hand displacement) that a person
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Figure 3.1: Displacement (dx; dy) during circular hand motion.

is interacting with an object in a clock-wise fashion as shown in Figure 3.1, there may be

several plausible explanations for this behavior. We can reduce the �eld of possibilities if

we also know that the object is a sauce pan, in which case, we can reasonably assume that

a person is stirring the contents of the pan. To extend reasoning a step further, perhaps we

can anticipate that other cooking-related activities will take place. Once we have established

the relationship between motion patterns like this and corresponding object types, we can

also use inference for classi�cation purposes. Undoubtedly, to make sophisticated decisions

like this, a rich body of diverse information about the people and the articles in the scene

is needed. Utilizing information in such powerful ways is not possible without the intuitive

management of context information and processes to handle data. Our research focuses

on interactions with objects, which in turn, motivates our interest in developing context

models for speci�c types of objects. In this way, we can encapsulate speci�c descriptions

of an object's physical properties along with hand actions associated with it. Higher-level

models of context, like task-speci�c grammar, are also needed to integrate context focused

at the object level so that interactions taking place throughout the scene can be character-

ized. Domain-speci�c context is used for high-level classi�cation of complex interactions,

possibly between objects. Domain context also facilitates spatial context, i.e., exploiting

the space where objects are and where activities take place, which is important for both

activity and object recognition [11].
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We not only stratify context from individual objects to the activity domain, but

also with respect to the temporal ordering of activities. The temporal context of human

interactions is extremely dynamic in terms of the environmental state changes occurring over

time. Conventional data management approaches often assume that evidence collected at

any moment is valid inde�nitely. High-level classi�cation will require mechanisms that can

characterize complex temporal signatures of activities, even while our measures of \belief"

change [21].

Strat and Fischler have shown that context can be instrumental in understanding im-

ages in complex domains [135]. We have also demonstrated its utility in activity recognition

problems [95, 97]. Our use of object and domain context plays a major role in our ability to

build awareness through observing and classifying human-object interactions. At this point,

it should be clear that various incarnations of context are needed for high-level recognition

tasks taking place over extended periods of time. Equally as important is a structure for

organizing, storing, and maintaining context.

3.2 ObjectSpaces: An Architecture for Context Management

In the absence of mechanisms to emulate the breath and depth of human intellect, au-

tonomous vision systems must be presented tightly de�ned problems. Even with constrained

problems, the domain of eligible solutions can still approach in�nity. It is common practice

for developers to take an ad hoc approach to system design, which is typically engineered

for speci�c applications [78]. However, as more advanced vision systems attempt to solve

harder problems, the limitations of application-speci�c designs get more pronounced. For

example, most vision systems designed speci�cally for object recognition can not be adapted

for action classi�cation without major con�guration changes. Even changes in the activity

domain, i.e., recognizing oÆce interactions versus those in a kitchen, can result in having

to retro�t signi�cant parts of the system. Several aspects of design that should be avoided

include:

� representations with no formal means of characterizing dynamic context,

� ad hoc organization of processes for data acquisition, analysis, and storage,
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Figure 3.2: ObjectSpaces is a top-down, bottom-up framework that facilitates information sharing

and knowledge discovery by passing information between layers using object-oriented constructs.

� no established protocol for sharing information between processes,

� poor code reuse and limited modularity, and

� long software development cycles required for each new activity domain.

To overcome these shortcomings, our framework segments processes into layers and

data into objects so that context can be managed at graduated levels. Figure 3.2 illus-

trates the role of each layer. Object-oriented methods, which combine data with functions

that operate on the data, provide the backbone needed for information management and

analysis. To support several processes used for detecting, analyzing, and describing high-

level interactions, we �nd and track all objects and people as they move throughout the

scene. Tracking identi�es the proper image features to extract with help from pre-de�ned

class models and prior knowledge about the scene that reside in higher process layers. Af-

ter low-level information is extracted, it is retained by the appropriate class model, which

is designated for each person and article in the scene. These models use object-oriented

constructs that are made available to an even higher layer that examines the relationships

between people and objects throughout the sequence using domain-speci�c information,

such as grammar.
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To organize and leverage all of the class models and data operations, we develop a top-

down, bottom-up infrastructure that permits vital sharing of complementary information

between processes, people, articles, using layers. A layered framework allows us to divide

complex processes into more manageable stages. For example, layers that handle low-level

feature extraction perform the same tasks regardless of the activity domain, whereas layers

where high-level classi�cation takes place are often tailored to �t a particular domain.

High-level tasks, which are more apt to use heuristic information, obey policies that are

consistent across all domains. This is in contrast to ad hoc methods that do not follow any

formal procedure for the use of heuristics. Process segmentation also allows us to substitute

big, greedy algorithms with thinner, faster approaches (when available) to satisfy real-time

constraints without having to modify the overall design process.

In addition, a dedicated repository is provided to sort and store all of the newly

discovered information that the vision system generates. Complex, multitasked activities

can involve a variety of objects and people over long periods of time, so our architecture

is designed to be scaleable as well as discerning of data that is warehoused, i.e., only

keeping information that can be used later. ObjectSpaces has logical containers that make

information retrieval reliable and fast. This careful organization permits easier integration

and evaluation of information for recognition tasks as opposed to conducting global searches

through all the data every time a piece of information is needed.

3.2.1 Other Frameworks for Recognition

Although context is broadly used to enhance analysis tasks [1, 123], no universal framework

for it has emerged. However, from our evaluation of other vision systems, we see evidence

that high-level reasoning can bene�t from exploiting graduated levels of context. To site a

few example of this, Oliver et al. have proposed a system for assessing interactions between

people using statistical Bayesian approaches, HMMs, and coupled HMMs [110]. Their

system combines top-down with bottom-up information in a closed-feedback loop to model

behaviors and interactions. Using a similar hybrid approach for analysis, Bregler evaluates

motion at various levels of abstraction by using a four-level decomposition framework that

learns and recognizes human dynamics in video sequences [33]. Also recognizing the virtues
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Scene Kitchen OÆce Game room Store

Activities cooking, computer work, play cards, shopping,
clean dishes, meeting, play pool pick up goods,
eat study self-check out

Actions stir, slices, ip forward, deal card, place obj in cart,
chop, wash, ip backward, ip card, place obj on shelf,
eat, drink, open, close, shu�e, scan object
pour, shake pick-up phone pick-up card

Objects sauce pan, cup phone, chair, card, deck, cart
bowl, plate, keyboard, book, stack, pot, register,
stove, refrig, monitor, CPU, card cradle scanner
toaster, sink desk, mouse

Table 3.1: Chart demonstrates hierarchical organization of information.

of hierarchical information strategies, Mann and Jepson integrate information about object

properties and abilities (primarily force/dynamic) in order to develop representations of

activity [89]. They attempt a bottom-up approach that infers physical descriptions of the

actions depicted in image sequences. In a vastly di�erent e�ort, Pinhanez and Bobick have

provided a PNF-network, based on interval algebra, to describe the temporal structure of

actions, subactions, and events [115]. In this approach, actions or events are constrained as

past, now, or future occurrences. PNF propagation is a type of logical description of action

that enhances the discriminatory power of sensors and leads to the detection and removal

of inconsistent situations. In a survey of more general attempts at analyzing people, Jain

provides evidence of wide-spread experimentation with a variety of frameworks that couple

complementary processes and algorithms to solve image understanding problems [77].

While these approaches are motivated by di�erent applications and driven by various

detection and recognition algorithms, all of them seek to leverage complementary informa-

tion provided by (a) combining di�erent classi�ers and (b) creating hierarchical layers of

context. Architectures that leverage hierarchical inheritance have demonstrated their util-

ity for managing and cataloging information [51]. Hierarchical distribution of information

is also compelling because it provides a structure for context that is more easily refer-

enced, managed, and updated. Hierarchical representations provide intuitive organization

of various granularities of information, such as those listed in Table 3.1.
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Figure 3.3: Generalized Class Models (GCMs) for the book and notebook class with actual tem-

plates from examples. The GCM o�ers hierarchical organization of object types.

3.2.2 Using Object-Oriented Principles

Object-orientation is a powerful paradigm for designing, programming, and implementing

complex software engineering challenges such as vision systems. Object-oriented (OO)

design attempts to model the world through powerful abstractions called objects. An object

is simply a container for encapsulating context, which takes the form of properties and

other representations of state or behavior. Unlike conventional software techniques, data

and functions that operate on the data are not separated, but are combined in the same

structure. The context model for a particular type of object is called a class. It supports

type-speci�c data and corresponding functions. An object is a particular instance of an

object class. Typically, an object represents a real-world entity, such as a book or a person.

For example, an image template of a book represents data while a procedure that determines

an image's pixel count represents a data function.

We use classes and objects as building blocks to assemble representations for articles,

people, and the scene itself. Three parent classes, Article, Person, and Scene, act as

basic templates for describing all objects representing scene articles, people, and the scene,

respectively. New classes inherit the same properties and methods of a parent class, but

can be extended by adding additional attributes and methods. For example, we can derive
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Figure 3.4: ObjectSpace's layered, object-oriented framework allows multiple activity domains to

be processed by a single system. Class model reuse is also encouraged.

classes such as notepad, phone, and mouse from Article to describe objects in an oÆce.

Moreover, notepad attaches a model for the action \write," whereas mouse may not have

any associated action models. Inheritance is used to form a natural hierarchy that helps to

organize or disambiguate classes in our class database. Object and action recognition bene�t

from having properties and functions sorted according to class, as we will see later. Figure

3.3 illustrates the hierarchy formed by derived classes and its usefulness in recognition tasks.

Object-oriented development lends itself to eÆcient software engineering, reuse, main-

tenance, and abstraction. Reuse is a powerful mechanism that allows OO systems to be

modular and convenient, often shortening the development cycle. Once a class is developed,

it can be reused in di�erent domains without having to retrain action models or re-specify

the same properties or behaviors. In practice, however, it is common to \tune" the class so

that it better models the properties or behaviors for a particular domain, i.e., retraining or

adding a few actions or simply adjusting a few parameters. In essence, class models should

improve the more they are used. By using multiple, integrated layers, our approach can be

easily extended for use in multiple domains without retro�tting the entire framework for

a speci�c application. As illustrated in Figure 3.4, several objects include a chair, mouse,

and keyboard appear in both scene. However, after developing a model for each of these
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Figure 3.5: Highlighted articles: headphones, mouse, telephone, etc. from ceiling-mounted camera.

The hands are also highlighted.

objects, it can be reused in new domains.

ObjectSpaces utilizes an object-oriented design because it provides a hierarchical

structure that is intuitive, scalable, and reusable. Moreover, an OO framework facilitates the

design and implementation of real systems. Unlike many other complex processes that are

planned and conceived on paper only to undergo lengthy and often extensive modi�cation

before they can actually be implemented, ObjectSpaces was developed from inception to

o�er seamless integration between design and implementation. Appendix C introduces the

Vision Action Recognition System (VARS), a system developed entirely in C++, a popular

object-oriented programming language. VARS implements our ObjectSpaces framework

to handle all of the recognition tasks presented in this thesis. Because object-oriented

development represents a signi�cant departure from conventional system design, it is not

uncommon for the true essence of OO to remain a mystery for the casual reader. For a

more thorough introduction into object-oriented, principles, see [128].

3.3 Building Context Models for Representation

Before we can analyze video, we have to construct models for the articles, people, and the

particular domain where interactions will take place. The procedure starts with an initial
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snapshot of the scene as shown in Figure 3.5. We manually label known articles in the

image using classes derived from Article to represent the di�erent types of objects. Using

appearance-based parameters, HMMs, and rules, article classes represent object properties

and behaviors. Because the Person class provides a generic model of a person that is gener-

ally suÆcient for most view-based applications, we rarely need to derive new classes from it.

Instead, we invoke instances directly from the parent class to represent particular people.

Each person object maintains a unique skin color distribution and anatomical parameters,

like arm span, which help to track and analyze hand interactions with articles. For each

new domain, we derive a new class from Scene to maintain domain-speci�c context, to

monitor physical contact between people and articles, as well as to examine these interac-

tions for patterns of behavior. Although only these three parent classes are described in

the next several sections, we remind the reader that our implementation of ObjectSpaces

includes several additional OO constructs. However, only the aforementioned classes are

fundamental to our framework.

3.3.1 The Article Class

The Article class is the parent class from which all inanimate objects are derived. The

idea is to equip this class with variables and functions that are appropriate for any type

of object. Since all articles inherit the attributes of this class, we can ensure a level of

consistency in our representation and organization of context that facilitates data sharing

between objects and processes. Some of the variables that describe basic properties or states

of an article are listed in Table 3.2, and some of the functions that are used to manipulate

these variables are listed in Table 3.3. For example, Figure 3.6 highlights some of attributes

of the book class.

An article records every episode of hand contact as a separate event, which is stored

in an event array. Each event is time-stamped and include the person and hand involved

in the contact (as shown in Figure 3.6. It also maintains a list of human actions (HMMs)

associated with its use. Additional variables and functions can be de�ned as required.
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Variables Description

bounding box two Cartesian points de�ning a box that encloses the object
label object's type label, i.e., book
focus level of attention, i.e., inactive, tentative, or active

frequency frequency of hand contact
image template image determined by bounding box

edge image template result of passing image template through Sobel edge detector
moveable (Boolean) true if article can be moved

rigid (Boolean) true if article always maintains rigid shape
occluded (Boolean) true if article has been occluded

events array list of recorded hand interactions with object
action models list of pre-trained action HMMs associated with object class

Table 3.2: Article class data variables for representing context, class properties, and behaviors.

GetActionName SetActionName

GetArticleClass SetArticleClass

GetOtherAssocClasses SetOtherAssocClasses

GetNewToScene SetNewToScene

GetArticleName SetArticleName

GetBoundingBox SetBoundingBox

GetImageTemplate SetImageTemplate

GetSobelEdgeTemplate ComputeSobelEdges

GetEvent GetNumEvents

GetExitByID SetExitByID

GetFocus GetDurationOfFocus

GetIntroducedByID SetIntroByID

GetActionModels SetModelList

GetMoveable SetMoveable

GetNumModels SetModel

GetProbability SetProbability

GetFirstSightingTime SetFirstSightingTime

GetLastSeenTime SetLastSeenTime

GetUpdateLocation UpdateState

GetValue SetValue

CheckPosition FindNewPosition

RemoveArticle CheckBBoxOverlap

CalcFrameDiff BuildConnectedComponents

Table 3.3: Article class functions for manipulating data variables.
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Figure 3.6: Structure for a book article. Note arm span (circular shaded area) and hand regions of

person are superimposed.

3.3.2 The Person Class

The Person class works in tandem with the extraction layer to locate people based on a

model of a person. A simple view-based representation is used to model the arm/hand

components as well as the head/torso component, as seen in Figure 3.7. The former com-

ponent is characterized by physical properties, such as hand size (in pixels) and skin color,

as well as physiological considerations, like arm span (the maximum distance between the

head/torso centroid and hand centroid). Skin color is described by an array C = [Y U V]

containing all of the esh tones in the person's hands. This color distribution is used to

assist in the segmentation of the hands. We elect to use the YUV color space instead of

RGB because of its separation of the luminance and chrominance bands. In practice, we

generate C by manually sampling pixel values taken from training footage of a subject.

Other parameters are also speci�ed manually.

The Person class stores all hand positions so that future locations can be estimated

and supplied to the extraction layer to assist in tracking. The Person class is also equipped

with methods for summarizing current activities by creating a log that contains the most

current actions performed and articles handled.

3.3.3 The Scene Class

The Scene class \pays attention" to interactions between people and articles while mea-

suring all dynamic changes in the state of the scene. Methods for establishing high-level
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Figure 3.7: View-based model for a Person object is inspired by anatomical models. Here, Q

represents the area spanned by the hands.

recognition from evidence collected in lower layers must be embedded in this class1. An

instantiation of this class produces the only object in the scene layer.

To con�gure the scene, an initial snapshot of the background scene I is taken from the

ceiling, looking downward. Using a mouse, n non-overlapping regions for each article are

partitioned from I manually, such that Ii(t) � I; Ii(t)\Ij(t) = ;, for all i 6= j; 1 � i; j � n.

Figure C.4 shows the actual dialog used by ObjectSpaces to con�gure objects. Ii(t) indicates

the ith partition of I taken at time t and also de�nes the boundaries of the corresponding

bounding box. During initialization (with no people in the scene and t = 0), each subimage

template Ii(0) and its edge image2, Ei(0), are assigned to an object of appropriate class

type. For example, Figure 3.5 shows separately derived classes for the keyboard, mouse,

phone, etc. Scene maintains a list of n scene articles a = fa1; a2; :::ang and m person

objects p = fp1; p2; :::pmg.

3.4 Using Multiple Layers for Context Abstraction

We attempt to decompose context into various levels of granularity using multiple, inte-

grated layers, as illustrated in Figure 3.2. The extraction layer is responsible for �nding,

extracting, and tracking people and articles in the scene. It also provides facilities for char-

1In Chapter 6, grammar is introduced as a means of generating high-level awareness. Facilities for symbol
generation and grammar parsing are added to this class.

2From passing Ii(0) through a Sobel edge �lter [85].
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Figure 3.8: Schematic Diagram: Hand tracking algorithm labels colored regions to �t person model:

(top sequence) With only knowledge of the input image, tracking mislabels region in frame n as hand

is occluded by object; (bottom sequence) With scene and person information, tracking determines

a possible perimeter where right hand can be even though it is occluded.

acterizing motion using hidden Markov models (HMMs). This layer generates context at

the lowest level from raw images. The object layer represents the database of all object

classes for a particular domain. The scene layer, which maintains domain-speci�c context,

monitors physical contact between people and articles, as well as examines these interactions

for patterns of behavior. It also keeps track of all people and articles as they are added

or removed from the scene. All three layers create the backbone of an architecture for

managing information at di�erent levels of granulatity, i.e., low-level to high-level context.

Our approach features an bottom-up and top-down strategy with integrated layers,

allowing mutual information to be shared when needed. For example, a person model

in the object layer supplies the extraction layer with a color distribution and region shape

parameters that help guide color blob segmentation and tracking. Likewise, blob trajectories

that represent hand regions are passed back to the corresponding person object from the

extraction layer after they have been properly labeled. This allows each person object to

maintain a bu�er of all of its hand positions. The liberal exchange of information throughout

the layers using OO messaging3 helps to o�set limitations caused by strictly bottom-up or

3Messaging is the method of requesting or receiving information between objects in an object-oriented
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top-down approaches. The complementary usage of context will enable this architecture

to recover from failures or inconsistencies that occur at either the lowest or highest levels

of abstraction in the system. Figure 3.8 (top sequence) depicts a scenario where the right

hand is occluded, causing the hand tracking algorithm to incorrectly select another similarly

colored candidate region. By sharing information about objects in the scene that occlude

hands and the history of hand positions with an, otherwise, blind low-level correspondence

tracker, we can resolve some occlusions, as illustrated in Figure 3.8 (bottom sequence).

Managing context in layers of abstraction also allows objects (articles and people)

and their behaviors to be de�ned intrinsically, without regard for the domain in which they

will appear. For example, a book will appear and be used in the same way regardless

as to the current domain. Once developed, a class in our class database is available for

reuse in multiple domains without the need to retrain actions associated with it. Behaviors

between objects can be better speci�ed at the domain-level, placing task dependencies at

the highest level of abstraction. Moreover, the framework will require little or no retro�tting

to accommodate a speci�c application's needs because domain-level context can be neatly

compartmentalized in the scene layer. In Figure 3.4, several objects such as chairs, only

have to be de�ned once, but can be reused in several domains.

3.4.1 The Extraction Layer

As mentioned, the extraction layer provides various facilities for tracking hand and article

movement. Chapter 4 is dedicated to describing hand tracking and action model analysis.

Here we present methods for tracking article displacement.

Contact between an article and a person's hand is established by checking for any

overlap between the region bounding the article and the one surrounding the hand. The

location of the bounding box is not updated while contact is established. Instead, we

maintain a policy of waiting until the hands leave the last known bounding region before

we check to see if the article has been moved.

If article i is moveable, its image template, Ii, is used by template-matching methods

paradigm.
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to detect movement or occlusion4. The subimage de�ned by the current bounding box is

compared with the image template captured during initialization by image subtraction and

thresholding, i.e., jIi(x; y; t)� Ii(x; y; 0)j > �, where � is a threshold found experimentally.

To determine the object's new location, template-matching is invoked [138]. To match an

N1 � N2 pixel template, we use the minimum mean square error (MSE), which is de�ned

as

MSE(d1; d2) =
1

N1N2

X
(u;v)2B

[Ii(u; v; 0) � Ii(u+ d1; v + d2; t)]
2; (3.1)

where B denotes a N1�N2 block for a set of candidate motion vectors (d1; d2). The estimate

of the motion vector is taken to be the value of (d1; d2), that minimizes the MSE, i.e.,

[d̂1 d̂2]
T = arg min

(d1;d2)
MSE(d1; d2): (3.2)

Alternatively, we can substitute the MSE for the maximum matching pixel count (MPC),

where each pixel within the block B is classi�ed as either a matching or a mismatching pixel

according to

T (u; v; d1; d2) =

8><>: 1 if jIi(u; v; 0) � Ii(u+ d1; v + d2; t)j � �

0 otherwise
(3.3)

where � is a predetermined threshold found from experiments. The motion vector (d1; d2)

that produces the highest number of matching pixels is selected, i.e.,

MPC(d1; d2) =
X

(u;v)2B

T (u; v; d1; d2) (3.4)

with

[d̂1 d̂2]
T = arg max

(d1;d2)
MPC(d1; d2): (3.5)

The search for the object's new location is guided, to some extent, by our knowledge of

the past hand locations, which helps to minimize exhaustive searches. Normally, however,

we can get a good estimate of location by performing background subtraction against the

current frame I(x; y; t), revealing a region Q 2 I.

4The edge template Ei is used in lieu of Ii when prominent sensor noise or lighting uctuations are
present in images.
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While this approach accommodates rigid objects that are translated with respect to

the camera, recovering the location of rotated objects will likely fail without applying aÆne

transformations to the template. To determine the angle of rotation, we determine the

angle of the principle axis � of Q given by

� =
1

2
arctan

0BBB@
2
X

(x;y)2Q

xy

X
Q

x2 �
X
Q

y2

1CCCA ; (3.6)

where (x; y) are Cartesian points in region Q. Application of a rotation transform R(�),

R(�) =

0B@ cos � � sin �

sin � cos �

1CA ; (3.7)

to Ii should produce a new template bIi, i.e., bIi = R(��)Ii, that can be used with the

aforementioned block-matching methods to verify the object's new position. There is no

treatment for recovering the orientation of objects with nonrigid shape.

3.4.2 The Object Layer

The object layer maintains the database of all currently instantiated objects as well as

those that are stored. This layer assists the scene layer when detecting and classifying

unknown objects. The model database is more carefully discussed in Section 3.5. Chapter

5 describes methods contained in this layer that are used for evaluating evidence for object

classi�cation.

3.4.3 The Scene Layer

This layer searches for relations between object interactions in order to classify particular

activities or to identify certain human behaviors. For well-understood multitasked activities,

we can specify the sequence of expected tasks using grammars. Grammar provides syntax

and ordering so that a sequence of interactive events can be parsed and interpreted. We

devote much of Chapter 6 to grammars and multitasked action interpretation.

Spatial context regarding the location of articles in the surroundings can be embedded

into activity zones to facilitate tracking and recognition. Consider l non-overlapping zones
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Figure 3.9: Active Hand Zones: Zones with vertical lines indicate areas less likely to �nd hand

regions while diagonal zones suggests more likely zones.

within I, each speci�ed by the top-left and bottom-right points of a bounding box given by

the 4-element vector zi, such that

zi = [xl yt xr yb]
T :

The probability wi reects the likelihood of �nding a hand in the zone. The probability wi

does not explicitly weigh the frequency of hand penetration in the zone relative to other

zones, but suggests the likelihood of interactions taking place in zone zi. Each probabil-

ity is determined independently. The 4 � l matrix Z contains the set of all l zones, i.e.,

Z = [z1 z2 : : : zl], while the vector wz holds the corresponding probabilities. For more

clarity, consider Figure 3.9, which illustrates the likelihoods of recovering hand blobs in

di�erent areas within the scene. Because there are articles located in zones marked A1; A2;

and A3 where we expect more hand traÆc, the corresponding likelihoods are higher than

those in zones A4; A5; A6, and A7 where traÆc is not as likely, i.e., w1; w2; w3 >
1
2 and

w4; w5; w6; w7 <
1
2 . All other areas not covered by zones remain equiprobable, i.e., p = 1

2 .

Note in this case that the presence or absence of articles a�ects how the extraction layer

and the person models use information when tracking hands.
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3.4.4 Object-based Event Handling

Article bounding boxes provide a means to detect and focus on motion near a speci�c

article. Associated with each object is a �nite state machine driven by contact with a

person. Initial contact with an object forces a transition from the inactive state to the

tentative state. If the contact turns out to be transient, the object returns to the inactive

state; otherwise, it progresses to the active state, which initiates a contact event. A contact

event is a record that maintains information about the interaction, such as the duration,

the person performing the action, and a description of the action (provided via HMMs), if

available. The record also records the last known position and orientation of the object so

that any displacement can be detected later.

To gather a better description of hand motion, the article retrieves hand positions

from each person that interacts with it. It passes a bu�er containing these positions to the

extraction layer which attempts to match motion trajectories against pre-trained actions

associated with the article class. For example, consider a book object with two associated

actions described by HMMs, i.e., left-to-right motion! �ff : \ip forward" and right-to-left

motion ! �fb: \ip backward". After the hands penetrate the image area where the book

is located (establishing contact), sweeping the hand from left to right will indicate ipping

a page forward. More will be said about the use of HMM models for motion analysis in

Chapter 4.

Object-centered interaction allows objects to focus on themselves, freeing the scene

layer to watch for events requiring higher-level information. For example, newly introduced

articles can query the scene for all person objects. In this request, they can ask for the

most recent hand locations to determine which person was responsible for placing it in the

scene. This bene�t can only be provided by an object-oriented framework. In Chapter 5,

we cover this technique along with other aspects of focusing attention on action and scene

change.
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3.5 Generalized Class Models

A repository is required to manage and categorize all of the article classes. This database

contains models of class types that are used to classify unknown objects that enter the

scene. These models, called generalized class models (GCMs), contain appearance-based

descriptions that are representative of all examples of that particular class. A GCM is

created for every child level within the class hierarchy. For example, the book GCM

is created from several examples of actual book objects, as Figure 3.3 illustrates. De-

scriptions of associated class actions, in this case ip forward �ff and ip backward �fb,

are maintained as a list of HMMs. Appearance-based descriptions are maintained by

a set of Gaussian parameters that represent typical values of region features, i.e., P =

f(�pixel area; �
2
pixel area); (�aspect ratio; �

2
aspect ratio); (�perimeter edges; �

2
perimeter edges)g. The Gaus-

sian parameters for these distributions, mean � and variance �2, are calculated in the normal

way, such that

� =
1

n

nX
i=1

f �2 =

n
nX
i=1

f2 �

 
nX
i=1

f

!2

n2
; (3.8)

where f is some feature value, such as pixel area, and n is the number of actual examples

used to model the GCM. GCMs of child classes are independent of GCMs of the parent class.

The notebook class extends book by adding an action model for \write," �wrt. Because

the book GCM is a parent, Pbook is inuenced by the contribution of its children, which

includes notebook, although Pnotebook bears no dependence on Pbook. These distributions

allow us to represent appearance-based features, such as bounding box aspect ratio and

pixel area, using a Gaussian parameters. Our class database is composed of the entire set

of GCMs, which forms model space M, such that M = [Mbook Mnotebook : : :]T .

In this chapter, we have given a broad overview of our framework for information

management and process decomposition. In Chapter 4, we introduce methods for recogniz-

ing di�erent interactions which are staged in the extraction layer. When classi�cation of

objects and activities is discussed in Chapters 5 and 6, we will discuss techniques that take

place within the scene layer.
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CHAPTER 4

Hand Motion Analysis

In this chapter, we address the problem of detecting, tracking, and characterizing hand

motion. Determining where a person's hand are and when some meaningful motion pattern

occurs is a critical step in solving action recognition problems. By also exploiting prior

knowledge regarding objects that are in the surroundings, we can establish a reasonable

basis for modeling a person's interactions with objects. Moreover, the recovery of contact

events and actions supplies us with primitives that can be assembled to describe complex

activities and behavior.

To detect hands, we rely on stable, appearance-based features, such as color, shape,

and size, and heuristics to segment candidate hand regions from images. We introduce an

eÆcient technique that uses block-based image sampling to reduce grouping and labeling

operations in connected component labeling of sparse binary pixels. Hand tracking takes

advantage of environmental context and Bayesian analysis to enhance linear predictions.

Scene and domain context are also leveraged, enabling real-time hand tracking to recover

from temporary failures. Hidden Markov models are employed to recognize trained hand

actions under a variety of conditions including spatial and temporal variation. We begin

with an overview of our strategy to track people and their hands.

4.1 Tracking People

One of our objectives is to capture interactions between people and objects in the environ-

ment. The great majority of these interactions involve hand contact. While there may be

an occasional need to perform whole-body tracking as people move throughout the scene,

our tracking algorithms will emphasize hand-based methods. We assume that our view of



the scene is provided by a downward-pointing, ceiling-mounted camera which o�ers several

advantages to hand and object tracking, such as a less unobstructed perspective of the

interactions.

The facilities to segment, group, label, and analyze hand features from video reside

in the extraction layer of the framework. While feature parameters and object locations

must be speci�ed for each scene, these necessary operations are procedural, requiring little,

if any, modi�cation from scene to scene. This is a primary motivation for having a low-level

layer in our framework for routine tasks like hand tracking and a high-level layer that can

be tailored to �t a speci�c domain. Moreover, the segregation of low-level and high-level

operations encourages model reuse and deployment for various recognition tasks.

There are a vast array of sophisticated techniques for tracking that have enjoyed

widespread adoption, such as template matching, Kalman �ltering, and Condensation.

Tracking hands as they interact with objects can not be performed e�ectively using image

templates due to the degrees of freedom of both hand and object movement. Deformable

templates, perhaps that use energy-minimizing contours, work better, but often require

hand-drawn initialization. When combined with classi�ers like 3D splines, the Kalman �l-

ter is a powerful method for tracking hands even with noisy measurements, but can be easily

confused when hands collide or other hand-like regions appear in the image. Condensation

overcomes this problem by using multimodal Gaussian distributions to maintain multiple

hypotheses, but requires that prior densities be estimated from training exercises. Moreover,

the computation and memory requirements of these methods are demanding, making them

less attractive for real-time systems. Motivated, in part, by the Kalman gain's corrective

adjustment to a deterministic motion model, we introduce a simpler, direct (non-iterative)

approach that exploits scene context and user intentions to enhance a linear tracking al-

gorithm. Using primarily appearance-based features, our tracking algorithm is appropriate

for eÆcient tracking in real-time and scales easily as multiple objects and hands are added

to the scene.
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4.1.1 Finding People

After classes have been de�ned and the scene con�gured, tracking begins by looking for

the people. Background subtraction is a basic technique used to identify areas of change in

an image. It is easily performed by subtracting the background frame I(x; y; 0)1 from the

current image frame I(x; y; t). To make this procedure less expensive, this operation takes

place only in the portions of the image where foot traÆc is permissible, denoted W. Using

�bkg as a preset threshold to assess change in each pixel, the scene's binary background

di�erence IBD(x; y; t), i.e.,

IBD(x; y; t) =

8><>: 1 if jI(x; y; t) � I(x; y; 0)j > �bkg

0 otherwise
; (4.1)

detects a person walking into the scene by comparing the sum of the di�erence pixels to a

threshold �p, i.e.,

Person detected �

8>><>>:
true

X
x

X
y

IBD(t; x; y) > �p 8 x; y 2 W

false otherwise

:

Both �bkg and �p are established empirically depending on sensor noise, lighting conditions,

head/torso parameters, and the size of regionW. Although I represents a color image, only

the intensity channel (Y in YUV) is used.

4.1.2 Finding and Tracking the Hands

Once a person is detected in the scene, color is the basis for the recovery of the hands.

Generally, we assume that the subject is wearing a long-sleeve shirt that o�ers suÆcient

contrast with skin color. We o�er no solution for scenarios when subjects wear short-sleeve

shirts or when exposed skin on the head causes confusion with hands. We segment colored

blobs from the image using the color distribution C, which was mentioned in Section 3.3.2.

Skin colors are segmented from I(x; y; t)2 by riing through every pixel in the image looking

1Taken at initialization when t = 0 with no people in the scene.
2Each image pixel in I represents a color in YUV Space.
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(a) (b) (c)

Figure 4.1: Connected component labeling: (a) Original image I , (b) Color-based segmentation

using an under-speci�ed C produces B with many sparse pixels and several potential groups (c) Sub-

sampling with �m = 1 and m = 3 of B generates bB and two desirable groups.

for members of C, which produces a binary image B given by

B(x; y; t) =

8><>: 1 if I(x; y; t) 2 C

0 otherwise
: (4.2)

Connected Component Labeling (CCL) is a well known procedure that groups all neighbor-

ing binary pixels with value 1 into individual regions and attaches a unique label to each [63].

Because the colors in C are manually selected from a few sample images, there may be some

skin colors that are not represented in the distribution. Additionally, lighting uctuations

and shadows prevent C from entirely modeling all skin colors, so binary image B often con-

tains many outlying pixels and fragments of broken pixel groups. Under these conditions,

merging and managing many small pixel groups by iterative clustering approaches, such as

the K-means algorithm, is computationally expensive and slow. Moreover, these methods

tend to perform poorly without supervision or well-speci�ed linear decision functions3.

To cohere sparsely distributed pixels, we invoke a preprocessing step that uses block-

based sampling before CCL. We generate bB, a sub-sampled version of binary image B, using
an m�m block, where m is an odd number such as 3; 5; 7; : : :. If B is an Nx �Ny matrix,

3A linear decision function is typically a line or surface used as a decision boundary when attempting
to classify cluster data. See Tou for more information on minimum-distance pattern classi�cation concepts
[139].
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consider two sets of integers denoted as L1 = f�; � +m; � + 2m; � + 3m; : : :g � Nx � 1 and

L2 = f�; � +m; � + 2m; � + 3m; : : :g � Ny � 1 where � = m�1
2 . We de�ne the Nx

m
� Ny

m

matrix bB as

bB(i; j; t) =
8>>><>>>:

1 if
i+�X

u=i��

j+�X
v=j��

B(u; v; t) � �m

0 otherwise

8 i 2 L1; j 2 L2 (4.3)

where �m is a threshold that we determine empirically based on the coherence of pixels

in B. For example, the distribution C used to segment the hands in Figure 4.1-a results

in many poorly connected pixel groups, as shown in Figure 4.1-b. Using a 3 � 3 block to

sample B and a low threshold of �m = 1, which turns \on" a block containing even one

pixel, the sub-sampled image bB produces only two regions. By adjusting the block size and

the density of pixels, i.e., manipulating m and �m, respectively, cohesive pixel groups can

be generated. Sub-sampling also reduces the computation and memory requirements of the

connected components algorithm. Figure 4.2 shows the number of operations involved in

grouping and labeling operations of CCL for a 500 frame sequence using various block sizes.

Although the bulk of the operations take place during initial thresholding4, switching to

larger block size reduced operations by almost 90%.

Connected component labeling produces a set of k binary regions ri from bB. Due to
the presence of similarly colored objects in the room, many of these blobs are not hands, as

shown in Figure 4.3. We use context information maintained by the appropriate objects in

our framework to help us classify regions. Let 	 = fareamin; areamax; ratiomin;wz;Z;
eg

represent a set of parameters supplied by the person class and the scene layer to provide

an idea of what a hand should look like and where it should be located in the scene.

These parameters are used by heuristic �lters that measure region features, such as pixel

area, elongation, overlap with activity zones, and the distribution of edges in the hand.

In comparison to deformable templates and splines, these features are stable, reliable, and

moderately invariant to a variety of imaging conditions, i.e., illumination changes, distor-

tion from perspective foreshortening, etc., especially over extended periods of time. From

4Thresholding always involves every image pixel, regardless if block samples takes place, i.e., no savings
in computation, memory, etc. However, many vision systems design assembly code or special hardware to
perform this operation.
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Figure 4.2: Comparison of the number of operations used in Connected Component Labeling for

various block sizes. For a 500 frame sequence of a pair of hands, increasing block size from 3�3 to

5�5, 7�7, or 9�9 reduces operations by 63%, 80%, and 87%, respectively.

experimentation, we argue that they are suÆcient for distinguishing hands from non-hands,

barring failures with color segmentation5. Such basic features are also attractive because

they can be consistently recovered over several frames, which is critical to establishing region

correspondence and tracking.

For each candidate region ri, we seek to multiple the output scores of each heuristic

�lter of 	. Scores are determined using heuristics developed from empirical examination.

Parameters of 	 are assumed to be independent so that we can evaluate each feature

separately, as described below:

� Pixel area: parea, i.e.,

parea =

8>>>><>>>>:
1�

areamin � areari
areamin

areari < areamin

1 areamin � areari � areamax

1�
areari � areamax

areamax
areari > areamax

; (4.4)

where areamin is the minimum number of pixels in ri and areamax is the maximum.

5Isolating the hands using color-based segmentation can fail when the hands share similar colors with
the environment or when other fresh-baring parts of the body are exposed.
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(a) (b)

Figure 4.3: (a) Original image, (b) Color-based segmentation and grouping of regions.

� Elongation of bounding box: pelongation, i.e.,

pelongation =

8>><>>:
1 ratiori � ratiomin"
1 +

ratio2ri
ratio2min

#�1
ratiori < ratiomin

; where (4.5)

ratiori =
min(xr � xl; yb � yt)

max(xr � xl; yb � yt)

and ratiomin is the smallest aspect ratio between the short and long sides of ri's bound-

ing box zri = [xl yt xr yb]
T as de�ned in Section 3.4.3. In practice, ratiomin � 0:25,

depending on the size of hands. The probability of region elongation smaller than

ratiomin experiences a second-order roll-o� because the likelihood becomes exceed-

ingly lower.

� Overlap with activity zone bounding box: pzone, i.e.,

pzone =
lX

j=1

wj
area(zri \ zj)

area(zri)

=
lX

j=1

wj
[min(xr; xr(j)) �max(xl; xl(j))][min(yb; yb(j)) �max(yt; yt(j))]

(xr � xl)(yb � yt)

(4.6)

where zj = [xl(j) yt(j) xr(j) yb(j)]
T is the bounding box of zone j. pzone factors the

percentage overlap between ri's bounding region and zone zj and the corresponding

likelihood wj, where 0 � wj � 1. Using this feature, the proportional contribution of
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zone probabilities is used to determine hand likelihood based on the location of ri's

bounding box in the image.

� Edge pixel ratio between the inner and outer regions: pedge

edgeri =

yb��yX
v=yt+�y

xr��xX
u=xl+�x

Eri(u; v)

ybX
v=yt

xrX
u=xl

Eri(u; v) �
yb��yX
v=yt+�y

xr��xX
u=xl+�x

Eri(u; v)

(4.7)

where Eri represents the edge map of ri produced by a Sobel edge �lter. Given

enough contrast between the hand ri and background, there should be substantial

edge information around the periphery of the hand with minimal edge pixels in the

interior. We also calculate the edge pixel count along the bounding box perimeter as

perimeterri =

ybX
v=yt

xrX
u=xl

Eri(u; v) �
yb��yX
v=yt+�y

xr��xX
u=xl+�x

Eri(u; v)

2(xr � xl) + 2(yb � yt)
: (4.8)

pedge o�ers a measure of hand likelihood given edge information and is de�ned as

pedge =

8>>>>>>><>>>>>>>:

1 edgeri < !4; perimeterri � !5

!1 edgeri < !4; perimeterri < !5

!2 edgeri � !4

!3 perimeterri = 0

: (4.9)

The variables of 
e = !1; !2; : : : !5 are determined after substantial testing, but are

not necessarily optimal. In practice, their values depend on the amount of contrast in

intensity between hands and surrounding surfaces. Typical values are !1 = 0:66; !2 =

0:60; !3 = 0:50; !4 = 0:1; and !5 = 1:9.

The total appearance-based score for region ri given 	 is calculated as

pri!	 = parea � pelongation � pzone � pedge: (4.10)

The process of color segmentation, connected component labeling, and feature analysis of

candidate regions is illustrated in Figure 4.4. Unfortunately, Equation 4.10 only helps to

remove some of the ambiguity of mapping regions to actual hands. In Section 4.1.3, we
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Figure 4.4: Diagram illustrates heuristic �lters used to determine likelihood of a colored blob given

pre-de�ned appearance-based parameters.

introduce hand centroid estimates that are provided by context-enhanced linear prediction.

Estimates for the left and right hands of person p are denoted as x̂l;p and x̂r;p, respectively.

To establish region correspondence from frame-to-frame, we measure the distance between

each region centroid and the the estimated hand centroid of each person, which is written

as d(xri ; x̂l;p) for the left hand and d(xri ; x̂r;p) for the right. These distances form the sets

given by

dl;p = fd(xr1 ; x̂l;p); d(xr2 ; x̂l;p); : : : ; d(xrk ; x̂l;p)g (4.11)

dr;p = fd(xr1 ; x̂r;p); d(xr2 ; x̂r;p); : : : ; d(xrk ; x̂r;p)g: (4.12)

Selecting the minimum-distance pair for each hand works towards solving the correspon-

dence problem. This is a linear regression process that selects the pairings based on minimiz-

ing the least-square error. However, the minimum-distance pair is not always the correct

choice, especially if there is evidence that our estimates are poor. We calculate time-

weighted error to assess our con�dence in the accuracy of our estimates. Con�dence is

established by adding the normalized minimum-distance error with prior con�dence scores,

such that

cl;p(i; t) = �c
maxfdQ � d(xri ; x̂l;p)g

dQ
+ (1� �c)cl;p(i; t � 1) (4.13)
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cr;p(i; t) = �c
maxfdQ � d(xri ; x̂r;p)g

dQ
+ (1� �c)cr;p(i; t � 1); (4.14)

where dQ is the maximum allowable distance from the head/torso center and �c is a weighing

constant. Note that estimation error is normalized relative to arm span dQ. Typically,

�c � 0:85 so that estimation error is not propagated excessively. We combine appearance-

based probability and our con�dence in estimates with minimum-distance pairs to make

the �nal correspondence decisions given by

argmin
i6=j

8<:
mX
p=1

cl;p(i; t)d(xri ; x̂l;p)pri!	 + cr;p(j; t)d(xrj ; x̂r;p)P (rj j	)

9=; ; 1 � i; j � k: (4.15)

These arguments return the region indices for each hand. A region is typically paired with

only one hand, but can be matched to more in special cases. In our implementation, we

have added heuristics that examine features such as area to test for blobs that are the

likely result of two merging regions, i.e., the person has placed both hands together, and

hence, has two hands corresponding to the same blob. These heuristics also evaluate motion

estimates and scene context to detect occlusions or episodes when the hands move outside

the �eld of view of the camera. The evaluations above are used in an adaptive, tracking

algorithm that maximizes the likelihood of matching a candidate to the respective hand,

depending on the number of people that are believed to be in the scene.

4.1.3 Context-Enhanced Linear Prediction of Hand Centroids

To estimate future hand centroids, we use linear prediction along with context from the

environment. The linear, estimated hand centroid is given by

�xt+1 = xt + dx; (4.16)

where dx = xt � xt�1. When combined with our minimum-distance correspondence al-

gorithm, this simple discrete-time �lter performs surprisingly well during gradual, well-

behaved hand motion. At present, higher-order motion models are avoided because they

introduce lag. We attempt to reinforce simple estimates using knowledge of the surround-

ings.

Although hand motion is generally unconstrained, we assume that people tend to

be explicit with regard to their interactions with articles. Scene-level context is leveraged
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Figure 4.5: Context-enhanced estimation: Enhanced predictor x̂t+1 slides between �xt+1 (no context,
i.e., � = 0) to h (max. context, � = 1).

to extract information that may reect a user's intentions, such as for which object he or

she may be reaching. We have identi�ed three principal factors that can be measured to

quantify intention:

� the direction of hand motion,

� the distance between the hand and neighboring articles, and

� the likelihood of moving from one article to another.

Figure 4.5 illustrates the concept of providing enhancements to the linear prediction

given by �xt+1. Using geometry to model hand trajectories, we calculate the line-of-sight

estimate h = [xh yh]
T , the point located along the line-of-sight path between the current

hand location position xt and the centroid ~xaj of article aj . The line established by linear

prediction contains xt and �xt+1. To determine h, we solve for the intersection of the line-

of-sight path and the line perpendicular to the linearly predicted path. This perpendicular

line, which also intersects the linearly predicted path at �xt+1, contains the segment 4x.
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We begin by de�ning h as

h =

264 xh

yh

375 =
264 �yt+1 �m1�xt+1 � yt +m2xt

m2 �m1
m2(�yt+1 �m1�xt+1 � yt +m2xt)

m2 �m1
+ yt �m2xt

375 (4.17)

where

m1 = �
�xt+1 � xt

�yt+1 � yt
and m2 =

~yaj � yt

~xaj � xt
; 8 m1 6= m2; �yt+1 6= yt; ~xaj 6= xt:

Wherever h is unde�ned, i.e., m1 = m2, the enhancement factor added to the simple

estimate �xt+1 is zero. Otherwise, we add a context factor � to the simple estimate. The

linear, context-enhanced estimate x̂ becomes

x̂t+1 =

264 x̂t+1

ŷt+1

375 =
264 �(i)4x+ �xt+1

�(i)4y + �yt+1

375 ; (4.18)

where 4x = [4x 4y]T denotes the displacement between the simple estimate �xt+1 and

the line-of-sight estimate h, and �(i) weighs the likelihood that aj is the destination article

given that ai was the last article touched. We establish this likelihood as

�(i) = max
1�j�n

(
kij

�
1�

�aj
360Æ

� "
1�

k�x� ~xajk

dQ

#)
: (4.19)

The �rst term of Equation 4.19, kij , represents the probability of a contact event with

the jth article given that the previous contact event was with the ith article, i.e., kij =

P (aj(t + 1)jai(t)) where time t + 1 is not necessarily the next time instant but the next

future event. More is discussed about kij in Section 5.1.2. The second term quanti�es the

direction of hand motion relative to nearby article aj by calculating �aj , the angle between

the line-of-sight estimate and the linear prediction, which is given by

�aj = arctan

�
k4xk

kdxk

�
: (4.20)

The �nal term in Equation 4.19 is proportional to the distance the hand is to potential

target aj. So in Equation 4.18, as more evidence that a person's hand is moving towards

aj becomes available, the more the �nal estimate moves from its linear prediction at �xt+1

to the line-of-sight prediction h.

Context-enhanced estimation o�ers the greatest improvement when articles have al-

ready been placed in the environment. Figure 4.6-a shows the per frame estimation error,
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(a) (b)

Figure 4.6: Linear Prediction versus Context-Enhanced Estimation: (a) Per Frame Error (b)

Context-Enhanced estimation reduces cumulative square error by 26.68% over Linear Prediction.

i.e., x� x̂, of the simple estimate versus the context-enhanced estimate. The improvement

provided by context-enhanced estimation is shown more clearly in Figure 4.6-b, which shows

that the cumulative square error over the entire sequence is reduced by almost 27%. Infor-

mal experiments using context-enhanced estimates in a variety of scenes show cumulative

square error can be reduced by as much as 63%. Factors a�ecting performance include the

size, location, and number of articles as well as arm span and hand velocity.

Context-enhanced estimation is an example of how ObjectSpaces facilitates informa-

tion sharing, i.e., providing the location of near-by objects, which improves other processes,

in this case, low-level tracking. Context-enhanced estimation combined with appearance-

based correspondence can select the proper regions from a set of potentially confusing

candidates as shown Figure 4.3-b. When con�dence is high and good hand features are

available, tracking can be maintained even if the hands wander into activity zones with

a low likelihood for hand traÆc. However, if only weak image features are available, i.e.,

P (areari jareamin; areamax) ! 0, the value of the information provided by the activity

zones is more heavily considered. This kind of \reasoning" is possible because of several

con�dence functions that measure uncertainty and our top-down, bottom-up framework.

Using context and appearance-based measurements, hand tracking can be sustained

in the presence of pronounced movement, variations in the lighting conditions, or tem-

porary occlusions. Automatic tracking of multiple hands using Kalman �ltering requires

instantiating a separate Kalman �lter for each candidate hand region. Although Isard et
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Figure 4.7: Hand-object contact: Extremal points provide better region perimeters than bounding

boxes for various hand orientations.

al. claim that Condensation provides simultaneous tracking of multiple hypotheses [71, 72],

it does not solve the correspondence problem. Using con�dence scores from Equation 4.13

to exploit physiological structure, our approach weighing the likelihood of regions to es-

tablish correspondence. Moreover, we achieve good performance using context-enhanced

estimation and tracking without the computational resources required by these methods.

4.1.4 Detecting Interaction with Articles

Throughout hand tracking, the scene layer maintains an inventory of people p and articles

a in the scene. We use a �xed, overhead color CCD camera that is pointed downward

to provide a view where the location of people and objects can be clearly determined. In

comparison to a lateral view of the scene, this perspective is less obstructive and less prone to

occlusions caused by people moving in front of the camera (shown in Figure 3.5). \Contact"

between a person's hand and an article is determined when there is any measurable overlap

between bounding regions.

Up to now, we have assumed a rectangular bounding region, denoted as z = [xl yt xr yb]
T .

However, to more accurately determine the perimeter of the hand, we de�ne the bounding

region using 8 extremal points versus the two points for rectangular bounding boxes. Figure

4.7 illustrates the advantage of using extremal points over bounding rectangles to establish

contact. In this example, the right hand bounding box (of the person on the right) over-
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Point Name Coord. Point Point

Topmost left (r1; c1) r1 = rmin c1 = minfcj(rmin; c) 2 rig
Topmost right (r2; c2) r2 = rmin c2 = maxfcj(rmin; c) 2 rig
Rightmost top (r3; c3) r3 = minfrj(r; cmax) 2 rig c3 = cmax

Rightmost bottom (r4; c4) r4 = maxfrj(r; cmax) 2 rig c4 = cmax

Bottommost right (r5; c5) r5 = rmax c5 = maxfcj(rmax; c) 2 rig
Bottommost left (r6; c6) r6 = rmax c6 = minfcj(rmax; c) 2 rig
Leftmost bottom (r7; c7) r7 = maxfrj(r; cmin) 2 rig c7 = cmin

Leftmost top (r8; c8) r8 = minfrj(r; cmin) 2 rig c8 = cmin

Table 4.1: The eight extremal points. [63]

laps two cards while the region enclosed by the extremal points voids the neighboring card.

Polygonal regions de�ned by extremal points are particularly useful when the hands are

held at more acute angles relative to the camera orientation. Table 4.1 shows how extremal

points are computed.

Extremal Coord. Name Coord. Representation

Topmost row rmin = minfrj(r; c) 2 rig

Bottommost row rmax = maxfrj(r; c) 2 rig

Leftmost column cmin = minfcj(r; c) 2 rig

Rightmost column cmax = maxfcj(r; c) 2 rig

Figure 4.8: Portion of key frames illustrate blob tracking around article perimeter.

Our hand tracking algorithm also has a simple occlusion model that maintains aware-

ness of hands that \disappear" under obstacles that lie closer to the image plane of the

camera, as shown in Figure 4.8. The detection of an occlusion event starts once there has

been some overlap between the hand perimeter and the article's bounding box (similar to

a regular contact event). The extraction layer tracks all hand-colored regions around the

article's bounding box by relaxing appearance-based parameters, i.e., areamin ! 0 and
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ratiomin ! 0. If the hand region disappears after initial contact, it is assumed to lie under

the occluding object until it re-emerges. If the hand region is fragmented into more than

one blob, the larger blob is selected.

In some cases, an unanticipated occlusion will occur. For example, in the process

of handling an article, the hand can temporarily become occluded. An illustration was

presented earlier in Figure 3.8 where the right hand of a person slides under an object. To

detect this type of occlusion, we �rst determine that there are no unmatched blobs with

a hand score that satis�es a threshold, i.e., for a left hand with no corresponding region,

we search all unlabeled regions such that d(xri ; x̂l;p)pri!	 > �min, where �min is a preset

threshold that represents the minimum allowable likelihood. We also check the estimated

hand centroid x̂ to see that no hand may have moved outside of the camera view. After

satisfying these two conditions for an occlusion, we set up a circular perimeter centered at x̂

with radius dQ, the maximum hand displacement. We assume the hand has been occluded

by some article within this region. The centroid estimate for the hand remains �xed at x̂

until the hand emerges within the perimeter.

4.2 Characterizing Actions using Hidden Markov Models

The hidden Markov Model (HMM) has emerged as a widespread statistical technique for

recognizing sequential patterns in data. The majority of this section is dedicated to the

description of the hidden Markov model. We begin with a brief look at the history of the

HMM.

4.2.1 Background & Motivation

The fundamental theory of hidden Markov models was �rst published in a series of seminal

publications by Baum and others in the late 1960s and early 1970s [12, 13, 14, 15]. Baker [8]

and Jelinek et al. [79] �rst popularized the method for use with speech processing applica-

tions in the 1970s. The HMM is now a broadly used statistical technique for characterizing

sequential processes ranging from the alignment of gene transcriptions for deoxyribonucleic

acid (DNA) analysis [120] to handwriting recognition [66].
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Figure 4.9: Markov chain - States with transition probabilities and deterministic output. State

sequence can be determined uniquely from output [130].

Yamato et al. developed one of the �rst HMM-based gesture recognition systems in

1991 using binary mesh features to distinguish between 6 tennis strokes [148]. Since then,

there has been a substantial following of researchers in the vision community who have

adopted the HMM as their method of choice for characterizing human gestures and actions

[21, 130]. Over the years, there have also been several modi�cations to the basic HMM,

motivated by desires to expand its applicability to a broader range of problems. Examples

include parametric HMMs [146], coupled HMMs [31], factorial HMMs [61], parallel HMMs

[94], embedded HMMs [107], along with a host of hybrid HMM methods.

One reason for the popularity of the HMM has been its ability to accurately char-

acterize data exhibiting sequential structure in the presence of noise and mild variation.

State-based representations for motion, like the HMMs, are well-suited for actions and ges-

tures, which have motion signatures with some natural ordering. We begin our discussion

of the HMM by o�ering a complete de�nition.

4.2.2 De�nition

HMMs can be described as a �nite-state machine characterized by two stochastic processes:

one process determines state transitions and is unobservable. The other produces the output

observations for each state. The states can not be directly determined from the observations;

hence, the states are hidden. For example, consider three states with transition probabilities

and output responses, as depicted in Figure 4.9. Notice that each state generates a unique

output, i.e., deterministic output, so it is possible to recover the state sequence directly

from the output sequence. This is an example of a Markov chain. However, if each state
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Figure 4.10: HMM - States with transition probabilities and probabilistic output. State sequence

can not be determined uniquely from outputs.

can generate any one of the three outputs, then it is no longer possible to unambiguously

recover the state sequence from the observations as Figure 4.10 illustrates; thus, the states

are hidden. This example typi�es an HMM. The beauty of the HMM lies in its ability to �nd

the most likely sequence of states that may have produced a given sequence of observations.

We formally de�ne the elements of a hidden Markov model with discrete observations

using the following declarations:

� N , number of pre-de�ned, �xed states of the model.

� M , number of observation symbols in the symbol alphabetV, such thatV = fv1;v2; : : : ;vMg;

if the observations are continuous, then V is an in�nite set.

� T , length of the observation sequence O, which is given by O = (o1o2 : : : oT ).

� s, the state space, which is partitioned into N states, such that s = fs1; s2; : : : ; sNg.

The state of the model at time t is given by qt 2 s; 1 � t � T .

� A, the state transition probability matrix, i.e., A = faijg where

aij = P (qt+1 = sjjqt = si); 1 � i; j � N (4.21)

and qt denotes the current state. The transition probabilities should satisfy the normal

stochastic constraints:

aij � 0 and
NX
j=1

aij = 1; 1 � i; j � N:
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� B, the probability distribution matrix for the observation symbols, i.e., B = fbj(k)g

where,

bj(k) = P (ot = vkjqt = sj); 1 � j � N; 1 � k �M (4.22)

ot is the observation at time t, and vk denotes the kth observation symbol in V.

Adherence to the stochastic constraints must again be satis�ed:

bj(k) � 0 and
MX
k=1

bj(k) = 1:

If the observations are not discrete, then continuous probability density functions are

employed, usually approximated by a weighted sum of M Gaussian distributions N

such that

bj(ot) =
MX
k=1

!jkN (ot; �jk;Cjk) (4.23)

where !jk is the weighting coeÆcient for the k
th mixture in state sj andN (ot; �jk;Cjk)

is a Gaussian pdf with mean vector �jk and covariance matrix Cjk. The weighting

coeÆcients should satisfy the constraints

!jk � 0 and
MX
k=1

!jk = 1:

� �, the initial state distribution, � = f�ig, where

�i = P (q1 = si): (4.24)

For convenience, an HMM with discrete probability distributions can be represented using

the compact notation,

� = (A;B;�); (4.25)

or

� = (A; !jk; �jk;Cjk;�); (4.26)

if continuous probability distributions are adopted.

Generally, there are three key problems associated with the hidden Markov model:

evaluation, training, and decoding. A detailed review of these procedures is provided in

Appendex A. For an exhaustive discussion on HMMs, see [67, 118].
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Figure 4.11: Gearbox uses translation matrix T to map bounding box coordinates back to origin.

No rotation is required, i.e., � = 0.

4.3 HMM Implementation Issues

We continue with our discussion by examining issues related to their implementation and

usage by describing the observation vectors used by our hidden Markov model. Our imple-

mentation of Viterbi parsing of continuous hand motion is also highlighted.

4.3.1 Observation Vectors

As we mentioned in Section 2.4.2, we are primarily concerned with �nding the smallest and

richest feature set that will allow us to properly characterize hand-based motion. Using

color-based segmentation, we generate regions that represent the hands. While there are

several metrics that can be used, such as pixel area, bounding box ratio, elongation, color

(YUV value), velocity, eccentricity, angle of least inertia, etc., the only feature that we

use is the two-dimensional hand centroid (x; y position). For modeling the majority of

hand actions, the centroid is generally suÆcient, especially when the lexicon of actions is

distinct and small, i.e., less than twenty. Moreover, because our framework was designed

to reuse classes, which includes pre-trained actions, the general trajectory of motion is the

only feature that is invariant to scene lighting conditions, scale variation, or the hand size,

shape, or color of independent subjects.

To facilitate class reuse of action models, articles provide spatial context to normalize

hand centroids. When modeling an action, we train the HMM using speci�c examples of
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the interaction, usually conducted with a speci�c object. However, the HMM for this action

is intended to be used by other instances of the class. For example, if we train the \ip

forward" action using a speci�c textbook, we also want to use the same HMM to recognize

the action when a di�erent book is used. To use position information as observations of

the model, we normalize hand movement relative to the article's bounding box. A second

transformation is required to normalize hand movement relative to the dimensions of the

article's generalized class model. Using these transformations, actions can be recognized

no matter where an article is located in the scene. In other words, all hand positions are

normalized with respect to the class model. Moreover, a single action model can be applied

by articles with di�erent physical dimensions.

When people interact with articles, the scene layer captures the raw coordinates of

hand centroids. The article bounding box z = [xl yt xr yb]
T supplies the spatial context to

translate and rotate raw coordinates for normalization. So, for a sequence of observation

features O = fx1;x2; :::;xT g, we apply a 2 � 2 rotation matrix about �, the angle of least

inertia, i.e., angle of primary axis, to account for any rotation, and a translation vector

xtrans, which places the top-left corner of the bounding box at the origin. We also apply

two scale factors to normalize the dimensions of the bounding box to match those of the

generalized class model. For each object class, these aÆne transformations map hand

movement to a single model (the GCM). The normalized observation feature bO becomes

bO = S[R(�)O+ xtrans] (4.27)

where

S =

0B@ �width
xr�xl

0

0
�height
yb�yt

1CA ;R(�) =
0B@ cos � � sin �

sin � cos �

1CA ;xtrans =
0B@ �xl

�yt

1CA ;
�width and �height are the mean width and height dimensions of the GCM bounding box.

The states of an HMM represent characteristic stages of an action sequence. Because

position is the only metric used to model the action, states of the HMM actually quantize

positions of the sequence. In other words, if hand centroids are given as raw x and y coor-

dinates, then the N states of the HMM correspond to N key Cartesian points in the image

that hand centroids pass through during the action's execution. Each state is represented
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as a Gaussian density with the normal mean and variance learned from training data. In

our case, we elect to use single mixture, continuous HMMs for our models to properly char-

acterize actions with a moderate amount of training data. We say more about setting up

our continuous HMM in Section 4.3.4 below.

When only position information is used, it is interesting to ask \is the hidden portion

of our HMM (the model's states) still hidden or does our HMM degenerate to a Markov

chain?" Because of the direct relationship between observable positions in the image and

hand locations, observations can be more intuitively related to the states that generated

them; however, the states are, technically, still hidden.

4.3.2 Training Sets

In general, the more training data, the higher the recognition accuracy, provided that the

supplied examples fully capture the nature of the action and its spatio-temporal variation.

We assume that all actions are distinct and repeatable. Training sets for user independent

action recognition systems tend to pro�t from observations constructed from a variety of

subjects. However, the use of centroid-based observations allows models trained using a

single user to be used e�ectively for person-indepedent testing. Unless speci�ed otherwise,

all actions are one-handed interactions.

Because of our unique, view-based approach, no existing action footage could be

utilized for training. Therefore, all sequences used for training and testing were acquired

expressly for our needs. The training set for each action roughly consists of 10-20 examples

performed by the same person, and are manually segmented from video. More detail relevant

to training and test conditions will be discussed in latter sections of Chapter 5, when some

of our experimental results are highlighted.

4.3.3 HMM Topologies

Although there are elaborate techniques for de�ning optimal HMM topologies, we conducted

empirical evaluations to select our topological structures. Using the same data for each ex-

periment, we ran several trials with di�erent model structures running Entropic's Hidden

Markov Toolkit (HTK). The topology that maximized P (Oj�) over all of the heterogeneous
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(a)

(b)

Figure 4.12: (a) Our empirically derived 6 state, semi-ergodic HMM with skip transitions; (b)

image key frames that are representative of the 6 corresponding states of the \ip-forward" action.

action sequences was selected and is shown in Figure 4.12-a. Through our examinations,

we found this structure to perform better than strictly left-to-right structures. This topol-

ogy is used when training begins but is likely to be reduced to a more simple structure,

depending on the actual training data, i.e., parameter estimation during training can use

skip transitions to reduce the total number of e�ective states to less than six. Fully ergodic

structures also performed worse, as they tend to require much more training data than we

had available to properly characterize data. Figure 4.12-b shows that the six key frames

that are representative of the six states used in our model topology during the \ip forward"

action. Notice that states three and �ve as well as two and six appear to be located in the

same area in the image. Likewise, they share similar probabilities of generating a hand

location within the respective image regions. However, for this model, the probability of

transition from s4 to s3 is pruned, i.e., a43 ! 0.

While the topology given in Figure 4.12-a works well as a general structure, there

are many cases where a topology must be tuned for a particular action. Some of these

models are shown in Figure 4.13. The top structure has a typical left-to-right topology for

ordered motion paths, which is typical of many actions such as \grab book" (bookcase),

\open door" (refrigerator), \take drink" (cup), and \pull parking brake" (automobile). The

middle topology has a structure for supporting repetitive loops, such as the action \shake"

(salt shaker). The bottom HMM o�ers a similar structure for redundant movements and is

used to model actions like \wash dish" (sink).
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Figure 4.13: Other topological structures used to model actions.

4.3.4 Model Initialization

Once we have determined the number of states and a candidate topology for their ar-

rangement, we can begin to model action sequences. The probability distribution for the

continuous HMM can be expressed using a unimodal Gaussian given by

bj(ot) =
1q

(2�)2jCjj
e
1

2
(ot��j)

TC�1

j (ot��j); (4.28)

where the mean �j and the covariance matrix Cj of state j are determined by

�j =
1

Tj

TjX
t=1

ot and (4.29)

Cj =
1

Tj

TjX
t=1

(ot � �j)(ot � �j)
T ; (4.30)

respectively, and Tj is the number of samples associated with state j. Usually, initial

estimates for � and C can be obtained by simply dividing the observation evidence evenly

among the states, then using Equations 4.29 and 4.30. Initial transition probabilities for

A are normally taken to be uniform. However, in many cases, we achieved better results

from exploiting using hand-marked data from training examples instead of resorting to at

densities. Unfortunately, Baum-Welch re-estimation only provides a local maximum for the

likelihood function. Whenever possible, initial estimates are also empirically selected so

that the local maximum is likely to be the global maximum.
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Figure 4.14: Bu�er containing hand positions feeds observation vectors of variable length to class-

related HMMs, which are evaluated in parallel.

The reestimation formulas for our Gaussian model are given by

��j =

TX
t=1

t(j) � ot

TX
t=1

t(j)

(4.31)

�Cj =

TX
t=1

t(j) � (ot � �j)(ot � �j)
T

TX
t=1

t(j)

: (4.32)

The reestimation equation for aij is unchanged from Equation A.28.

4.3.5 Viterbi Parsing of Observations

A bu�er that records the centroid of each hand in each frame is maintained during tracking.

After hand contact with an article is established, positions from the bu�er are fed to an

HMM Viterbi recognition module. The module contains a bank of all the action HMMs

associated with the article class, which are evaluated in parallel, as shown in Figure 4.14.

Each HMM evaluates the likelihood of a particular action using the Viterbi algorithm

to parse the observation sequence over a variable length window. As each new observation

is added, the oldest sample at the other edge of the window is removed. The Viterbi

trellis search is then conducted backwards over the input observations to �nd the maximum

probability parse. The window length T is based on the average sequence length used to

train the particular model. In practice, however, this length is adjusted over a small range
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Figure 4.15: Maximum normalized probability per frame (smooth curve) with the corresponding

length T of the observation vector.

in the neighborhood of length T . As the window's length increases, the sequence likelihood

decreases due to the multiplication of probabilities less than one. We normalize by averaging

over the length of the sequence. By executing all relevant HMMs in parallel, we can provide

the maximum normalized probability and the corresponding optimal sequence length at

each time step. Knowing the sequence length helps to avoid timing conicts so that the

same action isn't reported multiple times (at each frame-wise evaluation). Determining the

start-�nish boundaries for an action helps to disambiguate potentially confusing actions.

For example, if only position information is available repeated occurrences of the right-left-

right motion of the \ip forward" action and the left-right-left motion of \ip backward"

are easily confused. However, since we can determine when the motion starts (from the

left or from the right), we can decide between the two. Figure 4.15 illustrates the window

length associated with the maximum normalized probability.

We use manually set thresholds to discard low scores, then select the model that

maximizes P (Oj�). Figure 4.16 illustrates the output of the \ip forward" HMM in for the

book class.
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Figure 4.16: \Flip Forward" HMM output: Mean log likelihood per frame (action is repeated).
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CHAPTER 5

Evaluating Evidence for Recognition Tasks

Poole calls evidence \the knowledge directly acquired through interacting with the world"

[116]. In Chapter 3, we introduced ObjectSpaces, a framework for managing and organizing

evidence extracted from video. We also discussed processes for detecting contact and ana-

lyzing hand interactions with articles in Chapter 4. In this chapter, we present techniques

to analyze evidence or information collected by our framework to recognize single-tasked

activities as well as to classify unknown objects.

To address these problems, we extend appearance-based representations by searching

for low-level information that indicates an object's image appearance as well as how people

appear to interact with the object over time. Bayesian classi�cation techniques are employed

to identify and weigh contextual patterns in evidence that can be used to recognize single-

tasked activities or to classify unknown objects. Our approach relates hand motion and

object context to achieve:

� object recognition using action context, and

� action recognition using object context.

Contributions in this chapter include:

� an extension to appearance-based representations for recognition

{ object classi�cation using action context, i.e., object classi�cation based on how

people appear to interact with the object, and

{ action recognition using object context, i.e., action recognition based on an ob-

ject's appearance



� adaptive Bayesian classi�cation techniques to identify and weigh dynamic patterns in

evidence over time.

5.1 Extracting Evidence

We concentrate on collecting heterogeneous, low-level information that can be recovered

reliably and can provide a basis for classi�cation. We look for complementary information

so that decisions regarding recognition are more robust against evidence that may be weak

in some areas or stronger in others. By sampling the state of the environment over time,

i.e., capturing object features, interactions, etc., we accumulate dynamic changes in object

and action context, which provide much richer information for recognition than static ob-

servations. There are three categories of evidence that we will use to establish maximum

likelihood classi�cation:

De�nition 5.1 Image-based evidence consists of appearance-based features that quan-

tify an object's size, shape, edges, similarity to known image templates, etc.

De�nition 5.2 Object-based evidence captures the likelihood of sequential object-to-

object contact between articles classes.

De�nition 5.3 Action-based evidence deals with the recognition of known actions.

All three categories are weighed and assessed for object classi�cation while activity recog-

nition primarily relies on action-based evidence (since the object is assumed to be known).

Only image- and action-based evidence are used to detect new articles.

5.1.1 Image-based Evidence

We consider a small set of appearance-based features that are generally suÆcient enough

for object classi�cation when considering a relatively small set of object classes [65]. We

detect new objects and people in the scene using conventional background segmentation

techniques. During initialization, a snapshot of the background is taken to capture its initial

state, I(x; y; 0), then known articles are labeled. At run-time, changes in the appearance
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Figure 5.1: Image-based Evidence: Background segmentation reveals newly introduced objects that

can be analyzed to recover appearance-based features, such as aspect ratio, pixel area, orientation,

the image template, and bounding region.

of the background can be caused by movement from hands or existing articles as well as

by the introduction of new, unknown articles. In any case, we segment these di�erences by

subtracting the current frame I(x; y; t) from I(x; y; 0), then apply an empirically determined

threshold �, i.e.,

~B(x; y; t) =

8><>: 1 if jIY (x; y; 0) � IY (x; y; t)j � �

0 otherwise
: (5.1)

Here IY represents only the intensity component1 of YUV image I while ~B(x; y; t) is the

binary image produced by the segmentation. Since we avoid overlapping or stacking articles

on top of each other, i.e., intentional occlusion of an article by another, there is little need for

a background adaptation process to update IY (x; y; 0). We invoke Connected Component

Labeling (CCL) as described earlier (in Equations 4.3) to group and label binary regions.

Our correspondence algorithm analyzes and tracks each blob over consecutive frames

to determine if the region represents a new, unknown object or is part of a known article or

1Implementing image subtraction using only 1 image channel versus 3 shortens processing time and
reduces memory storage by 66%.
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hand part. During each frame, we check for overlap between the known bounding boxes of

articles and hands and the bounding box of each blob. This comparison reveals changes in

the background for which we can not account. To determine if the blob represents a new

object or an image artifact, such as a shadow, we track it over consecutive frames while a

region analysis procedure examines motion and pixel area. Those unknown regions with

inconsistent size and position are pruned from further consideration2. The remaining n

regions that appear to be unlabeled articles are examined to extract evidence that can be

used for recognition. The foreground subimage Fi(x; y; t) of unknown article Zi is given by

Fi(x; t) = I(x; t); 8 x 2 Zi; 1 � i � n (5.2)

where x = [x y]T . To determine Zi's orientation with respect to the angle of the principle

axis, we calculate � given by

� =
1

2
arctan

0BBB@
2

X
(x;y)2Zi

xy

X
Zi

x2 �
X
Zi

y2

1CCCA : (5.3)

We apply a rotation matrix R to obtain the rotationally normalized foreground subimagecFi, i.e., cFi = R(��)Fi (illustrated in Figure 5.1). Using cFi, the unknown can be compared

to stored image templates from our class database. We also recover other features3 of Zi,

including pixel area �i, aspect ratio Æi, and perimeter edge count �i. A bounding box zi

is constructed around Zi, which helps to detect future hand overlap and to recover actions

performed around this region. To minimize noisy measurements, these parameters are

averaged over several frames and used to formally create a new Article object (though

still unknown).

To leverage prior knowledge, we �rst attempt to identify each unknown Zi by com-

paring cFi to each stored subimage template Sj that shares a similarly-sized bounding box
4,

such as those shown in Figure 3.3. The mean square error (MSE) �, used to quantify

2We assume movement or shape inconsistency to be a trademark of an image artifact.
3Note that these are the same appearance features used to de�ne any Article class.
4Recall that we assume scale variation is negligible since the distance between the action plane and

camera is generally �xed.
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matching of an N1 �N2 pixel template, is de�ned as

�(i; j) =
1

N1N2

X
x2Sj

[Sj(x)�cFi(x)]2: (5.4)

In summary, the parameters �i; Æi; �i, and � form the vector �i, which represents image-

based evidence. We also have created a new, unlabeled Article object, which we can use

to manage context, properties, and interactive events associated with Zi.

5.1.2 Object-based Evidence

Sequential contact is the order in which one touches di�erent objects. For example, in a car,

the right hand touches the stick shift while changing gears, then grabs the steering wheel.

The statistical history of sequential object-to-object contact can be helpful for revealing

relationships between article classes. One of the objectives of object-based evidence is to

characterize probabilistic relationships between article classes, i.e.,

P (currently touching steering wheeljpreviously touched stick shift):

These 1st-order relationships can be exploited when encountering contact between a known

and an unknown article.

Before the scene is initialized, we select the domain C that best describes the envi-

ronment where interactions are to take place. We know a priori which generalized class

models can appear in C. For example, in the oÆce domain, we anticipate several article

types, including a keyboard, book, phone, table, etc. Let nC represent the number of unique

GCMs in domain C and MC denote the subset of class models relevant to domain C, e.g.,

MC 2M.

While a person is interacting with objects in the environment, the scene layer observes

sequential contact between every two articles ai and aj , storing the number of transitions

from class type to class type in a nC � nC matrix K = fkijg. Here kij denotes contact

order starting from an article with the class model Mi and terminating with an article of

classMj . Instead of blindly considering any pair of object-to-object transitions, we look for

rest states in hand motion, i.e., dx = 0, that might indicate a break in deliberate hand-to-

object interaction. We initialize matrix K to zero, i.e., kij = 0. During training exercises,
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cup dr lock pkg brake radio stick str wheel temp ctrl win handle

cup 0.081 0.000 0.041 0.041 0.081 0.715 0.041 0.000

door lock 0.000 0.000 0.000 0.000 0.000 0.900 0.000 0.100

parkg.brake 0.050 0.000 0.050 0.100 0.033 0.400 0.167 0.000

radio 0.040 0.000 0.060 0.175 0.137 0.545 0.043 0.000

gear stick 0.035 0.000 0.105 0.058 0.000 0.745 0.057 0.000

steer wheel 0.062 0.038 0.030 0.094 0.517 0.097 0.088 0.074

temp ctrl 0.051 0.000 0.000 0.117 0.072 0.676 0.084 0.000

wind handle 0.000 0.100 0.000 0.000 0.000 0.900 0.000 0.000

Table 5.1: Object-to-object hand transition matrix K for automobile domain.

we populate the scene with articles from all nC class models so that we can construct a

well-balanced distribution of transitions. As hands are tracked, we update kij by counting

the transitions when hand contact moves between articles. To determine the probability

that the jth article is handled given that the ith article was previously handled, we solve for

P (aijaj) such that

P (aijaj) =

8><>:
kij

ni
if ni > 0

0 otherwise
; where ni =

nCX
j=1

kij (5.5)

Counting transitions proves to be advantageous because it makes it convenient to normalize

transition probabilities based on the classes represented in the scene. This is easily accom-

plished by excluding terms of missing article classes in the summation in Equation 5.5 or

by adding others as new object classes are introduced to the scene. Table 5.1 shows matrix

K for the automobile domain after initial training. In summary, contact transition matrix

K serves as a measure of object-based evidence by inferring the class of an unknown object

through its relationship with known articles.

5.1.3 Action-based Evidence

Action-based evidence plays an important role in both object classi�cation and activity

recognition. When a person interacts with an unknown object, we search for hand actions

to infer the object's class, e.g., object recognition from action context. Naturally, if we

already know what article a person is interacting with, we limit the range of possible actions

to those that we directly associate with that object's class, e.g., action recognition from

object context. The background subtraction method used to extract image-based evidence
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Figure 5.2: The area spanned by the hands during the \ip forward" action helps to de�ne the

bounding box of a book that is initially part of the background.

is the best way to detect newly introduced objects. When this method fails, we show that

recognizing actions can also provide a powerful method for detecting unknown objects,

especially those that are part of the background.

In cases where the article's class is unknown, all HMMs that can be associated with

the known domain C are placed in parallel as mentioned in Section 4.3.5. Let the entire

set of HMMs used by all GCMs appearing in domain C form action model space �C of

dimension v, such that �C = f�ff ; �fb; �wrt; :::g = f�1; �2; :::; �vg. We determine the most

likely sequence of states given a model using the Viterbi Algorithm [67]. We maximize

P (Oj�) over every action model in �C , i.e.,

p = max
�C

fP (O;qj�)g; (5.6)

which we refer to as a measure of action-based evidence. To model interactions with known

articles that have associated actions, the same process is used, except that only the set

of HMMs associated with the object are assembled in parallel to operate on incoming

observations.

To detect unknown articles that may be fully occluded or merged with the background,

we conduct HMM analysis when hands are in undesignated areas (considering all action

models in �C). We examine where hand-based actions take place, relative to the location

of known articles. If actions are repeatedly recognized outside of known bounding regions,

we infer that an unknown article must exist in the undesignated area. The bounding box

for the article zi = [xl yt xr yb]
T is initially de�ned by the space between existing zones and

the area spanned by the hand's bounding box during an action (upper-left and lower-right
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corners of hand motion). The bounding coordinates of the unknown article are modi�ed as

we track the extremities of the hand's bounding region during each recognized action, i.e.,

zi =

0BBBBBBB@

xl

yt

xr

yb

1CCCCCCCA
=

0BBBBBBB@

mint=1:::T fxl(t); xlg

mint=1:::T fyt(t); ytg

maxt=1:::T fxr(t); xrg

maxt=1:::T fyb(t); ybg

1CCCCCCCA
; (5.7)

where xl(t); yt(t); xr(t), and yb(t) are bounding coordinates in frame t of a T -length sequence.

5.2 Evaluating Evidence

In the following sections, we describe Bayesian approaches to weigh and assess image-,

object-, and action-based evidence for maximum likelihood classi�cation. We begin with a

brief motivation for using Bayesian methods before we unveal our strategies for recognizing

single-tasked activities and classifying unknown objects.

5.2.1 Bayesian Decision Theory

In his 1763 essay entitled, \An essay towards solving a problem in the doctrine of chances,"

the Reverend Thomas Bayes introduced a mathematical relationship that remains one of

the methods of choice for handling uncertainty [16]:

P (modeljdata) =
P (datajmodel) � P (model)

P (data)
:

Bayes' theorem states that the posterior is proportional to the likelihood times the prior.

It weighs the strength of belief in a model, or hypothesis, against prior knowledge and

observed evidence. In addition, it provides attractive features, including: (1) its ability to

pool evidence from various sources while making a hypothesis, and (2) its amenability to

recursive or incremental calculations, especially when evidence is accumulated over time [3].

These features motivate our application of Bayesian classi�ers to summarize activities and

resolve unknown objects.

Bayesian methods are widely used to provide a formal means to reason about partial

beliefs under conditions of uncertainty [113]. In particular, there is a substantial amount of
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Figure 5.3: To accommodate various scenarios, multiple Markov models are used to represent some

high-level activities, such as acceleration.

existing work in the literature that exploits Bayesian approaches for solving action recog-

nition problems. Examples include Nagel [103] and Neumann [108], who conducted several

pioneering studies that describe behavior from image sequences. More recently, Bayesian

belief networks surface as a viable method for detecting and describing interactions. The

framework proposed by Buxton et al. uses Bayesian Networks to perform surveillance and

evaluate evidence in well understood scenes [35]. In their approach, static and dynamic

Bayesian networks provide robust tracking and segmentation. Using rules about the scene

and human activities as constraints, these networks can be use to analyze user behaviors.

Bayesian inference methods are also useful for making conclusions based on the presentation

of adequate evidence. Yi and Chelberg use Bayesian belief networks for selecting probable

objects based on discriminating features and domain-speci�c knowledge [150]. In another

example, Brand combines low-level image features of hand interactions with objects along

with an action grammar to interpret video of manipulation tasks such as disassembly [30].

In this work, causal constraints are used to detect meaningful changes in the integrity and

movement of foreground-segmented blobs. A model of manipulation is used to disambiguate,

parse, and produce a script of actions taking place in the scene.

5.2.2 Evaluating Evidence for Single-Tasked Activities

High-level, single-tasked activities are characterized by a sequence of lower-level hand ac-

tions or events that we represent using a Markov chain. For example, in the automobile

75



domain, the high-level activity \accelerating" is recognized when an ordered sequence of

lower-level actions, such as \Neutral-to-1st," \1st-to-2nd," and \2nd-to-3rd." In some cases,

we create multiple Markov models to represent the same activity as illustrated in Figure

5.3. The single-tasked activity model � is de�ned similarly to an HMM:

� N , number of �xed states of the model.

� M , number of observation symbols in the symbol alphabet v, such that v = fv1; v2; : : : ; vMg;

Symbol alphabet v is composed of all possible hand action HMMs and contact events

in domain C, i.e., vC = f�1; �2; : : : ; "1; "2; : : :g:

� T , length of the observation sequence o, which is given by o = fo1 o2 : : : oT g.

� s, the state space, which is partitioned into N states, such that s = fs1; s2; : : : ; sNg.

The state of the model at time t is given by qt 2 s; 1 � t � T .

� A, the state transition probability matrix, i.e., A = faijg where

aij = P (qt+1 = sjjqt = si); 1 � i; j � N (5.8)

and qt denotes the current state. The transition probabilities should satisfy the normal

stochastic constraints:

aij � 0 and
NX
j=1

aij = 1; 1 � i; j � N:

� Each state sj generates a unique output symbol vk, i.e., P (vkjsj) = 1; 8 vk 2 vC ; 1 �

j � N; 1 � k �M .

� �, the initial state distribution, � = f�ig, where

�i = P (q1 = si): (5.9)

The Markov chain can be represented using the compact notation,

� = (A;vC ;�): (5.10)
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Figure 5.4: Contact events and low-level hand actions feed into a bank of Markov models for

recognizing single-tasked activities.

Since state output is deterministic in a Markov chain, only state transitions are probabilistic.

State transition parameters can generally be speci�ed by hand for simple models5, but

bene�t from training data for more complex Markov models.

To recognize single-tasked activities, we construct a second tier of Viterbi parsers that

accept, as input, the sequence of low-level interactive hand events generated by hand motion

analysis in the extraction layer. Recall that the extraction layer attempts to recover actions

associated with object context by passing hand centroids through a bank of Viterbi parsers

for each action HMM �. If the article class has no associated action models or hand motion

can not be characterized, a \contact" event " is reported. This is illustrated in Figure 5.4.

For a given domain C, we consider the set 
C , which contains every single-tasked

activity model �, such that 
C = f�1;�2; : : :g. In order to compute the likelihood of an

activity given a sequence of observations, we solve the relation

�̂ = max

C

fP (qj�)g; (5.11)

5Simple models typically have left-to-right topologies with no return-state loops or skip states.
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Figure 5.5: Belief network corresponding to a na��ve Bayesian classi�er for selecting the most likely

generalized class model (GCM).

where q = fv1 v2 : : : vT g represents a sequence of actions and events using the Viterbi

algorithm.

5.2.3 Evaluating evidence for classifying unknowns

For recognizing unknown objects, we construct a na��ve Bayesian classi�er to select the most

likely Generalized Class Model (GCM) associated with unknown Zi (Figure 5.5). The clas-

si�er assesses each component of image-, object-, and action-based evidence independently.

We allowMk to represent the k
th GCM inM. To measure appearance similarity, we express

the likelihood of Zi's image-based evidence �i given a particular class model Mk as

P (�ijMk) =
P (�i; Æi; �i;Mk)

P (Mk)

=
P (�ijMk)P (ÆijMk)P (�ijMk)

P (Mk)

= e

�
1

2

 
(�i � ��;k)

2

�2�;k
+
(Æi � �Æ;k)

2

�2Æ;k
+
(�i � ��;k)

2

�2�;k

!

= e1(i; k)

; (5.12)

where ��;k, �Æ;k, and ��;k are mean values and �2�;k, �
2
Æ;k, and �

2
�;k are variances determined

from example image templates for each components of appearance, �i; Æi; and �i, respec-

tively6. In Equation 5.12, we use an unnormalized Gaussian so that we do not dilute the

likelihood score.

We also want to consider the contribution from any of the stored image templates

of previously seen articles. The reader is reminded of the possibility that template Sj can

6Recall that Equation 3.8 is used to estimate the Gaussian parameters for each component.
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belong to more than one class model Mk. We consider the likelihood of the unknown given

the joint likelihood that template Sj is a member of class model Mk, such that

P (ZijSj ;Mk) = maxj

�
P (Zi; Sj ;Mk)
P (Sj;Mk)

�
= maxj

�
P (Zi; Sj)P (MkjSj)
P (Sj jMk)P (Mk)

�
= maxj

�
P (ZijSj)P (MkjSj)P (Sj)

P (SjjMk)P (Mk)

�
= e2(i; k)

(5.13)

We determine the priors P (Sj) and P (Mk) along with the posteriors P (MkjSj) and P (Sj jMk)

during initialization of our model database M. Note that P (Sj) reects the frequency with

which Sj occurs over the sample space of all models Mk, i.e.,

P (Sj) =
no. occurrences of Sj 8 MX
8 k

no. templates in Mk

: (5.14)

Recall that we calculate the mean square error in Equation 5.4 to get a measure of similarity

between two templates. If cameras are mounted roughly at the same distance from the

image plane where most activities occur, i.e., same distance from table tops, scale variation

within templates is insigni�cant. Typically, this distance is large enough to keep perspective

projection distortion relatively small. Hence, the location of the template in the scene is of

little consequence. To use the MSE to determine the likelihood that Zi appears as Sj, we

approximate P (ZijSj) by

P (ZijSj) � e
��
� ; (5.15)

where � is discovered empirically. We elect to use this exponential distribution because it is

well-behaved on the range [0:1] for appropriate � (monotonically decreasing). Additionally,

since the MSE is a relatively noisy measurement, we can design � to be more tolerable of

e�ects caused by poor alignment, reections, lighting conditions, and small occlusions.

Next, we collect object-based evidence that may allow us to determine the class of

the unknown by identifying how people behave while using it with known objects. We are

able to assess this evidence by considering the interactive relationship between article pairs.

Recall matrix K, which contains the number of hand transitions between respective article

classes. During interactivity, we maintain a count of the transitions between Zi and other
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articles in the scene using vector g of dimension nC, i.e., g
T = [g1 g2 : : : gnC ] (where gj is

the count of transitions from Zi to some article from model class Mj). To compare Zi's

transition behavior (described by gi) to behavior collected from training exercises (described

by K), we subtract gTi from each row in K, denoting the resulting nC � nC matrix as bK.

The highest correlation between gi and M will produce the minimum row sum in bK. Each

element k̂uv of bK is de�ned as

k̂uv =

8><>: 2jkuv � gvj if kuv = 0

jkuv � gvj otherwise
: (5.16)

We assume that K is well-developed from extensive training footage. We also assume that

any zero probabilities in K reect highly unlikely transitions, therefore, we amplify those

di�erences. In each row u of bK, we compute �(u) to describe the total matrix sum minus

the sum of di�erences between the likelihoods of the unknown and each class model, i.e.,

�(u) = ��
nCX
v=1

k̂uv; 1 � u � nC; (5.17)

where the total matrix sum � is given by

� =
nCX
u=1

nCX
v=1

k̂uv: (5.18)

Finally, we can determine the probability of gi given model Mk by

P (gijMk) =
�(k)

nCX
u=1

�(u)

= e3(i; k)

: (5.19)

To assess the contribution of action-based evidence, we examine hand position O for

patterns that map to a known action model �, which we also associate with class models.

To calculate the probability of a hand interactions with Zi given both an action model and

a generalized class model, we solve the relation

P (OjMk) = max
�C

fP (Oj�)P (� jMk)g

= e4(i; k)
: (5.20)

Recall that �C contains all action models in domain C.
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We compose four-dimensional vector eT (i; k) from all image-, object-, and action-

based evidence components associated with unknown Zi, such that

e(i; k) = [P (�ijMk) P (ZijSj;Mk) P (gijMk) P (OijMk)]
T

= [e1(i; k) e2(i; k) e3(i; k) e4(i; k)]
T

: (5.21)

Naturally, the quantity and quality of this evidence changes over time in response to inter-

actions taking place. Likewise, our model of belief should be able to capture the dynamic

contribution of the di�erent bodies of evidence as well as the overall level of uncertainty in

our probabilistic model. The dynamic e�ects of changing context can be ameliorated by

accumulating evidence over time. For compactness in our notion, we drop the arguments

i and k when convenient, but include t to signify the time when the evidence is sampled7.

We determine the sample average of the evidence ~e over a sliding window of length L such

that

~e(t) =
1

L

tX
s=t�L

e(s): (5.22)

We can collect evidence at every frame or only when there is some measurable change in one

of the vector elements of e. Likewise, we adjust the length L to mirror the sampling rate,

opting for longer windows for more frequent sampling. To avoid redundant computations,

we can also express Equation 5.22 recursively as

~e(t) = (1� �L)~e(t� 1) + �Le(t); (5.23)

where �L is a sample-weighted constant. For uniform contribution of evidence over the

length of the window, we set �L = 1
L
. To assess the probability of Zi given the evidence

from class model Mk, we solve

P (Zij~e(i; k)) = wT ~e(i; k); (5.24)

where w represents a weight vector whose components are adjusted to reect the strongest

beliefs among available evidence. Each weight is de�ned as

wj =
~e2j
~eT ~e

; subject to
4X
j=1

wj = 1: (5.25)

7We emphasize here that the notion of time is discrete in nature. Future references to time are always
implied, but we will only include t in equations when particularly relevant.
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(a) (b)

Figure 5.6: (a) Probability of image evidence given class model P (�ijMk) (b) corresponding mean

variance over window.

For each unknown Zi, the most likely generalized class model  is the model inM producing

the highest score, such that

 = argmax
M
fwT ~e(i; k)g: (5.26)

Additional biases are also placed on w, which have the e�ect of dynamically adjusting

the contribution of image-, object-, or action-based inuences. For the jth component of the

evidence vector, we calculate the variance of the component's contribution over the length

of the window, �2ej , as

�2ej (t) =

L
tX

s=t�L

e2j (s)�

0@ tX
s=t�L

ej(s)

1A2

L2
: (5.27)

We also take the sample mean of this variance measurement over a window of length L, i.e.,

~�2ej (t) =
1

L

tX
s=t��

�2ej (s): (5.28)

By setting thresholds that are best discovered empirically, we can decide when large in-

creases in the mean variance suggest dynamic context and, hence, potentially unstable

evidence. For example, Figure 5.6-a shows the image-based likelihood P (�ijMk) of an un-

known where major changes in evidence are detected during the middle of the sequence. The

change excites an increase in mean variance measurements, which are shown in Figure 5.6-b.

The corresponding weights for image-based evidence, w1 and w2, are set to zero when the

mean variance exceeds the empirical threshold represented by the dashed-line. The remain-

ing weights are re-normalized to satisfy the condition speci�ed in Equation 5.25. Again, we
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emphasize the importance of choosing an appropriate window length. Selecting L too long

can introduce enough latency to compromise some of the bene�ts of dynamic, context-based

weights.

Our na��ve Bayesian classifer allows us to collect evidence over time. While Equation

5.26 guarantees that we will select the most likely class of the unknown, we require that be-

lief assessment possess greater likelihood than the equi-probable condition of selecting any

model (assuming each is equally likely to occur) for the domain C, i.e., P (Zij~e(i;  )) >
1
nC
.

Because belief is accumulated, we do not want to consider weak evidence, which may com-

promise more legitimate beliefs. In some cases, there are substantial similarities between

GCMs that may cause our classi�er to select multiple classes for an unknown. For ex-

ample, classes with derived children often share the same likelihood scores unless there is

additional information that can be used to disambiguate between them. As evidence is

acquired, it is also possible for the maximum likelihood selection to change. Naturally,

uctuations in classi�cation can cause problems in higher-level processes which make deci-

sions from amalgamating low-level evidence. To insure stability with recognition, we can

invoke an additional restriction that guarantees the selection of  will be distinguishable

from neighboring models, i.e.,

jP (Zij~e(i;  )) � P (Zij~e(i; k))j � � 8  6= k 2M; (5.29)

where � is a con�dence threshold that we determine by experimentation. In the following

sections, we consider results from several experiments designed to illustrate our approach

to activity and object recognition.

5.3 Experiments

We conducted several experiments to evaluate our methodology for recognition. Experiment

I identi�es three di�erent domains where people naturally interact with their surroundings.

Common articles and activities in each domain were also selected. We attempt to capture

low-level interactions with domain articles over extended periods of time, demonstrating

event detection as well as hand tracking and recognition. High-level single-tasked activities

are also recognized in each domain.
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Domain Activity Recognition

oÆce reading 95%
co�ee break 90%
computer work 87%
taking phone message 60%
counting documents 93%

kitchen washing dishes 95%
cooking stir fry 87%
cleaning kitchen 60%

auto accelerating (shifting up) 95%
drinking-and-driving 87%
winding road 93%
roll window down 100%
roll window up 100%
parking car 85%

Table 5.2: Summary of single-tasked activities and corresponding recognition rates in three domains.

Experiment II exhibits ObjectSpaces' ability to classify unknown objects using image-

, object-, and action-based information in oÆce and kitchen domains. Similar experiments

were conducted in Experiment III when only action-based information was used for classi-

�cation of unknowns (demonstrating object recognition from action context). Experiment

IV illustrates object classi�cation of articles that are initially merged with the background.

All of the experiments were conducted using the Vision Action Recognition System (see

Appendix C).

5.3.1 Experiment I: Capturing Experiences

OÆce, kitchen, and automobile (interior) domains were con�gured with articles and a per-

son was invited to perform many common tasks and activities. Performance scripts, i.e.,

sequence of anticipated actions like \start in neutral gear, then shift to �rst, then to second,

etc.," for several activities in each domain were written �rst, then performed by a single

user. We manually segmented and labeled 597 action examples of these video sequences

for training the HMMs. Accuracy of interactive events captured by the system are shown

in Table 5.3. Percentages for objects with no associated actions were based on detectibil-

ity alone; otherwise, recognition precision is shown. These events are the primitives used

to construct descriptions for more involved single-tasked activities. Table 5.2 shows the
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Figure 5.7: (a) Initial background snapshot of scene includes known articles: chair and keyboard.

(b) Background after book, notebook, mouse, and printer articles are introduced. (c) Background

subtraction reveals newly introduced articles.

recognition rates of several activities in various domains.

Throughout these interactions, 90% of all actions were recognized (assessed by hand-

generated ground-truth observations). Using time-stamped logs, the system was also able

to measure duration of hand-object contact. For the auto domain, a di�erent person was

used for testing than for training, illustrating person independent recognition of action since

only hand position is used.

5.3.2 Experiment II: Object Recognition from Available Evidence

To demonstrate detection and recognition of newly introduced objects, several various ob-

jects (book, notebook, printer, and mouse) were carried into an oÆce scene after the back-

ground was acquired. Table 5.3 shows the actions or events associated with each article.

The system was already aware of other objects in the room, including a keyboard and

chair. Segmentation began immediately as initial image-based evidence of the unknown

objects was acquired and initial beliefs were forged. The background subtraction process

for establishing appearance-based features of the unknown objects is shown in Figure 5.7.

As a person interacted with both known and unknown objects over several minutes,

the strength of belief grew in proportion to the number of actions identi�ed, as shown

in Figure 5.8-a. The units of the horizontal axis are in events, representing when new

image-, object-, and action-based evidence is contributed from one of the four unknowns.

Appearance-based information was suÆcient for establishing Z2 and Z3 early on (event
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(a)

(b)

Figure 5.8: From experiment II, as evidence from one of four unknowns Zi is collected, the strength

of belief is shown in proportional to horizontal grayscale bars: (a) oÆce environment (b) kitchen

environment

1). While relevant actions were able to classify Z1 as a notebook by event 9, conicting

actions registered to Z2 during events 12 and 13 compromised belief testimony. Although

Z3 (mouse) has no actions associated with it, moderate belief can still be established by

monitoring its interaction with a known article, in this case a keyboard (object-based evi-

dence). In general, however, articles such as Z3 stand a greater chance of being mis-labeled

if actions associated with other GCMs are performed while interacting with it. Classi�ca-

tion probability for Z1 through Z4 after 21 events (acquired over 1500 frames) was 97%,

94%, 80%, and 91%, respectively. Closer inspection reveals that 5, 8, 4, and 6 events for Z1

through Z4, respectively, were needed to achieve this degree of classi�cation.

A similar experiment was conducted in the kitchen domain with a pot, pan, bowl,

and salt shaker added to the scene already furnished with a stove, a pan, and cabinets.

Classi�cation probability of these 4 unknowns after 18 events was 98%8, 85%, 77%, and

93%, respectively. A graph illustrating the strength of belief versus event-based episodes

over time is given in Figure 5.8-b.

8Resulting from a template match of the same object stored in the database.
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5.3.3 Experiment III: Object Recognition from Action

To evaluate the strength of action-based evidence, 11 action events that were acquired

over 583 frames. Image evidence assisted in action recognition, but was not used to score

GCMs during evaluation9. Figure 5.9-a shows the mean log probability of the candidate

GCMs. Note that belief was shared between the GCM for notebook and book until event 7,

when \write" was the most probable action observed, consequently rejecting book. Figure

5.9-b shows the accumulated likelihoods of several actions as they occurred throughout

this sequence. It also reveals the potential for actions to be confused. Note that some

actions that never actually occurred, such as \erase," have high, accumulated probabilities,

suggesting that it is similar to several of the gestures performed. Also note that recognition is

not a�ected by an object's deformable structure. As a testament to inferring classi�cation

from action, adding initial image-based evidence to this action-based information yields

results that were only 3% higher.

5.3.4 Experiment IV: Object Recognition of Background Objects

To demonstrate detection and recognition of objects initially merged with the background

(full occlusion), we performed several eating actions (stir, cut, feed) in an undeclared space

in the scene. When actions, such as stir, occur for more than one GCM, belief is shared.

Without image-based segmentation, motion normalization su�ers, resulting in lower action

recognition rates and occasional mis-labeling. Notice in events 8 and 9 in Figure 5.9-c,

\open" and \erase" were mistaken for \feed" and \cut". The table GCM exhibits the

strongest belief, as shown in Figure 5.9-c.

Over many of these tests, belief ranged from 5%-17% lower over the same number

of action events when image information was acquired, but not used for scoring GCMs.

With no image evidence acquired, action recognition su�ered even more and belief estimates

dropped 14%-33%. Without an accurate assessment of region boundaries, which is typically

provided by image-based evidence, motion normalization su�ered.

9Image-based evidence was used to the extent that region boundaries were recovered to normalize hand
motion. However, we set appearance-based weights w1 and w2 to zero used in Equation 5.26 to select the
most likely GCM.
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Article Action Recognition Accuracy

OÆce Environment

bookcase grab book - 100%, return book - 90%

booky ip forward - 94%, ip backward - 90%
chair no action, event only - 100%
cup drinking - 100%, stir - 90%
desk drawing - 93%, erasing - 86%, open drawer - 100%,

close drawer - 80%
keyboard no action, event only - 97%
mouse no action, event only - 95%

notebooky ip forward - 94%, ip backward - 92%, write - 80%
phone (rotary) pick up - 90%, put down - 60%, dial number - 80%

printery open cover - 95%, close cover - 92%
table feeding - 88%, stirring - 93%, cut - 85%

Kitchen Environment

bowl stir - 90%
cabinet no action, event only - 100%
cut board cut - 88%, scrape o� - 93%
can opener no action, event only - 100%
disposal no action, event only - 100%

microwavey open door - 100%, close door - 90%
pot/pan stir - 85%
refrigerator open door - 100%, close door - 90%

stovey clean surface - 79%, open oven - 90%,
close oven - 77%, adjust temp controls (no action, event only) - 95%

salt shaker shake - 72%
sink adjust water ow (no action, event only) - 100%, wash dish - 85%,

grab rinse nozzle (no action, event only) - 100%
toaster no action, event only - 95%

Automobile Environment

cup drink - 85%

stick shifty gear changes: neut. ! 1 - 100%, 1 ! 2 - 90%,
2 ! 3 - 100%, 3 ! 4 - 90%, 4 ! 5 - 100%,
neutral ! reverse - 100%

lock no action, event only - 100%
parking brake pull bake - 80%
radio adjust (no action, event only) - 100%
steering wheel turn left - 100%, turn right - 95%
temp control adjust (no action, event only) - 100%
window handle roll up - 100%, roll down - 100%

Table 5.3: Experiment I: OÆce, kitchen, & automobile objects with associated actions and recog-

nition accuracy, respectively. yClass with multiple appearance descriptions stored in class.

88



(a)

(b)

Figure 5.9: (a) from experiment III, mean log probability of GCM classi�cation over several action

events; (b) from experiment III, shows the accumulated likelihoods of several actions as they occurred

throughout the corresponding sequence, with the most probable action per event highlighted (top)
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Figure 5.10: from experiment IV, GCM Mean log probability of unknown object without image-

based segmentation
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CHAPTER 6

Recognizing Multitasked Activities

In Chapter 5, techniques for integrating low-level information for object classi�cation and

recognition of single-tasked activities were introduced. In this chapter, we building on

top of the foundation provided by those techniques to address the problem of representing

complex, multitasked activities. Figure 6.1 shows how our ObjectSpaces framework is

Figure 6.1: Framework for SCFG-based classi�cation is an extension of ObjectSpaces.

leveraged by combining object-, image-, and action-based evidence with domain heuristics

to label speci�c events. With each event labeled uniquely, we represent the sequence of these

events as an ordered symbolic string. Stochastic context-free grammar is developed based

on underlying rules of the activity to encode task-speci�c semantics. The Earley-Stolcke

algorithm is employed to parse the string so that the most likely semantic derivation can

be identi�ed. Parsing also allows us to recognize substring patterns that provide high-level

annotation of the video sequence. We introduce several novel approaches, including:

� adaptive stochastic grammar that improves recognition of structured activities,

� new parsing strategies that enable error detection and recovery in stochasitic context-



free grammar, and

� methods of quantifying group and individual behavior in activities with separable

roles.

Experiments with the card game, Blackjack, produced high-level narratives of multi-player

games and successful identi�cation of player strategies and behavior. Our methods demon-

strate recognition of extended, complex multitasked activities in real-time.

6.1 Characteristics of Multitasked Activities

So far, we have described approaches for handling single-tasked activities that typically

involve only one person working towards a singular task or objective. To provide high-

level awareness for a broader range of human activities, we also need to identify more

complicated interactions, which can involve multiple people and objects. Many of these

interactions are diÆcult to represent due to the loosely constrained context between mul-

tiple events, especially if these events are scattered over long periods of time. Naturally,

the name \multitasked" suggests that several, single-tasked events are taking place around

the same time. What may not be as clear is whether these events are participating as

separate, independent processes or as an individual, coordinated a�air, or even both. In-

tentionality can be very diÆcult, if not impossible, to model when a process is composed of

many smaller, and perhaps disjoint, sub-tasks. To complicate matters further, the number

of objects and people involved can change dynamically over the duration of the activity.

Moreover, variations in the timing and execution of many events can be in reaction to other

semantically signi�cant events or simply improvised from one performance to another. Our

ability to accurately measure and relate all of these interactions over time and space makes

characterizing multitasked activities extremely challenging.

We de�ne multitasked activities as the intermittent concurrence of events involving

multiple people, objects, and actions, typically over an extended period of time. To use

grammar e�ectively to represent these types of activities, we will only consider rule-based,

event-driven multitasked activities, like juggling and playing card games. This subset rep-

resents activities that are constrained by unambiguous rules that completely specify task
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semantics. Each rule has a corresponding event that, when detected, allows semantically

meaningful behavior to be recognized. For convenience, any future mention of activities

refers only to these types of rule-based, event-driven activities unless otherwise mentioned.

6.2 Modeling Multitasked Activities

Only a limited investigation in the areas of action recognition and activity understanding

has been conducted to identify representations for multitasked activities. Our previous

discussion of single-tasked activities primarily focused on methods for aggregating low-level

actions and contact events over short periods of time, i.e., the length of time it takes to

perform a few gestures. When attempting to characterize multitasked activities, we desire

models that preserve semantic structures and tolerate interactions over longer periods.

The HMM fails to be an appropriate method because characterizing the joint states

of the model (as shown in Figure 6.2) will likely introduce prohibitive computational costs,

require an inordinate amount of training data, and still may produce results that are un-

satisfactory. Moreover, many multitasked processes cannot be neatly dissembled without

violating the integrity and character of the process itself. To overcome the limitations of

the HMM, Brand proposes coupled hidden Markov models (CHMMs) to model interac-

tions between processes that may have di�erent time scales, state structures, and degrees

of inuence on each other [31]. Brand o�ers some limited evidence of the CHMM's ability

to model highly structured multitasked processes using synthetic data as well as real, 3D

hand tracking data of T'ai chi gestures. However, the rigid �nite-state framework is simply

inappropriate, by itself, to represent dynamic activities that occur over extended periods of

time. Moreover, as the number of sub-tasks are combined, parameter estimation becomes

NP-hard1.

We believe that syntactical pattern classi�ers that use grammar are needed to aug-

ment the limitations of �nite state machines like the HMM. In general, �nite state machines

are appropriate for modeling a single hypothesis. As variation becomes more pronounced,

1For NP or nondeterministic polynomial-hard problems, no known algorithms are capable of generating
an optimal solution in an amount of time that grows only as a polynomial function of the number of elements
in the problem.
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Figure 6.2: Joint state of HMM generated by the cross-product of all possible component states

[31].

it becomes exceedingly diÆcult to collapse additional hypotheses into a single �nite state

model. In contrast, the generative process associated with grammar is non-deterministic,

allowing the derivation of a much longer and elaborate sequence of events [137]. In other

words, grammar allows us to use a single, compact representation for well-understood in-

teractive events that also accommodates the natural generalizations that occur during their

performance.

Bobick and Ivanov combine syntactic pattern recognition with statistical approaches

to recognize activity taking place over extended sequences [24]. In their work, HMMs are

used to propose candidates of low-level temporal features. These outputs provide the input

stream for a stochastic context-free grammar parsing mechanism that enforces longer range

temporal constraints, disambiguates or corrects uncertain or mislabeled low-level detections,

and allows the inclusion of prior knowledge about the structure of temporal events in a given

domain. Our approach extends the work of Bobick and Ivanov by exploiting the image-

, object-, and action-based evidence generated by our object-oriented framework instead

of using just HMM outputs. We also o�er techniques to improve parsing with adaptive

grammar and error recovery.

In the next section, we briey discuss grammar and its utility for understanding

multitasked activities.
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Figure 6.3: Grammar derivation tree describes a single person juggling balls into the air.

6.3 Grammar

Grammar is a mechanism that uses a system of rules to generate semantically meaningful

sentences in a language. Speci�cally, grammar is the underlying representation of structure

that we will eventually use to describe the interrelationships between patterns of evidence in

activities. The language that is generated by this grammar should be capable of expressing

all legitmate interactions of the activity.

As a motivating example of how grammar can be used to describe the structure of

a multitasked activity, consider the art of juggling several balls in the air simultaneously.

A person starts this activity by grabbing a ball with the left hand, then pitching it to the

right. If the right hand does not drop the ball, the right tosses it into the air. While the

ball is in the air, the left can prepare to catch it or grab another ball to put into motion.

If no ball is dropped, the process repeats in a similar fashion, perhaps with several balls

eventually being juggled simultaneously. Figure 6.3 shows an example of juggling along with

a derivation tree that describes all possible event transitions. To represent this complex,

multitasked activity using grammar, we de�ne a small \alphabet" of basic events to describe

the process, which is constrained by rules that govern how juggling is executed. A well-

designed grammar provides a convenient way of accommodating redundancy in addition to

handling events that can switch the order in which they occur but still represent a valid
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interpretation of the activity.

De�nition 6.1 Grammar

We de�ne an alphabet to be any �nite set of symbols. A string over an alphabet V is a

�nite sequence of elements from V . A sentence is any syntactically correct string of �nite

length composed of symbols from the alphabet. Formally, we de�ne a grammar G as the

quadruple G = fVN ; VT ;P; Sg, where VN is a set of nonterminals or variables, VT is a set

of terminals or constants, P is a set of productions or rewriting rules, and S is the start or

root symbol. The alphabet VG is the union of the nonterminal and terminal alphabets, i.e.,

VG = VN [ VT , and S is assumed to belong to the nonterminal set, i.e., S 2 VN . The sets

VN and VT are assumed to be disjoint. The language generated by G, denoted by L(G), is

any set (not necessarily �nite) of sentences over alphabet VG that satis�es the conditions:

(1) each string is composed of only terminals, i.e., a terminal string, and (2) each string can

be derived from S by suitable application of productions from the set P. We refer to the

table below regarding our notation:

Symbol Description Example

Capital Roman letter Single nonterminal A;B; : : :

Small Roman letter Single terminal a; b; : : :

Small Greek letter String of terminals and nonterminals �; �; : : :

Epsilon � Empty (null) string �

Let V �G denote the set of all strings composed of symbols from VG, including the null string

�, and V +
G is the entire set of strings from VG minus the null string, i.e., V +

G = V �G � �.

The set of productions P consists of expressions of the form � ! �, where the symbol

\!" indicates replacement of the string � by the string �. The symbol \)" will be used

to denote operations of the form ��� ) ���, where � is replaced by � by means of the

production � ! �, and � and � are left unchanged. For more information on syntactic

pattern recognition and the di�erent types of grammar, see Appendix D.
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6.3.1 Representing Multitasked Activities using Stochastic Context-Free

Grammars

Although stochastic context-free grammars (SCFG) are generally less popular than other

grammars in computational linguistics, they are very appropriate for describing multitasked

activities. The SCFG formalism has been likened to the HMM, as have non-probabilistic

context-free grammar to �nite-state grammars [132]. Standard algorithms for implementing

probabilistic �nite-state models, like HMMs, also have generalized versions for SCFGs. Un-

fortunately, they are computationally more demanding than simpler language models that

employ �nite-state and n-gram approaches. More speci�cally, parameter estimation for

SCFG is often intractable in practice [132]. Due to the conditional independence assump-

tions used by SCFGs, �nite-state models may perform better when quantifying �rst-order

Markovian contingencies between words. However, Jurafsky and others argue that SCFGs

can be applied successfully when using \very speci�c, semantically oriented categories and

rules," especially with well-behaved grammars with small alphabets and precisely formalized

combinatorial properties [80, 132]. Rule-based activities, in particular, make good candi-

dates because they can be described using a relatively small lexicon of primitive events.

There are also several other advantages of SCFGs over more simple regular grammars.

An n-gram grammar is a set of probabilities given by P (xnjx1; x2 : : : xn�1), i.e., the proba-

bility that terminal symbol xn follows the string x1x2 : : : xn�1 for each possible combination

of symbols in the alphabet. Typically n-gram grammars, like bigrams (n = 2), require a

substantial amount of training data, and often smoothing techniques, to produce reliable

estimation [134]. For example, when each P (xijxi�1) is considered a parameter, a bigram

grammar with a 20 symbol alphabet would have approximately 20� 20 = 400 free param-

eters, and a trigram would have 8,000. As the size of the alphabet increases, the number

of parameters increases exponentially. In contrast, a SCFG can have considerably fewer,

depending on the rules of the grammar. In practice, these n-gram probabilities are usually

pre-computed and made available at run-time in a lookup table. However, the parser still

requires some searching mechanism to �nd the most likely transitions from one symbol to

another. While there are several di�erent \back-o�" and pruning strategies designed to

limit the number of choices, these algorithms can skip candidates, resulting in suboptimal
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performance.

Stochastic context-free grammars can also be extended in a straight-forward fashion,

based on existing knowledge embodied by the grammar. Extensibility is especially impor-

tant for rule-based activities because it allows generically speci�ed task grammars to be

tailored for speci�c applications. For example, the card game Blackjack has several rules

of play that change from casino to casino. These rules can be easily modi�ed by proper

section of a few productions without a�ecting other rules. Regular grammars are not easily

extensible, but require recomputing the entire set of probabilities. Moreover, SCFG is more

appropriate for modeling multitasked actions than regular grammar because it can capture

semantic generalizations using more complex production rules.

The basic events of an activity become the terminal constants of the task grammar

while the ordering of events is represented by nonterminal variables. It is convenient to

specify the grammar by hand as opposed to \learning," which can be a diÆcult process

that requires good initial conditions, a prodigious amount of training data and, typically, a

fair amount of experimentation. More information on specifying grammar can be found in

Appendix D.4.

De�nition 6.2 A stochastic context-free grammar is an extention of context-free

grammar where a probability is added to every production rule:

A! � [p]:

We can also express the rule probability p as P (A! �), which essentially gives the condi-

tional likelihood of the production A ! �. SCFGs are superior to non-stochastic context-

free grammar because the probability attached to each rule provides a quantitative basis for

ranking and pruning parses as well for exploiting dependencies in a language model. The

reader is directed to Appendix D.3 for more informtion on rule probability estimation.

Formally, we represent the SCFG G as the quintuple G = fVN ; VT ;P; S; Prg, where Pr

represents rule probabilities P (r) for all r 2 P. In a SCFG, the probability of the complete

derivation of a string is determined by the product of the rule probabilities in the derivation.

The notion of context-freeness is extended to include probabilistic conditional independence
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of the expansion of a nonterminal from its surrounding context [132]. There are a few basic

de�nitions associated with SCFG G that will be important for future discussion:

De�nition 6.3 Associated terms of stochastic context-free grammar

1. The probability of partial derivation �1 ) �2 ) : : : �k is given using the inductive

procedure:

(a) P (�1) = 1

(b) P (�1 ) : : : ) �k) = P (A! !)P (�2 ) : : :) �k), where production A! ! is a

production of G, �2 is derived from �1 by replacing one occurrence of A with !,

and �1; �2; : : : ; �k are strings of terminals and nonterminals in V �G.

2. The string probability P (A)� �) is the sum of all the leftmost derivations A) : : :)

�, i.e.,

P (�jA) =
X

A):::)�

P (A) : : :) �); (6.1)

where the summation is over all string derivations that yield �.

3. The sentence probability P (S )� �) is the string probability of S, i.e.,

P (�jG) =
X

S):::)�

P (S ) : : :) �); (6.2)

again where the summation is over all string derivations that yield �.

4. The pre�x probability P (S )�
L �) (of � given G) is the sum of the strings having � as

a pre�x, such that

P (S )�
L �) =

X
!2V �

G

P (A)� �!): (6.3)

In particular, P (S )�
L �) = 1. Here we denote leftmost derivations of � from S as

S )�
L �. To reduce the number of derivations that must be considered by the parser,

every string in a language is derivable in a leftmost manner [136]. The possibility

of more than one distinct leftmost derivation points to possible ambiguity in the

grammar, and hence, in the language.
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6.4 Parsing SCFGs

Our motivation for using stochastic context-free grammar is to aggregate low-level evidence

generated by our framework so that we can construct higher-level models of interaction. In

this section, we discuss aspects dealing with terminal string generation and parsing.

6.4.1 String Generation from Event Detection

ObjectSpaces provides facilities for managing prior as well as newly discovered information

about people, objects, and their interactions. We have presented this information as image-,

object-, or action-based evidence that is collected from object-oriented \containers" as de-

scribed earlier. Table 6.1 shows some of the raw object-oriented information contained in the

scene layer of the framework, including object transition matrix K as mentioned in Section

5.1.2 . The corresponding actual screen capture representing this data is depicted in Figure

C.5. Raw, low-level evidence represents measurements that, by themselves, say very little

about what is happening. However, combining these measurements with domain-speci�c

heuristics helps to detect patterns that represent meaningful events. When a particular

event is observed, its corresponding symbolic terminal is appended to the end of the activ-

ity string x, which is parsed by the Earley-Stolcke algorithm. This process of representing

low-level evidence using domain-speci�c symbols is called tokenization.

As an example, consider the event \person dealt card" in the domain of card games

to be detected by detector Dpdc. The corresponding token symbol for this event should be

generated every time a person places a new card on the table. Using background-subtraction

methods mentioned earlier, the scene layer detects and classi�es the new object entering

the scene as a card. We assume that every article is either prede�ned during initialization

or brought into the scene by one person. The scene attempts to match the location of each

newly introduced article against the nmost recent hand locations to determine which person

was responsible for placing it in the scene, i.e., in our example, to determine who dealt the

card. The range of frames involved in the search, empirically set to n, is inuenced by the

sequence frame rate. From current frame t to frame t � n, the minimum square distance
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People(2) Articles(9)

name \dealer" name \card"
ID 0 class PlayingCard

color distribution 135Y 56U68V ; : : : value facedown
maxHandMovement 200 focus Of Attention false

LH con�dence 0.915 moveable true
RH con�dence 0.742 recognition 0.921
LH Position (54,44) bounding box (179,180,211,204)
RH Position (137,119) introduced by ID 0

est. LH Position (54,44) Edgemap 32�24 binary,: : :
est. RH Position (116,98) BG Frame 32�24 YUV,: : :

prev. LH Positions (54,44),(54,4: : : FG Frame 32�24 YUV,: : :
prev. RH Positions (154,140),(15: : : no. events 0

LH Region (33,30,89,152: : : event history : : :

RH Region (108,103,170,: : : HMM database : : :

headtorso Region : : : current event : : :

name \player" name \deck"
ID 1 class CardDeck

color distribution 145Y 66U80V ; : : : value facedown
maxHandMovement 150 focus Of Attention false

LH con�dence 1.0 moveable true
RH con�dence 0.975 recognition 1.0
LH Position (254,191) bounding box (118,68,156,88)
RH Position (251,74) introduced by ID -1

est. LH Position (251,191) Edgemap 38�20 binary,: : :
est. RH Position (251,74) BG Frame 38�20 YUV,: : :

prev. LH Positions (254,191),(25: : : FG Frame 38�20 YUV,: : :
prev. RH Positions (251,71),(25,: : : no. events 2

LH Region (226,173,281,: : : event history 3.14 sec, ID(0),: : :
RH Region (229,63,277,9: : : HMM database : : :

headtorso Region : : : current event : : :
...

0.321 0.058 : : :

K = 0.125 0.895 : : :
...

. . .

Scene BG Frame \BJ21-bkg.bmp"
FrameTimeStamp 00h:00m:34s
NumHandZones 0

Table 6.1: Snapshot of unprocessed, low-level object-oriented evidence collected by ObjectSpaces

during a Blackjack card game. Items in italics are objects containing more embedded data. Corre-

sponding screen capture illustrates actual VARS data in Figure C.5.
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between each hand centroid and the centroid of article i is calculated as

d(i; n; t;p) = min
p
f(xl;p(j)�xi)

T (xl;p(j)�xi); (xr;p(j)�xi)
T (xr;p(j)�xi)g 8 j 2 [t�n; t];

(6.4)

where xi is the centroid of article i (assumed stationary), in this case a card, xl;p(j)

and xr;p(j) denotes the left and right hand centroids in frame j, respectively, and p =

fp1; p2; :::pmg represents the m people in the scene. An illustration of this procedure is

available in Figure 6.4, where the shaded boxes represent previous hand locations. To as-

sociate hand contact with article i, the distance d(i; n; t;p) must be within a minimum

distance speci�ed by dmin(i), which is given by

dmin(i) = �i

�
(xr � xl)

2 + (yb � yt)
2
�
: (6.5)

Recall that zi = [xl yt xr yb]
T speci�es the bounding region surrounding an article. Em-

pirical values established for �i are motivated by the dimensions of the hand's bounding

region relative to the bounding region of the article. In practice, for small articles, �i � 1.

Finally, to determine the last person p̂ to touch an object, we solve

p̂ =

8><>: arg d(i; n; t;p) if d(i; n; t;p) � dmin(i)

�1 otherwise
; (6.6)

where -1 is a special ID reserved for the scene, i.e., person can not be determined. This

operation is also triggered by the disappearance of an article in order to determine who

removes an article from the scene. Needless to say, determining who deals or removes cards

in this domain enhances our ability to detect semantically important events.

We would also like to attach some measure of con�dence about the likelihood of events.

Continuing with our example of person p̂ dealing a card, we express the likelihood of this

event as

P (Person p̂ deals a card) = P (card j new object)P (Person p̂ introduced object):

Recall from Equation 5.24 that the �rst term is expressed as the probability of the general-

ized class model Mk given the available image-, object-, and action-based evidence related

to the unlabeled object Zi, i.e., P (Zij~e(i; k)). The second term is inuenced by those hand
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Figure 6.4: Shaded from white to black, small boxes indicate previous n hand positions (white

indicating the most recent). The minimum square distance between each hand centroid and object

centroid is found to determine the last person to touch an article.

centroids identi�ed within the circular region centered at the article's centroid, extending

with radius dmin(i), i.e.,

P (p̂) = P (Person p̂ introduced object)

=
dmin(i)� (~xp̂ � xi)

T (~xp̂ � xi)X
p2~p

dmin(i)� (~xp � xi)
T (~xp � xi)

; (6.7)

where ~p represents the set of people with hand locations inside the region speci�ed by

dmin(i), ~xp denotes the hand location with minimal distance to the card's centroid xi for

each person p 2 ~p, and ~xp̂ is the location that minimized Equation 6.4. Equation 6.7

generates a likelihood based on how close the hands of person p̂ came to the card's centroid,

relative to any other person that may have also had hands near xi. So using Equations 5.24

and 6.7, the likelihood of the event is given by

P (Dpdc) = fmax
M

P (Zij~e(i; k))gP (p̂): (6.8)

We design additional heuristic detectors in a similar fashion to provide rich, meaningful

information about interactions. For example, in the card game domain we construct similar

detectors for determining when betting chips are added or removed from the scene. Where

applicable, we also consider an articles's location relative to the entire scene as well as in

respect to other objects.
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To the extent possible, however, we refrain from constructing application-speci�c de-

tectors that generate high-level information. Rather, we attempt to construct generic, low-

level indicators that can be utilized with a broad range of applications. Our goal is to use

various syntactic pattern recognition tools to assemble relevant low-level events so that im-

portant domain semantics can be explained. For some domain C, we let DC = fD1; D2; : : :g

represent the set of detectors for generating the set of terminal symbols VT . For convenience,

the likelihood of a detected event, i.e., the likelihood of generating the terminal symbol xi

corresponding to detector Di, is given by

PD(xi) = P (Di);

where P (Di) is de�ned on a case by case basis, similarly to Equation 6.8. By processing

an activity sequence in domain C, we use DC to generate symbolic string x = x1x2; : : : ; xl,

where l = jxj).

When parsing is discussed in the next section, we will show that it is possible to

compute the syntactical likelihood of a sequence of events P (x) (assuming perfect detection).

Such a likelihood o�ers a measure of how much semantic merit a sequence has. We have

also shown that it is possible to develop a measure of con�dence regarding the detection of

individual events. Using the independence assumption guaranteed by the use of context-free

grammar, we can also describe the likelihood of string formation based on detection alone,

i.e.,

PD(x) =
lY
i=1

PD(xi): (6.9)

Unfortunately, as the length l increases, the overall likelihood of the string decreases from

repeated multiplication of values less than unity. A better measure of con�dence normalizes

the likelihood according to l, which we describe by simply calculating the sample mean

likelihood of the string, i.e.,

~PD(x)
1

l

lX
i=1

PD(xi): (6.10)

6.4.2 The Earley-Stockle Parsing Algorithm

In this section, we introduce the Earley-Stolcke algorithm, a parser originally developed

by Jay Earley for eÆcient parsing of CFG and later modi�ed by Andreas Stolcke to ac-
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commodate SCFG2. The Earley-Stolcke algorithm uses a top-down parsing approach and

context-free productions to build strings that are derivable from left to right. Starting at

the top of a semantic derivation tree, much like the one presented earlier in Figure 6.3, top-

down parsing begins with the starting symbol and attempts to build semantic sentences as

it works its way down the tree. In contrast, other parsers operate in a bottom-up approach,

which starts with the \sentence" and attempts to work its way up the tree to the starting

symbol.

The Earley-Stolcke algorithm maintains multiple hypotheses of all possible derivations

that are consistent with the input string up to a certain point. Scanning input from left to

right, the number of hypotheses increases as new options become available or decrease as

ambiguities are resolved. An additional bene�t is that the task grammar does not have to

be in Chomsky Normal Form (CNF)3 to be accepted by an Earley-Stolcke parser. However,

a grammar is more extensible, is easier to read, and expresses semantic relationships in

greater detail if productions limit the number of nonterminals on the right hand side of the

arrow.

A set of states, determined by the length of the string, is created for each position

in the input. This state describes all pending derivations. The entire set of states forms

the Earley chart. We preserve notation4 introduced by Earley to represent a state, which

is given by

i : kX ! �:� ; (6.11)

where i is the index of the current position in the input stream and k is the starting index

of the substring given by nonterminal X. Nonterminal X contains substring xk : : : xi : : : xl,

where xl is the last terminal of the substring �. When we are in position i, the substring

x0 : : : xi�1 has already been processed by the parser. State set i represents all of the states

that describe the parsing at this position. There is always one more state set than input

symbols, i.e., set 0 describes the parser before any input is processed while set l depicts the

parser after all processing.

2See Appendix D.6 for more information on the complexity of the Earley-Stolcke algorithm.
3Chomsky Normal form has rules of the form: i) A! BC, ii) A! a, or iii) S ! �.
4Earley notation uses only one \." (index point) when de�ning states. The reader is encouraged to pay

close attention to the location of the index, which is easily confused with a period.
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Parsing proceeds iteratively through three steps: prediction, scanning, and comple-

tion. States produced by each of these steps are called predicted, scanned, and completed,

respectively. A state is called complete (not to be confused to completed) if the substring

xj : : : xi has been fully expanded and is syntactically correct (which is written with the dot

located in the rightmost position of the state, i.e., i : jY ! �:).

Forward & Inner Probabilities

Recall that the string, sentence, and pre�x probabilities as de�ned in De�nition 6.3 are

determined by summing derivation probabilities. To exploit the iterative steps in the parsing

process, we introduce two probabilities that are somewhat analogous to the terms commonly

used with HMMS.

De�nition 6.4 To determine the likelihood of a string at the current index i, the forward

probability � gives the likelihood of selecting the next state at step i, along with probability

of selecting previous states, i.e., x1 : : : xi�1.

De�nition 6.5 The inner probability  measures the likelihood of generating a substring

of the input from a given nonterminal using a particular production.

Unlike the forward probability, which starts from the beginning of the string, the inner

probability starts at position k in the string.

Prediction

The prediction step is used to hypothesize the possible continuation of the input based on

the current position in the derived string. We expand one branch of the derivation tree

down to the set of its leftmost term to predict the next possible input terminal. So, given

state i : kX ! �:Y � with the production Y ! �, we can predict state

i : iY ! :� [�; ]: (6.12)

Mandated by De�nition 6.3(a), the parser starts out in the dummy state

0 : 0 ! :S [1; 1];
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where S is the sentence nonterminal or start symbol. Recall that in a SCFG, there are rule

probabilities associated with choosing a predicted state.

Scanning

During prediction, we create a list of all the states that are syntactically possible based on

prior input. These states provide the candidate terminal symbols that we can anticipate at

the next position in the input string. The scanning step is where we read the next input

symbol and match it against all states under consideration. For each state generated by the

previous prediction stage, i.e.,

i : kX ! �:a� [�; ];

where a is a terminal symbol that matches the current input xi, we add the next state given

by

i+ 1 : kX ! �a:� [�; ]:

Note that the dot has moved to the right, over the current symbol a to indicate the position

change from state i to i + 1. Scanning ensures that the terminal symbols produced in a

derivation match the input string. No terminals are generated at this stage, so the forward

and inner probabilities are unchanged. The scanning step promotes the states for the next

iteration.

Completion

Given a set of states which have just been con�rmed by scanning, the completion step

updates the positions in all pending derivations throughout the derivation tree. Each com-

pletion corresponds the end of a particular nonterminal expansion which was initiated by

an earlier prediction step. For each complete state

i : jY ! �: [�
00

; 
00

];

and each state in the set j, such that j < i, that has nonterminal Y to the right of the dot,

i.e.,

j : kX ! �:Y � [�; ];
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generates

i : kX ! �Y:� [�
0

; 
0

];

where the dot is moved over the current nonterminal and

�
0

=
X
8 �;�

�(j : kX ! �:Y �)
00

(i : jY ! �:)


0

=
X
8 �;�

(j : kX ! �:Y �)
00

(i : jY ! �:) :
(6.13)

We take note that �
00
is not used because 

00
weighs the probabilities of all paths expanding

Y ! �. After processing the last symbol in the string, the parser con�rms that the sentence

has been completed

l : 0 ! S: ; (6.14)

where l is the length of the input string x. At any position in the parsing process, if a state

remains incomplete because no states from the previous stage permit scanning, the entire

process can be aborted, signifying a syntax error in the string.

Parsing Example using Non-probabilistic Context-Free Grammar

To illustrate the three steps of the Earley-Stolcke parsing algorithm, we �rst consider non-

probabilistic parsing of a grammar, as shown in Table 6.2. Conventional Earley parsing

of CFG is essentially the same as Earley-Stolcke parsing of SCFG without considering

the forward and inner probabilities. The parser will process the short sentence ab. We

begin in state set 0, with the dummy state 0 ! :S . The �rst step is always prediction,

which allows us to generate hypotheses that are syntactically consistent with our grammar.

The parser considers all rules that S can generate that will eventually produce a terminal

symbol. We consider all three productions of starting symbol S. In prediction, the dot

is always to the left of both terminals and nonterminals. If the symbol to the right of

this dot is a nonterminal, then we expand the nonterminal further, until we arrive at a

terminal candidate. The state set where the prediction takes place is always designated by

the subscript on the left. Note that predicted state 0A! :AB has recursive properties that

may cause it to regenerate itself inde�nitely. For CFG, there is no additional information

gained by adding a redundant state, in which case the parser can simply stop. However,
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(a)

S ! AB

! C

! d

A ! AB

! a

B ! bB

! b

C ! BC

! B

! c

(b)

a b

0 ! :S scanned scanned

predicted 0A! a: 1B ! b:

0S ! :AB completed 1B ! b:B

0S ! :C 0A! A:B completed

0S ! :d 0S ! A:B 0S ! AB:

0A! :AB predicted 0 ! S:

0A! :a 1B ! :bB predicted

0C ! :BC 1B ! :b 2B ! :bB

0C ! :B 2B ! :b

0C ! :c

0B ! :bB

0B ! :b

State set 0 1 2

Table 6.2: Earley parsing: (a) Example grammar (b) Parsing steps of the string ab.

for SCFG, the probability of each redundant state adds to the probability of the previously

predicted state, generating an in�nite sum. In the next section, we o�er a remedy for

left-recursive expansions.

State set 1 is initiated by scanning the input. The predicted states: 0S ! :d, 0A! :a,

0C ! :c, 0B ! :bB, and 0B ! :b o�er choices as to the next terminal that can be generated

from various nonterminal expansions. Terminal symbol a is sampled, and a search of all

predicted states begins to match candidate terminals to the symbol. Only one predicted

state matches the current input, which we denote by moving the dot to the right of the

matched terminal to get 0A! a: . We also preserve other \paths" that generated predicted

state 0A! :a, i.e., 0A! :AB, 0S ! :AB, and 0 ! :S . We de�ne a path as a sequence of

states linked by prediction, scanning, or completion. All other predicted states from set 0

are pruned.

During completion, we search through the pending states that remain, looking for

nonterminals that have completed their expansion. Anytime a scanned state has a dot in the

right-most position on the RHS of the production, the nonterminal expansion is complete.

States that also predicted this nonterminal are also promoted towards completion by moving

the dot to the right, i.e., 0A! :AB becomes 0A! A:B and 0S ! :AB becomes 0S ! A:B

.

Prediction begins as before, but instead of starting from 0 ! :S, the parser looks at
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scanned and completed states that have remaining symbols to the right of the dot. In this

case, we have states 0A! A:B and 0S ! A:B, which predict states 1B ! :bB and 1B ! :b

.

In the �nal state set, completed states include 0 ! S:, which con�rms that our

sentence checks out. However, we can still continue with prediction in the event that

another symbol is amended to the sentence. If any other symbol besides b were to be

scanned, the sentence could not be parsed and would be marked as syntactically invalid.

6.4.3 Calculating Forward and Inner Probabilities

We arrive at pre�x and string probabilities, given by Equations 6.3 and 6.1, respectively, by

summing the probabilities associated with each state generated by a production derivation.

One such probability associated with each state is the forward probability �i(kX ! �:�),

which refers to the likelihood of an Earley-Stolcke parser generating the pre�x of the input

up to position i � 1 while passing through the state kX ! �:� at position i. In other

words, it is the sum of the probabilities of all constrained paths of length i that end in state

kX ! �:� .

The other is the inner probability i(kX ! �:�), which represents the sum of the

probabilities of all paths of length i � k that start in state k : kX ! :�� and end in

i : kX ! �:�, and generate the input symbols xk : : : xi�1. It represents the probability of

generating a substring of the input from a given nonterminal using a particular production.

Inner probabilities are conditional on the presence of a given nonterminal X with expansion

starting at position k. They di�er from the forward probability, which include the entire

history starting with the initial state.

A left recursion occurs when productions of the form

A ! Aa

! a

appear in grammar during the prediction stage. A unit production, which is identi�ed by
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the productions,

A ! B

! a

B ! A

and the state i : jA! a: during the completion stage of set j, which contains

j : jA ! :B

j : jA ! :a

j : jB ! :A

represent examples of recursive grammar that can throw the parser into an in�nite loop5. If

it were not for the left recursions and unit productions, calculating these probabilities would

be trivial. However, we summarize the corrections for these special cases in the chart below.

For convenience, we copy Stolcke's notation6 to represent �i(kX ! �:�) as �, i(kX ! �:�)

as , R(Z )�
U Y ) as RU , and R(Z )�

L Y ) as RL. The single prime over symbols signi�es

the corrected representation.

Prediction Scanning Completion

�
0
+ = �RLP (Y ! �) �

0
= � �

0
+ = �

00
RU


0
= P (Y ! �) 

0
=  

0
+ = 

00
RU

The careful reader will notice that the probabilistic left-corner and unit production

matrices RL and RU , respectively, are required to provide the corrections in the prediction

and completion stages. Booth and Thompson provide a rigorous proof that guarantees the

existence of these matrices if the grammar is well-behaved according to axioms provided by

[27]. For further clarity, Stolcke also provides a simple example in Table D.3.

6.4.4 Viterbi Parse

Motivated by the use of the Viterbi parsing in the HMM, we can also apply a generalization

of the Viterbi method for parsing a string x to retrieve the most likely probability among

5For more information on recursive grammar, see Appendix D.5.
6The notation x+ = y, which is borrowed from the C language, means that x is computed incrementally

as a sum of various y terms.
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all possible derivations for x. For SCFG, a Viterbi parse yields the most likely derivation

path of the string. In our case, this will give the most likely interactive summary of events

over the duration of the sequence. Path probabilities are recursively multiplied during

completion steps using the inner probabilities as accummulators [132]. To compute the

Viterbi parse, each state set must maintain the maximal path probability leading to it as

well as the predecessor states associated with that maximum likelihood path. By familiar

backtracking along the maximal predecessor states, the maximum probability parse can be

recovered.

To implement this Viterbi computation, we modify the parser such that:

� Each state computes its Viterbi probability v.

� v is propagated similarly to , except that during completion the summation is replace

by maximization, such that vi(kX ! �Y:�) is the maximum of all products vi(jY !

�:)vj(kX ! �:Y �) along paths that lead to the completed state kX ! �Y:�, i.e.,

vi(kX ! �Y:�) = max
�;�

fvi(jY ! �:)vj(kX ! �:Y �)g: (6.15)

The state associated with the maximum is listed as the Viterbi path predecessor of

kX ! �Y:�, i.e.,

kX ! �:Y � = argmax
�;�

fvi(jY ! �:)vj(kX ! �:Y �)g: (6.16)

� The inner probability  used in these calculate uses the original recursion in lieu

of the corrective recursion formula given by Equation D.12. Unit production loops

are avoided since they lower a path's probability. Moreover, we need the litany of

predecessor states in order to perform backtracking. However, we can safely keep

corrective formulas used in the prediction phase.

A familiar recursive procedure is required to recover the maximum likelihood (ML)

derivation tree associated with the Viterbi parse. During the normal parsing operation

described earlier, state kX ! �:Y � maintains a pointer to the state jY ! �: that completes

it, providing a path for backtracking. After arriving in the �nal state, the ML tree is

reproduced by visiting predecessor states as identi�ed by pointers.
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6.5 Parsing and the ObjectSpaces Framework

In this section, we describe parsing methods that leverage our ObjectSpaces framework

which, allow easy segmentation of events relative to individual people or objects as required.

Methods for handling uncertainty in the input as well as adapting grammar to improve

recognition are also surveyed.

6.5.1 Parsing in Uncertainty

There has been a presumption that all detected sentences are syntactically agreeable by the

parser, but in practice, human and system error can produce activity sentences that are

semantically meaningless. In Equation 6.4.1, we introduced PD(xi), which is the probability

of the detectors producing symbol xi. We factor in the likelihood of the input into the

parsing mechanism by multiplying PD(xi) by the forward and inner probabilities during

the scanning step, i.e.,

�
0

= �(i : kX ! �:a�)PD(a) (6.17)


0

= (i : kX ! �:a�)PD(a); (6.18)

where a is the terminal sampled from the input in state set i. The revised values for �
0

and 
0
reect the weight of the likelihood of competing derivations as well as the certainty

associated with the scanned input symbol.

6.5.2 Parsing Separable Activities

In our event-driven framework, we assume that some agent, or person, is responsible for

inducing interactions. As more people engage in an activity, it becomes exceedingly diÆcult

to parse high-level behavior from a single string because event symbols are interlaced. Pars-

ing the actions of several people from one string is likened to listening to multiple speakers.

If interactions are choreographed in a manner that can be unambiguously represented by

the task grammar, i.e., no two speakers ever talk at the same time, de-interlacing terminals

in the string can proceed without much confusion. On the other hand, if unscheduled in-

teractions occur intermittently during an activity, i.e., multiple speakers talk at the same

time, segmenting the events generated by an individual becomes nontrivial.
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One treatment for handling interlaced strings is to create a separate grammar to de-

scribe the task semantics relative to the number of people participating. However, the string

could be generated by multiple, perhaps, disjoint grammars as the number of participants

vary throughout the course of an activity, making parsing impossible. Another is to modify

the grammar to accommodate every potential arrangement of events as they are generated

by each agent. However, the resulting grammar may be too confusing to parse or com-

plicated to represent succinct, semantic expressions. While the list of alternatives is long,

we feel the most reasonable approach is to exploit our object-oriented framework, which

provides automatic segmentation of interactions.

Bobick and Ivanov deal with multi-agent interactions by assigning a class label to each

production rule of the grammar [75]. After performing �ltering operations to enforce tempo-

ral consistency of an interlaced string, they can segment tracks that describe interactions for

each object type. ObjectSpaces provides such segmentation automatically without �ltering

because each object (whether a person or article) maintains a list of its interactions. As we

showed earlier in the example in Section 6.4.1, every event identi�es a person responsible for

its detection. We go a step further by examining interactive relationships between groups of

people. We recognize that individuals can have roles that inuence how they interact with

objects and other people in a process. Activities with separable groups are characterized

by wholly independent interactive relationships between two or more agents, i.e., multiple

speakers, but separate speeches. Conversely, non-separable roles occur when multiple

agents take on collaborative, inter-dependent behavior, i.e., dialogue (or argument) when

speakers talk at the same time concerning the same topic.

We need ways of assessing overall task interactions while preserving individual behav-

iors. Our approach is to divide activities into separable groups, then develop grammars that

describe the non-separable interactions in each. In the card game of Blackjack7 or \21,", for

example, a player's conduct is motivated by how the dealer is expected to behave. While

there can be many players in a single game, each shares a similar yet independent relation-

ship with the dealer. Since there is rarely any correlation between player interactions, each

player-dealer pair represents a separable group. Interactions between player and dealer are

7For more information of the game of Blackjack, see Appendix B.
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Figure 6.5: Each dealer-player group represents separable (independent) roles. Within each group,

individual roles are non-separable (dependent) and share the same grammar.

non-separable. Consequently, with only one type of non-separable role to characterize, we

can capture the exchanges in the activity using a singular grammar. See Figure 6.5 for an

illustration. The production rules for this grammar are listed in Table 6.3. Terminal sym-

bols used in alphabet V21 are based on primitive events detected. This grammar generates

a language that can describe the role between any deal-player couple.

In our framework, the scene layer monitors all interactions taking place and assists

in the labeling of detected events, as mentioned earlier. Each of the m person objects in

p = fp1; p2; :::pmg maintains a separate symbolic string that represents interactive events

in which it participated. In our case, the relation between any event and person object is

established by two measures: a) the person in contact with an article, and b) the \owner"

of the article. These tags are important in Blackjack because they help the scene object

associate an article with a respective player. Moreover, the tags remove potential ambiguity

that can confuse the parser and, consequently, lead to cloudy semantic expressions. The

�rst measure is easily established when we detect an overlap between the regions bounding

the hand and the object. The second measure is largely determined by proximity zones

Zp placed around each person. The boundary zone zpi = [xl yt xr yb]
T for each person

is de�ned manually when the scene is initialized, then labeled with the same ID as the
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Production Rules Description

S ! AB [1.0] Blackjack ! \play game" \determine winner"
A ! CD [1.0] play game ! \setup game" \implement strategy"
B ! EF [1.0] determine winner ! \evaluate strategy" \cleanup"
C ! HI [1.0] setup game ! \place bets" \deal card pairs"
D ! GK [1.0] implement strategy ! \player strategy"
E ! LKM [0.6] evaluate strategy ! \ip dlr down-card" \dlr hits" \ip plyr down-card"

! LM [0.4] evaluate strategy ! \ip dealer down-card" \ip player down-card"
F ! NO [0.5] cleanup ! \settle bet" \recover card"

! ON [0.5] ! \recover card" \settle bet"
G ! J [0.8] player strategy ! \Basic Strategy"

! Hf [0.1] ! \Splitting Pair"
! bfffH [0.1] ! \Doubling Down"

H ! l [0.5] place bets Symbol Domain-Speci�c Events

! lH [0.5] a dealer removed card from house
I ! ffI [0.5] deal card pairs b dealer removed card from player

! ee [0.5] c player removed card from house
J ! f [0.8] Basic strategy d player removed card from player

! fJ [0.2] e dealer added card to house
K ! e [0.6] house hits f dealer dealt card to player

! eK [0.4] g player added card to house
L ! ae [1.0] Dealer downcard h player added card to player
M ! dh [1.0] Player downcard i dealer removed chip
N ! k [0.16] settle bet j player removed chip

! kN [0.16] k dealer pays player chip
! j [0.16] l player bets chip
! jN [0.16]
! i [0.18]
! iN [0.18]

O ! a [0.25] recover card
! aO [0.25]
! b [0.25]
! bO [0.25]

Table 6.3: SCFG G21 for Blackjack/\21" card game: Production rules, probabilities, and descrip-

tions. Detectable domain-speci�c events make up the terminal alphabet VT of G21.
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0 + 1 + 2 l10l20l20l10l10f01f01l20f02f02e00e00f01a00e00d11d22h11h22k02k02j20j20k02 : : :

j20j20i00j20i00j20i00a00a00b01b01b01b02b02b02
0 + 1 l10l10l10f01f01e00e00f01a00e00d11h11i00i00i00a00a00b01b01b01
0 + 2 l20l20l20f02f02e00e00a00e00d22h22k02k02j20j20k02j20j20i00j20i00j20i00a00 : : :

a00b02b02b02

Table 6.4: Example strings from a game of Blackjack. Subscripts on each terminal denotes i) ID

of person making contact with object, and ii) ID of owner of object, respectively. ID numbers:

dealer(0), player A(1), and player B(2).

respective person object. During initialization, we also have the option of establishing the

role for each person, i.e., labeling each as a dealer or a player. Objects that are placed in

these zones inherit the same ID as the zone. These tags are attached during the scanning

stage when the next state is added, such that

i+ 1 : kX ! �a:� [�; ; pj ; o(zpi)];

where o(zpi) returns the ID pj corresponding to the zone de�ned by o(zpi). Table 6.4

provides an actual example of strings from a game of Blackjack with a dealer (ID � 0) and

two players (IDs 1 and 2). For emphasis, the terminals are labeled with subscripts that

indicate the two measures mentioned above. The �rst row shows the single, interlaced string

involving all agents (IDs 0+1+2), which would be ambiguous to parse, even for the human

observer, were it not for the subscript tags. Instead of wrestling with this arduous string,

ObjectSpaces extracts separable groups from this string representing the dealer-player pairs

(0+1) and (0+2). Only terminals with at least one subscript that matches an ID in the

grouping is retained in the string.

Separable groups are not restricted to pairwise combinations of non-separable roles,

but to any number that can be eÆciently speci�ed by grammar. For example, in the

popular card game of Spades, which typically involves four players, there are no separable

groups because the strategy of each player is inextricably tied to the interactions of the

other players. Therefore, the required grammar must attempt to explain all four non-

separable roles. Conversely, when the number of separable groups equals the number of

participants in the activity, an appropriate grammar (not necessarily unique) is needed for
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each independent agent. Naturally, we are motivated to consider separable activities that

limit the dimension of non-separable roles.

Exploiting separability allows us to assess the probabilistic behavior of individuals in

the scene by isolating events that occur within a non-separable relationship. To model a

particular behavior, we manually select a subset of production rules, i.e., P& 2 P, that o�er

a basis for characterizing interactions. Here b& is a vector that represents all n production

probabilities in subset P& . Each person object maintains a unique set of production likeli-

hoods b̂& , which are reset initially to reect a uniform distribution8. Using Equation D.1,

rule probabilities for each individual are \tuned" based on observations of selected produc-

tions over the course of several trials. For example in Blackjack, the use of certain strategies

designed to improve the odds of winning are more likely to be used by a more experience

player versus a novice. Comparisons between individually tuned rule probabilities b̂& and

pre-trained models b& can be made using the mean sum of the square di�erences or mean

square error, i.e.,

err(b& � b̂&) =
1

n

nX
i=1

(�i � �̂i)
2: (6.19)

Values in b& are determined from training data data and represent our established models

of particular behavior. The MSE is used to measure the pairwise distance so that the

likelihood of a behavior given a model for it can be established by

P (b̂& jb&) = 1�
q
err(b& � b̂&): (6.20)

Using individually tuned grammars, production probabilities are assessed to disambiguate

player behavior. As the number of trials increases, we expect better characterization of

behavior.

6.5.3 Error Detection & Recovery

Another presumption that we have maintained throughout our discussion of grammar has

been the expectation of a syntactically agreeable input string. Naturally, there are several

8For a nonterminal X that generates n other strings of terminals and nonterminals, i.e., X !
�1j�2j : : : j�n, all respective likelihoods bX = �1; �2; : : : ; �n are set identically to 1

n
. During separable

role characterization, each individual shares the same initial set of rule likelihoods bX over P& .
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cases where ungrammatical input may be encountered. A substitution error occurs when

the wrong terminal symbol is generated because the actual event is not detected as the

most likely. Insertion errors take place when spurious symbols that do not correspond to

actual events are added to the input. Finally, deletion errors are the result of failures in

detecting events that actually occurred.

Domain-speci�c detectors often bene�t from empirically derived methods which help

to improve their ability to measure anticipated changes in the environment. As a result of

using such heuristic models to detect meaningful events, substitution and insertion errors

are rare. However, it is challenging to detect events that deviate signi�cantly from these

same heuristic models. The trade o� is generally a higher rate of deletion errors. Ivanov

and Bobick handle substitution and insertion errors by employing multi-valued strings and

by modifying the grammar so that it accepts input that could, otherwise, terminate parsing

[75]. However, for rule-based activities, any attempt at correcting an error compromises the

bene�t of actually detecting when a rule is violated. In fact, we have a vested interest in

determining how, when, where, and by whom errors occur. At the same time, we wish to

make parsing robust enough to tolerate erroneous input.

While no treatment for correcting errors is suggested, we attempt to recover from

parsing failures by taking advantage of grammatical structure. Although the arrangement

of terminals in the input is non-deterministic, it is constrained by a priori known rules that

we leverage to anticipate future input. Parsing errors occur in the scanning stage when the

symbol sampled from the input does not match any of the terminals from the prediction

stage. This invariably happens during a nonterminal expansion. We revisit the prediction

stage during the expansion of nonterminal X, which creates a list of productions Y ! �

that are syntactically consistent with the expansion, i.e.,

i : kX ! �:Y � [�; ] ) i : iY ! :� [�
0

; 
0

]:

Every nonterminal Y is also expanded until the next terminal is predicted, i.e.,

i : iY ! :a� :

Solutions to a parsing failure are motivated by the nature of the error. We o�er three

scenarios below:
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� If the failure is caused by an insertion error, we simply ignore the scanned terminal,

and return the state of the parser to the point prior to scanning. The same pending

expansions for prediction are maintained.

� If the failure is caused by a substitution error, we promote each pending prediction

state as if it were actually scanned, creating a new path for each hypothetical terminal.

(At this point, there are no real paths). We proceed with normal parsing, but instead

of maintaining paths that spawn from a single scanned terminal, we accommodate

all paths from each hypothetical terminal appearing as a result of a simulated scan.

A hypothetical path is terminated if another failure occurs in the next real scanning

step. The actual likelihood of the event associated with the hypothetical terminal

PD(a) is recovered, then multiplied to prediction values of � and  such that

�
0

= �(i : iY ! :a�)PD(a) (6.21)


0

= (i : iY ! :a�)PD(a); (6.22)

as before.

� If the failure is caused by a deletion error, again we promote each pending prediction

state and create a separate path for each hypothetical symbol. We proceed through

the completion stage, then to prediction to generate the next state terminal. During a

simulated scan, hypothetical paths that are inconsistent with the symbol that caused

the �rst failure are terminated. When a deletion error is assumed, there is no detection

likelihood to recover for the missing symbol. We approximate this likelihood, denoted

as ePD(a), using empirical values that we select by hand, which are inuenced by

historical probability values for the detection of symbol a. Modi�ed forward and

inner probabilities in the �rst scanning step are given as

�
0

= �(i : iY ! :a�) ePD(a) (6.23)


0

= (i : iY ! :a�) ePD(a); (6.24)

while those of the second simulated scanning step can be recovered from the original

scan likelihood, i.e.,

�
0

= �(i+ 1 : i+1Y ! :b�)PD(b) (6.25)
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0

= (i+ 1 : i+1Y ! :b�)PD(b): (6.26)

Using these methods, the parser is guaranteed to generate a syntactically legal interpretation

but provides no warranty of its semantic legitimacy. The parser supplies the framework with

the erroneous symbol and its corresponding likelihood so that records of potential failures

can be attached to the appropriate person object. In this way, substrings with bad syntax

can be more closely scrutinized to determine when an illegal action takes place.

Table 6.5 illustrates how the parser attempts to recover from failures using the three

error scenarios mentioned above. We maintain every recovered path, even if multiple tracks

(each representing one of the three error scenarios) are formed from a single failure. For

each of the error scenarios, we tolerate only two consecutive failures before terminating

the parse of that path. However, our approach can be applied iteratively so that more

consecutive failures can be tolerated. A consequence of accepting more failures must be

reected by increasing the uncertainty in our approximation of PD(a), denoted as bPD(a).
We rely on the exponential to serve as a penalty function that is applied by multiplication

to the historical mean likelihood ePD(a), i.e.,
bPD(a) = e

�n
� ePD(a); (6.27)

where n is the number of consecutive failures and � is empirically derived.

The algorithmic complexity of tracking multiple paths, which is a function of the

production rules involved, tends to grow linearly for grammars with small terminal and

nonterminal alphabets but can expand exponentially for larger grammars or for very long

terminal strings. When computation and memory resources must be delicately managed,

we prune recovered paths that have low overall likelihoods. Unlike the example provided in

Table 6.5, we can also entertain hybrid error scenarios in order to generate the most likely

parse, i.e., instead of treating each consecutive error by the same type of scenario, all three

alternatives can be consider for each bad input symbol.

6.5.4 Parsing with Adaptive Grammar

As we have already seen, the parser makes the most likely parse of the input based on

the prior input received. In essence, the parser o�ers the most likely interpretation of a
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(a)

Grammar

S ! AB

A ! aa

! aaA

B ! bc

! bcB

(b)

Earley Chart

predicted

0 : 0 ! :S

0 : 0S ! :AB

0 : 0A ! :aa

0 : 0A ! :aaA

scanned \a"

1 : 0A ! a:a

1 : 0A ! a:aA

none completed

predicted

1 : 1A ! a:a

1 : 1A ! a:aA

(c)

Insertion Substitution Deletion

scanned \b" scanned \b" scanned \b"

failure - expecting \a" failure - expecting \a" failure - expecting \a"
ignore \b" �scanned \a" �scanned \a"
predicted 2 : 1A ! aa: 2 : 1A ! aa:

1 : 1A ! a:a 2 : 1A ! aa:A 2 : 1A ! aa:A

1 : 1A ! a:aA completed completed

scanned \c" 2 : 1A ! aa: 2 : 1A ! aa:

2nd failure - expecting \a" 2 : 0S ! A:B 2 : 0S ! A:B

TERMINATED predict predict

2 : 2A ! :aa 2 : 2A ! :aa

2 : 2A ! :aaA 2 : 2A ! :aaA

2 : 2B ! :bc 2 : 2A ! :bc

2 : 2B ! :bcB 2 : 2A ! :bcB

scanned \c" �scanned \b"(retry)
2nd failure - expecting \b" 3 : 2A ! b:c

TERMINATED 3 : 2A ! b:cB

none completed

predicted

3 : 3A ! b:c

3 : 3A ! b:cB

scanned \c"

3 : 2A ! b:c

3 : 2A ! b:cB

3 : 2A ! b:cB

Table 6.5: a) Simple CFG grammar. A deletion error occurs in the detection of events aabc : : :;

input only contains abc : : : b) Shows the Earley chart after the �rst symbol is scanned. The next

scanned symbol, b, will cause parsing to fail under normal conditions. c) Continuation of Earley

Chart shows parser recovery attempts under di�erent error assumptions. �Scan of hypothetical

symbol is simulated to promote parsing step.
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sequence of events based on measurable evidence. We look to exploit this evidence along

with the grammatical structure of an activity to improve our expectation of future input.

By identifying rules that are explicitly correlated and by observing prior productions,

we can generate a reliable forecast of events that are likely to appear in the input. We

modify the likelihood of these anticipated production rules to reect our con�dence in

an activity's topology. This is equivalent to placing \if-then" branches in the structure

so that we can tailor productions for speci�c scenarios encountered in the input. Our

approach is motivated by the work of Langley, who demonstrates how an agent can learn

and anticipate grammatical expressions over time by adjusting the rule probabilities to

maximize recognition [84].

In many rule-based activities, certain events typically repeat a number of times. For

instance, if a Blackjack player wishes to bet $5 (using $1 chips), the event \player bets chip"

will occur �ve times. While the number of repeats is initially arbitrary, this number becomes

a potentially important indicator of how many times we can expect to see future events, i.e.,

if the house wins, then it will collect exactly �ve chips from the player. Recall that a context-

free grammar can form the language L(Gfree) = Lf : a
nbm : : :, where correlations between

n and m can be counted. However, these correlations have to be explicitly de�ned by rules

in the grammar. For example, to recognize a string containing exactly three occurrences of

event a, i.e., aaa = a3, the production X ! a3 must be explicitly de�ned in the production

set P.

To describe the sequential repetition of event a, which can loop arbitrarily many times,

we employ productions of the form

A ! aA

! a :

We record the state k where terminal a is �rst predicted in the expansion of A, i.e.,

k : kX ! �:A�

k : kA ! :a

k : kA ! :aA

and allow parsing to proceed as usual. After the �nal symbol a has been scanned and state

i : kX ! �A:� is completed, the number of times A generates a is given by nA = i� k. In
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other words, nA is equal to the length of the substring containing all of the a symbols. The

mean likelihood of detecting the substring a(nA) is computed using Equation 6.10 as

ePD(a(nA)) = 1

nA

iX
j=k+1

PD(xj); (6.28)

where x is the input string and j covers all states sets where input scanning recovered

terminal a during the generation of A.

To make parsing more context sensitive, we exploit the semantic relation between the

high-level event represented by A and another high-level, recursive event given by B, i.e.,

B ! bB [�1]

! b [�2]
...

;

where �1 and �2 represent P (B ! bB) and P (B ! b), respectively. Notice that B can count

any number of events b from the input as well as generate other strings. However, since

A inuences B, the expansion of B should generate a speci�c terminal string rather than

one of arbitrary length. The most probable number of events nB is de�ned by a relation

function, i.e., nB = fA7!B(nA), using task rules and semantics. This heuristic function

provides a mapping between the number of loops in A and the number of loops in B and is

speci�ed manually when the production rules are designed. To increase the likelihood of the

correct parse, we add the stochastic production B ! b(nB) [ ePD(a(nA))] to P and decrement

the probabilities of other rules generated by B. Because we rely on unambiguous rules to

dictate the mapping between A and B, the likelihood of expected production B ! b(nB)

should be unity. However, we adjust this value to reect our con�dence in the detected

string a(nA). When determining the likelihood of b(nB), we ignore the syntactical likelihood

of a(nA), which is given by the inner probability (kX ! �A:�). We replace B with bB,
which is written as bB ! b bB [�̂1]

! b [�̂2]

! b(nB) [ ePD(a(nA))]
...

;
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where �̂1 = �1(1� ePD(a(nA))) and �̂2 = �2(1� ePD(a(nA))). As usual, all production probabil-
ities of bB sum to unity. Because this genre of production does not involve unit productions

or left recursions, there is no need to recalculate RU and RL. Modi�ed nonterminal bB
persists in P until the entire string is parsed before reverting back to B.

In a similar fashion, we generalize the treatment used to handle sequential repetitions

so that various other types of dependencies between high-level nonterminals can be accepted.

Without loss of generality, we allow the mapping between Y and Z, denoted Y 7! Z,

which results in some new or pre-existing production Z ! � with corresponding probabilityePD(w). Here, w represents a terminal substring generated by the production in Y . As

before, the modi�ed nonterminal bZ replaces Z and the probabilities of other productions

are normalized accordingly. In cases where the production Z ! � already exists in P, we

simply modify the production probabilities as we have demonstrated above.

Multiple semantic dependencies among productions in the grammar result in mappings

that are not necessarily unique. The set of all v nonterminals that inuence, or map to

Z is given by V7!Z = fY1; Y2; : : : ; Yvg. Each nonterminal Yi generates some string wi

which invokes the production Z ! �i [ ePD(wi)] in P. Here the subscript i denotes the ith

nonteminal Yi. Considering the other u independent productions of Z, i.e., Z ! �i [�i], the

modi�ed nonterminal bZ is given by

bZ ! �1 [� ePD(w1)]

! �2 [� ePD(w2)]
...

! �v [� ePD(wv)]
! �1 [�̂1]

! �2 [�̂2]
...

! �u [�̂u]

; (6.29)

where � = 1
v
and �̂i = �i(1 � �) 8 1 � i � u. To distribute likelihood appropriately

among the productions, the probability of each dependent production is in proportion to

its detected likelihood while the probability of each independent production is proportional

to its original albeit diminished likelihood.

125



We avoid adapting productions that do not have a strictly dependent relationship

with other rules. For example, if productions with nonterminal B are inuenced by those of

A, as well as by several other nonterminals, adjusting its probability can erode likelihoods

based on detectibility versus based on observation. Moreover, some adaptation may require

recompilation of the RL and RU matrices9.

6.6 Experimental Results

In this section, we provide real examples of our approach in the domain of the card game,

Blackjack. One of the motivations for using SCFG to specify this activity is the convenience

by which a rule of the game can be used, virtually unmolested, as a production rule in the

grammar (a list of the rules of Blackjack/\21" is available in Appendix B). We examine

card games as case studies for understanding multitasked activities because they involve

processes that are dependent within the context of each player but are wholly separate

within the context of the game, i.e., contain separable groups and non-separable roles.

They involve multiple people, objects, actions, and player strategies that are diÆcult to

model accurately using strictly stochastic or deterministic approaches.

In general, the card game domain has rich semantics, several activities that can be

reasonably speci�ed using grammar, and primitive events that can be measured using com-

puter vision. Moreover, ground-truth observations for measuring accuracy are also readily

available for these activities. By closely examining multitasked, collaborative tasks such as

card games, we develop methods that are appropriate for treating other highly complicated

human experiences.

All experiments conducted in this section were implemented using the Vision Action

Recognition System10 (VARS). Each activity sequence we mention below is a 1/4 frame,

color YUV video sequence of an entire Blackjack game. Recall Table 6.3 which shows the

stochastic grammar G21 used to model Blackjack.

9For all but the most sparsely populated matrices, recalculation of these matrices in nontrival.
10To reference more information about VARS, see Appendix C
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Detect Error Rate

Symbol Domain-Speci�c Events Rate Insert Sub Del

a dealer removed house card 100.0% 0.0% 0.0% 0.0%
b dealer removed player card 100.0% 0.0% 0.0% 0.0%
c player removed house cardy 100.0% 0.0% 0.0% 0.0%
d player removed player card 100.0% 0.0% 0.0% 0.0%
e dealer added card to house 94.6% 0.0% 0.0% 5.4%
f dealer dealt card to player 92.2% 0.0% 0.0% 7.8%
g player added card to housey 100.0% 0.0% 0.0% 0.0%
h player added card to player 89.3% 3.6% 0.0% 7.1%
i dealer removed chip 93.7% 0.0% 0.0% 6.3%
j player removed chip 96.9% 0.0% 0.0% 3.1%
k dealer pays player chip 96.9% 0.0% 0.0% 3.1%
l player bet a chip 90.5% 1.1% 1.1% 7.4%

Table 6.6: Experiment V: Detection rate of domain-speci�c events which make up the terminal

alphabet VT of G21. Errors are categorized as insertion, substitution, and deletion, respectively.
yDenotes events with no signi�cance to legitimate Blackjack play, but can be used to detect illegal

occurrences.

6.6.1 Experiment V: Low-level Event Detection

In this experiment, we are interested in determining the accuracy of terminal symbol gener-

ators, which use image- and object-based evidence as well as heuristics to model detectable

events. No action-based evidence was used to classify objects or detect events. An action-

based gesture11 was attempted, however, but could not be consistently recognized due to

limitations in our ability to characterize and distinguish the action in the presence of motion

noise and meaningless, random hand movement.

Twenty-eight sequences were used to generate 700 example events, which were com-

piled to determine the detection rate of each detector. Each sequence consisted of a full

game of Blackjack with at least one player. For example, a sequence might generate six

examples of the event \player bet a chip," �ve examples of \dealer removed player card,"

etc. The overall detection rate for all events is 96.2%. The error rates, which were assessed

manually, for insertion, substitution, and deletion errors were 0.4%, 0.1%, and 3.4%, respec-

tively. As expected, deletion errors dominate primarily because several newly introduced

objects could not be classi�ed. For example, attempts to classify an unknown as a card

11In Blackjack, a player can request an additional card by tapping on the table with his/herhand.
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Detect Rate Insert Err Sub Err Del Err

Symbol on o� on o� on o� on o�

a 98.8% 92.5% 0.0% 0.0% 0.0% 0.0% 1.2% 7.5%
b 97.8% 90.8% 0.0% 0.0% 0.0% 0.0% 2.2% 9.2%
c 100.0% 80.0% 0.0% 0.0% 0.0% 20.0% 0.0% 0.0%
d 100.0% 91.7% 0.0% 0.0% 0.0% 0.0% 0.0% 8.3%
e 94.0% 74.9% 1.2% 5.0% 1.2% 7.5% 3.6% 12.5%
f 95.6% 70.3% 0.0% 2.3% 0.0% 9.2% 4.4% 18.3%
g 100.0% 50.0% 0.0% 0.0% 0.0% 50.0% 0.0% 0.0%
h 80.0% 41.7% 4.0% 8.3% 8.0% 33.3% 8.0% 16.7%
i 92.9% 88.9% 0.0% 0.0% 0.0% 0.0% 7.1% 11.1%
j 96.5% 92.7% 0.0% 0.0% 0.0% 0.0% 3.5% 7.3%
k 79.0% 12.5% 10.5% 36.5% 10.5% 43.8% 0.0% 7.3%
l 90.6% 55.8% 4.7% 17.2% 2.4% 9.8% 2.4% 17.2%

Table 6.7: Experiment V: Detection and error rates for Corpus A with error recovery turned on

and o�. Error recovery improves overall detection rate by 33.8%.

may fail if there is any overlapped between the card and neighboring cards or objects. To

improve detection and classi�cation of unknowns, we control the environment by using a

solid, colored surface as the Blackjack table. Table 6.6 shows the results of this examination.

6.6.2 Experiment VI: Error Detection & Recovery

The Earley parser is complete, which means that it generates all possible derivations of a

string[132]. When combined with a grammar of highly constrained, rule-based activities,

the parser is guaranteed to parse an input string, barring semantic violations or errors. As

expected, when a semantically legitimate sequence is presented to VARS with no insertion,

substitution, or deletion errors, we are able to parse the activity with 100% accuracy.

To provide a more diverse sample of sequences, two testing corpa were compiled from

several minutes of video where Blackjack was played, primarily with two people (one dealer

and one player). Corpus A contained 28 legitimate sequences with at least one detection

error per sequence (either a deletion, substitution, or insertion error). Corpus B represents

a family of 10 illegitimate sequences with various errors. Sequences in Corpus B often

contained illegal moves, dealer mistakes, cheating, etc. With error recovery disabled, only

12 of the 28 sequences (42.9%) in Corpus A could be entirely parsed without terminating

in failure. Of those that could be parsed, the mean detection rate for 320 events was 70.1%.
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Figure 6.6: Using Corpus C, the complexity versus the length of the error burst is illustrated. Here

complexity refers to the amount of system resources used, including computation and memory.

The error rates for insertion, substitution, and deletion errors were 5.8%, 14.5%, and 9.6%,

respectively. None of the sequences in Corpus B could be entirely parsed. With error

recover enabled (accepting up to 2 consecutive failures), 25 of the 28 sequences (85.7%)

from Corpus A could be parsed with 93.8% of all 625 events detected accurately. Insertion,

substitution, and deletion errors were reduced by 70.5%, 87.3%, 71.9%, respectively. Parsing

improved by 40% for Corpus B sequences with error recovery turned on, with an average

85.4% of high-level events recognized accurately. This improvement in the parsing rate is

attributable to our ability to recover from insertion errors, which simply skipped over rule

violations encountered during the sequence. We assessed that 22.5%, 17.5%, and 60.0% of

errors were caused by insertion, substitution, and deletion errors. respectively.

To provide more exhaustive testing of the parser, a third testing corpus was developed

from 113 simulated terminal strings representing legal plays with various errors. Using

simulated data, the probability of detection for each event P (Di) is estimated using the

average determined in Table 6.6. We justify the use of simulated data because the parser

only needs a string to generate the most likely derivation. In other words, it is of no

consequence to the parser if the string is generated from real video or simulated. Using

Corpus C, we can measure the performance of the parser under a variety of conditions,

including consecutive error bursts. Figure 6.6 shows complexity versus the length of a

homogeneous error burst. Here we de�ne complexity as a measure of resources required in
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Figure 6.7: Trained behavior pro�les of player strategy for novice and expert.

the computation of the algorithm, which include the number of pending states, memory,

etc. Homogeneous error types present the worst-case system complexity due to contiguous

blocks of substitution and deletion errors. Heterogeneous error scenarios bene�t from the

treatment used for insertion errors, which only need to maintain the same set of pending

states, e�ectively lowering overall system complexity. We also learn empirically that to

recover from an error burst of length n, we must accept at least n consecutive failures to

recover.

6.6.3 Experiment VII: High-level Behavior Assessment

We examine non-separable roles between a player and the dealer to assess patterns of

behavior. The conduct of the dealer is strictly regulated by the rules of Blackjack, but the

player is permitted to execute a range of di�erent strategies to improve his/her chance of

winning. We de�ne a novice as a player whose moves are limited to basic strategy12 where

experts employ more advanced strategies, such as \splitting pairs" and \doubling down."

The pro�les for these two behaviors is shown in Figure 6.7.

We can also assess other behaviors, such as whether a player is a low-risk or high-risk

player, using heuristically motivated measures. After tuning several behaviors with actual

and synthetic training data, roughly 10 trials per individual were conducted to assess their

12When no extra cards are dealt to the player after the initial card pair, basic strategy is assumed.
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behavior. Results are posted in the chart below:

Behavior Detection Accuracy

Low-risk 92%

High-risk 76%

Novice 100%

Expert 90%

6.6.4 Experiment VIII: Adaptive Grammar

We conducted experiments to assess the bene�t of using adaptive grammar under a variety

of conditions. Adaptive grammar exploits structure to enhance the probability of the most

likely path. We use simulated data to examine the likelihood of the most likely parse of 200

sequences. When considering error-free strings, the mean improvement of likelihood using

adaptive grammar was 11.3%. However, if errors occur in symbols where adaptive grammar

has arti�cially inated the likelihood (and consequently diminished the likelihood of other

productions), the bene�t of adaptive grammar is minimized.

6.7 Comments

We have demonstrated that stochastic grammar is a very appropriate method for repre-

senting multitasked activities. A signi�cant secondary bene�t in this regard is the level

of compression o�ered in a terminal string. A legitimate terminal string contains enough

meaningful information to accurately represent a wide variety of interactions. For example,

consider that the average game of Blackjack (with 1 dealer and 1 player) lasts for 64 seconds

and generates 1687.5MB of data (assuming full framerate, uncompressed color video). Al-

beit not with the same �delity, a 26-character terminal string o�ers a compelling alternative

representation, with an astounding 5,507,076:1 compression ratio over the video sequence.

With this level of eÆciency, several hours of interaction can be captured and stored using

a terminal string. Additionally, substrings that express interactive patterns can also be

conveniently indexed and searched by virtually any conventional text parser or editor.
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CHAPTER 7

Conclusions

In this dissertation, we presented methods for recognizing complex activities using vision.

To handle data management and facilitate recognition processes, we have introduced a

multi-layer, object-oriented framework. We argue that policies are required to organize,

store, and distribute a wide range of dynamic, heterogeneous information in order to solve

sophisticated vision problems. We have provided an intuitive architecture that decomposes

the activity domain into objects and layers, which encourages reuse of data and models.

Decomposing a complex recognition process also and systems for more eÆcient, exible, and

scaleable vision systems. The implementation of ObjectSpaces, which contains over 93,000

lines of C++ code, is the best demonstration that our framework can provide high-level

recognition of complex activities in a real-time system.

Using our framework, we have been able to exploit the relationship between actions

and objects to improve recognition of objects and single-tasked activities. Our novel con-

tributions demonstrate that objects can be detected and classi�ed through recognition of

associated actions. Using image-, object-, and action-based evidence together, we show

classi�cation accuracy of 89.7% of 8 unknown objects. We have also shown that object

context provides powerful clues about with actions to anticipate. Using the hidden Markov

model, we recognize 46 di�erent hand-based actions with mean recognition rate of 90.2%.

Using Markov models to characterize single-tasked activities, we show the mean recogni-

tion accuracy of 14 activities to be 87.6%. These results were achieved using an adaptive

Bayesian classi�er that leverages the strongest available evidence over time.

For recognition in complex tasks, we concentrate on rule-based, event-driven multi-

tasked activities. By developing a grammar to describe meaningful interactions between



non-separable roles, our implementation detects 96.2% of all events in Blackjack. Using

simulated data of over 200 Blackjack games, we show that adapting stochastic context-

free grammar can improve recognition accuracy by 11.3%. Our novel extensions to the

Earley-Stolcke algorithm provides error detection and recovery of parsing failures. When

techniques for handling insertion, deletion, and substitution errors are enabled (accepting

up to 2 consecutive failures), 88.1% more sequences could be parsed without failing. Even

with errors present in the sequences, 93.8% of all 625 events detected accurately and inser-

tion, substitution, and deletion errors were reduced by 70.5%, 87.3%, 71.9%, respectively.

We also demonstrated quantitative techniques to evaluate human behavior by exploiting

production rule probabilities.

7.1 Summary of Contributions

A summary of our contributions include:

� a layered framework for decomposing recognition problems,

� base class templates for categorizing context information,

� object-based event handling and focus-of-attention,

� block-based image sampling (preprocessor to connected component labeling),

� a hand tracking scheme that takes advantage of environmental context to enhance

linear predictions of future hand locations,

� person-independent recognition of hand actions using scene context and HMMs.

� an extension to appearance-based representations for recognition

{ object classi�cation using action context, i.e., object classi�cation based on how

people appear to interact with the object,

{ action recognition using object context, i.e., action recognition based on an ob-

ject's appearance
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� adaptive Bayesian classi�cation techniques to identify and weigh dynamic patterns in

evidence over time.

� techniques for adapting grammar to improve recognition of structured activities,

� new parsing strategies that enable error detection and recovery in stochasitic context-

free grammar, and

� methods of measuring behavior in non-separable roles using production rule scoring.

7.2 Caveats

Although the single-camera approach is appropriate most of the time, non-planar, complex

motion can become ambiguous from one perspective. Although several scene articles have no

actions associated with them or no hand-based motion can be adequately modeled, we have

shown that exploiting the relationship between object pairs can be helpful for summarizing

activities and discovering articles. Despite the scalability problems that can be caused by

associating all of the possible actions with each object, we hope to limit these by working

with well de�ned and constrained domains. Additionally, many interesting activity domains

can not be adequately modeled using grammar because of insuÆcient structure or rules. We

hope to investigate methods that provide recognition of events while relaxing the structural

constraints.

7.3 Future Work

There are several opportunities to extend our present work into exciting new areas. Since

recognition of multitasked activities is still very new, more training data from di�erent

domains would be valuable to develop a more extensive database of actions, articles, and

models of high-level behavior. Speci�cally, more work should be done on developing adap-

tive grammar approaches that can accommodate less structured multitasked activities. In

order for vision-based action recognition to enjoy commercial success and wide-spread im-

plementation, real-time systems that can accommodate a large dictionary of both simple

and complex gestures and actions must be created [40]. Additionally, these systems should
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be exible enough to learn new activities while preserving the ability to discriminate existing

action families. For most applications, action recognition systems will need to maintain low

error rates and user independence while recognizing continuous gestures and body actions.

In general, we have examined human interactions using only image information. A

natural extension to this approach is to consider hybrid approaches that combine informa-

tion from several heterogeneous sensors, such as audio or tactile. One of the biggest barriers

that must be addressed in this regard is sensor fusion [127]. Building models that use data

that can have non-linear temporal or dynamic characteristics can be challenging, especially

if �nite state representations are used. There are also more opportunities for confusion

and conict if sensor data is married together incorrectly. Additionally, future systems will

likely incorporate face and speech recognition with hand gestures to fuse intelligent, per-

ceptual systems. A great deal of work lies ahead to solve issues such as automatic selection

of optimal feature extraction and tracking in the presence of challenging environmental

conditions.

While there are huge opportunities to immerse vision-based technology in various

environments, developers of vision systems must still address other issues such as privacy

[90, 98] and deployment in mission-critical installations [114]. In today's information society,

several controversies are brewing regarding the collection, processing, and dissemination of

information collected about people, especially in the form of audio, images, and video [92]. A

consequence of implementing any information-gathering technology is controlling its usage.

While Lunheim and Sindre argue that \privacy is a cultural construct, rather than a genuine

human need [87]," the acceptance of vision-based technologies is likely to come under �re

if there is any likelihood than an individual's privacy will be compromised or breached all

together. Moreover, it may be diÆcult, if not impossible, to form a communal consensus of

how best to deploy such technologies, much less a universal one. Like other revolutionary

inventions that preceded it, such as the television and telephone, vision will also have to

establish a clear perceived bene�t as well as a comfortable rapport before it can be accepted

by the community at large [87]. Establishing this relationship goes beyond technological or

political solutions and can be addressed only through increased awareness of cultural and

personal privacy concerns.
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APPENDIX A

Three Key Problems of the Hidden Markov Model

A.1 Model Assumptions

Several assumptions are generally made to limit the number of free parameters for the sake

of mathematical and computational tractability. However, if these conditions are violated,

the model representation can be weakened.

The Markov Assumption : The Markov assumption purports that the next state is de-

pendent only upon the current state, resulting in a �rst order HMM. This assumption

is implicit in Equation 4.21 since the probability of being in state Sj at time t + 1

depends only on the state si at time t. It is also possible, however, to allow the next

state to depend on the past k states, which speci�es a kth order HMM given by

ai1i2:::ikj = P (qt+1 = sjjqt = si1 ; qt�1 = si2 ; :::; qt�k+1 = sik); 1 � i1; i2; :::ik; j � N

(A.1)

Although �rst order HMMs are generally appropriate, higher order HMMs can better

characterize some actions, but at the added expense of more complexity.

The Stationarity Assumption : The stationarity assumption considers state transition

probabilities to be independent of the actual time at which the transition takes place.

Mathematically, we express this as

P (qt1+1 = sjjqt1 = si) = P (qt2+1 = sjjqt2 = si); 8 t1; t2: (A.2)

The Output Independence Assumption : The output independence assumption states

that the current output observation is statistically independent of the previous output



observation. This can be formulated mathematically for a sequence of observations

O as

P (Ojq1; q2; :::; qT ; �) =
TY
t=1

P (otjqt; �): (A.3)

A.2 The Evaluation Problem

Each action targeted for recognition will be represented by an HMM, �. The evalu-

ation problem is concerned with �nding the probability of a sequence of observations

O = (o1o2:::oT ), given a model �. must be evaluated for every model. The model with

the highest probability is selected. The most direct way of calculating P (Oj�) is to begin

by enumerating every possible state sequence of length T . We should end up with NT

sequences (each state is equally likely to occur for each of the T observations, such that

N �N �N � : : :) similar to

q = (q1q2:::qT ); (A.4)

where q1 is the initial state. The probability of the observation sequence O given the state

sequence de�ned above in Eq. A.4 is

P (Ojq; �) =
TY
t=1

P (otjqt; �): (A.5)

Invoking the output independence assumption, Eq. A.5 can also be expressed as

P (Ojq; �) = bq1(o1) � bq2(o2) : : : bqT (oT ): (A.6)

This is the probability of producing some output o1 while in state q1 at time t = 1 times

the probability of producing some output o2 while in state q2 at time t = 2, and so on. The

probability of state sequence q for this model � is

P (qj�) = �q1aq1q2aq2q3 : : : aqT�1qT : (A.7)

Now we can easily express the joint probability that O and q occur simultaneously by

multiplying Eqs. A.6 and A.7, giving

P (O;qj�) = P (Ojq; �)P (qj�): (A.8)

138



Figure A.1: Computation complexity grows exponentially as the number of states or state transi-

tions are increased.

Finally, we can compute the probability of the observation given the model P (Oj�) by

summing the joint probability over all NT possible state sequences q, such that

P (Oj�) =
X
all q

P (Ojq; �)P (qj�) (A.9)

=
X
all q

TY
t=1

aqt�1qtbqt(ot); where aq0q1 = �q1 (A.10)

=
X

q1;q2:::qT

�q1bq1(o1)aq1q2bq2(o2) : : : aqT�1qT bqT (oT ) (A.11)

However, this calculation involves an exponential number of operations on the order of

2T �NT , since at every t = 1; 2; : : : ; T , there are N possible states that can be reached and

for each such state sequence about 2T calculations are needed for each term in the sum of

Eq. A.11 (illustrated in Figure A.1). There is ample motive for a more eÆcient procedure,

which we �nd in the Forward-Backward algorithms. These algorithms generate the same

calculation, but on an order proportional to N2T .

A.2.1 The Forward Algorithm

The Forward algorithm is characterized by a three-step procedure. We begin by introduc-

ing the forward variable �t(i) = P (o1o2:::ot; qt = sij�) as the probability of the partial

observation sequence O = (o1o2 : : : ot) when it terminates in state si. We solve for �t(i)

inductively, as follows:
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1. Initialization

�1(i) = �ibi(o1); 1 � i � N (A.12)

2. Induction

�t+1(j) = bj(ot+1)
NX
i=1

�t(i)aij ; 1 � j � N; 1 � t � T � 1 (A.13)

3. Termination

P (Oj�) =
NX
i=1

�T (i): (A.14)

Step 1 initializes the forward probabilities as the joint probability of state si and the �rst

observation o1. In Step 2, �t(i)aij is the probability of the joint event that o1o2:::ot is

observed and that state sj is reached at time t + 1 through state si at time t. Summing

over all the N possible states gives the likelihood of state sj at time t + 1 with all the

previous partial observations. After sj is determined, we arrive at �t+1(j) by considering

the observation ot+1 in state sj. Step 3 sums all of the terminal forward variables �T (i).

A.2.2 The Backward Algorithm

Similarly, the Backward algorithm is characterized by a recursive procedure over three

stages. Consider the backward variable �t(i) = P (ot+1ot+2:::oT ; qt = sij�) as the probabil-

ity of the partial observation sequence from t + 1 to the end, given state si at time t and

the model �. Again, we solve for �t(i) inductively, as follows:

1. Initialization

�T (i) = 1; 1 � i � N (A.15)

2. Induction

�t(i) =
NX
j=1

aijbj(ot+1)�t+1(j); 1 � j � N; 1 � t � T � 1 (A.16)

3. Termination

P (Oj�) =
NX
i=1

�ibio1�1(i) (A.17)
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Step 1 arbitrarily initializes �T (i) to be 1 for all states. Step 2 �rst considers the transi-

tion from state si to state sj, the observation ot+1 in sj, as well as the remaining partial

observation sequence from sj (denoted as �t+1(j)). This is all taken over all possible states

sj at time t + 1 in order to determine the likelihood of being in state si at time t. We

continue, backing up in time t = T � 1; T � 2; : : : ; 1 to the beginning. We arrive at the �nal

probability P (Oj�) in step 3 by summing over all N states. By identifying the relation

P (O; qt = sij�) = �t(i)�1(i); 1 � i � N; 1 � t � T � 1; (A.18)

both forward and backward variables can also be used to calculate P (Oj�) as

P (Oj�) =
NX
i=1

P (; qt = sij�) =
NX
i=1

�t(i)�1(i): (A.19)

A.3 Training HMMs

Considered the most diÆcult aspect of an HMM, \training" entails developing a parame-

terized model that properly characterizes a sequential process. Observations that represent

typical actions, called the training set, are used to train an HMM by optimally adjusting

model parameters fA;B;�g to maximize P (Oj�). Although there is no known way to

solve for a maximum likelihood model analytically, an iterative procedure called the Baum-

Welch (BW) Algorithm is regularly used for this optimization process because convergence

is guaranteed.

A.3.1 The Baum-Welch Algorithm

The Baum-Welch method is an Expectation-Maximization (EM) algorithm for reestimating

HMM parameters. In unsupervised learning, incomplete data contains only observable

data, such as a data sample x. Complete data represents both hidden data, such as from

which state data sample x comes, as well as observable data [67]. The purpose of any EM

algorithm is to maximize the likelihood from incomplete data by iteratively maximizing

the expectation of likelihood from complete data. In other words, EM methods iteratively

update and improve model parameters using training data until optimal values are reached.

This process is also called reestimation.
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We begin by establishing the probability of being in state si at time t then in state sj

at time t+ 1, given the model and the observation sequence as

�t(i; j) = P (qt = si; qt+1 = sjjO; �): (A.20)

Recalling from the previous section when the forward and backward variables were intro-

duced, we rewrite Eq. A.20 as

�t(i; j) =
P (qt = si; qt+1 = sj;Oj�)

P (Oj�)

=
�t(i)aijbj(ot+1)�t+1(j)

P (Oj�)

=
�t(i)aijbj(ot+1)�t+1(j)

NX
i=1

NX
j=1

�t(i)aijbj(ot+1)�t+1(j)

:

(A.21)

We de�ne the a posteriori probability of being in state si at time t, given the entire obser-

vation sequence and the model as t(i) such that

t(i) = P (qt = sijO; �)

=
P (qt = si;Oj�)

P (Oj�)

=
P (qt = si;Oj�)
NX
i=1

P (qt = si;Oj�)

:

(A.22)

Noticing that P (qt = si;Oj�) = �t(i)�t(i), we can rewrite Eq. A.22 in terms of the forward

and backward variables as

t(i) =
�t(i)�t(i)
NX
i=1

�t(i)�t(i)

; (A.23)

where �t(i) represents the partial observation sequence o1o2 : : : ot and state si at t, while

�t(i) accounts for the remainder of the observation sequence ot+1ot+2 : : : oT , given state si

at t. Even closer scrutiny will reveal a relationship between t(i) and �t(i; j) by summing

over j, giving

t(i) =
NX
j=1

�t(i; j); 1 � i � N; 1 � t � T � 1: (A.24)
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If we sum t(i) over the time index t, we get a quantity that is interpreted as the expected

(over time) number of times that state si is visited, or equivalently, the expected number

of transitions made from state si, (if we exclude the �nal contribution at time t = T from

the summation) [67]. Likewise, if we sum �t(i; j) from t = 1 to t = T � 1, we can quantify

the expected number of transitions from si to sj. In other words,

TX
t=1

t(i) = expected number of transitions from si in O (A.25)

TX
t=1

�t(i; j) = expected number of transitions from si to sj in O (A.26)

By exploiting these relationships, reestimation formulas for HMM parameters � = f�;A;Bg

are given by

�� = expected number of times in si at time t = 1

= 1(i) (A.27)

�aij =
expected number of transitions from si to sj

expected number of transitions from si

=

T�1X
t=1

�t(i; j)

T�1X
t=1

t(i)

(A.28)

�bj(k) =
expected number of times in sj and observing symbol vk

expected number of times in sj

=

TX
t=1; s:t: ot=vk

t(i)

TX
t=1

t(i)

: (A.29)

If we de�ne the reestimated model as �� = f��; �A; �Bg from Eqs. A.27-A.29, Baum et al. guar-

antees that P (Oj��) � P (Oj�) as the reestimation calculations are repeated. This is to say

that by iteratively replacing � with ��, we can improve monotonically the probability of O

being observed from the model until some threshold is reached, resulting in a maximum like-

lihood estimate of the HMM. We remind the reader that the forward-backward algorithm

does not provide global maximization over the entire likelihood function, but rather, only

guarantees a local maxima is reached. The reestimation derivation presented above holds
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for the discrete HMM, while the continuous HMM requires a similar, but slightly di�erent

treatment to accommodate continuous density functions. For an exhaustive description of

this process, see [67].

A.4 Decoding HMMs

Decoding an HMM refers to �nding the \optimal" state sequence associated with a given

observation sequence. One possible criterion for optimality is to maximize the expected

number of correct individual states, where each state qt at time t represents the most likely.

However, this measure determines the most likely state at every instant without considering

the probability of occurrence of the entire sequence of states. With this approach, we can

possibly generate an invalid sequence or one with zero probability (if aij = 0 for some i

and j) . We de�ne optimality in terms of recovering the single most likely state sequence q

for a given sequence of observations O and a model �, i.e., maximizing P (qjO; �), which is

the same as maximizing P (q;Oj�). The Viterbi algorithm is commonly used to calculate

optimal q.

A.4.1 The Viterbi Algorithm

To �nd the optimal q = (q1q2 : : : qT ), we calculate the maximum probability that a partial

observation sequence and state sequence up to time t can have when in the current state is

si as

Æt(i) = max
q1q2:::qt�1

P (q1q2 : : : qt�1; qt;o1;o2; : : : ;otj�): (A.30)

By induction, we have

Æt+1(j) = [ max
1�i�N

Æt(i)aij ]bj(ot+1); 1 � i � N; 1 � t � T � 1: (A.31)

To recover the actual state sequence, we record the arguments that maximize Eq. A.31, for

each t and sj using the array  t(j). We outline the Viterbi procedure as follows:

1. Initialization

Æt(i) = �ibi(o1); 1 � i � N (A.32)

 t(i) = 0: (A.33)
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Figure A.2: Example topological structure: Fully-connected ergodic HMM

2. Recursion

Æt(j) = max
1�i�N

[Æt�1(i)aij ]bj(ot); 1 � j � N; 2 � t � T (A.34)

 t(j) = arg max
1�i�N

[Æt�1(i)aij ]; 1 � j � N; 2 � t � T (A.35)

3. Termination

P � = max
1�i�N

[ÆT (i)] (A.36)

q�T = arg max
1�i�N

[ÆT (i)] (A.37)

4. State sequence backtracking

q�t =  t+1(q
�
t+1); t = T � 1; T � 2; : : : ; 1 (A.38)

The Viterbi calculations are on the order of N2T multiplications. The Viterbi algorithm

can also be used for evaluating an HMM, i.e., calculating P (Oj�). Using it is viewed as

a speci�c case of the forward-backward algorithm where the most likely path at each time

step is selected. Recall that the forward-backward algorithm obtains P (Oj�) through the

summation of P (O;qj�) over all possible state sequences q, while the Viterbi algorithm

�nds the maximum of P (O;qj�) over all q. While less robust than the forward-backward

algorithm, the Viterbi algorithm is a substantially more eÆcient alternative.

A.4.2 HMM Topologies

Like any other state machine, the HMM's topological structure is inuenced by the training

data and by the nature of the gestures or actions the model is attempting to represent
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Figure A.3: Example topological structure: Left-to-Right HMM with Skip Transitions

[67, 118]. Ergodic models are characterized by a full state transition matrix A, suggesting

that transitions can be made from any state to any other state (illustrated in Figure A.2).

Left-to-right or causal models, which have upper triangular transition matrices, impose

a temporal order on the model because the lower numbered states account for observa-

tions that occur prior to those for higher numbered states (shown in Figure A.3). Besides

the two topologies mentioned above, there are many other possible variations and com-

binations. While ergodic models with several states may improve modeling robustness,

in practice, most implementations resort to non-ergodic left-to-right structures with the

minimum number of states to ease the computational burden.
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APPENDIX B

Blackjack \21"

B.1 Introduction

Blackjack, also known as \21," is a popular card game played in casinos throughout the

United States and the world. While there are many basic strategies for Blackjack, in this

section we outline the rules that were used to conduct experiments in Chapter 6. Blackjack

is a contest with any number of players who bet against the dealer, also called the house.

The basic premise of the game is for each player to have a hand value that is closer

to 21 than that of the dealer, without going over 21. Although only one deck was used in

our experiments, we assume strategies employed by one player are independent of strategies

used by others. In other words, a player's hand is strictly played out against the hand of

the dealer. In this game, the rules of play for the dealer are set, so the dealer cannot make

strategic decisions that may increase the house's advantage.

B.2 Rules of the Game

Blackjack is traditionally played on a special table where the dealer stands on one side and

all players stand on the other. This table is typically covered in green felt and is labeled

with house rules, special places for wagers, etc. To minimize tracking errors during our

experiments, the table was covered with a solid blue canvas without labels.

B.2.1 Making bets

Before any cards are dealt, each player must wager a bet using chips of a single denomination

(only white chips). The player takes the desired number of chips from her pot, where all



chips are stacked on top of each other, and scatters them in front on the house's pot so

that they do not touch or are not stacked on top of each other. This ensures that chips can

be segmented and recognized. Once the cards have been dealt, players are not allowed to

touch their bets.

Once the hand is over, the dealer will move around the table to each position in turn,

paying winners and collecting the chips from losing hands. Chips collected by the dealer

are returned to the house pot. After the dealer has paid the player, chips can be removed

and returned to the player's pot. Players are not permitted to let winnings ride from game

to game, i.e., they must remove all chips at the end of each game.

B.2.2 Value of Cards

The value of a hand is simply the sum total of card evaluations in the hand. In a 52-card

deck, an ace can be either eleven or one, any face card (jack, queen, or king) counts as ten,

and all other cards retain their face value. If an ace is drawn, it is assumed that its value

changes to reect the best hand. For example, if the initial hand contains an ace and a six,

the hand is value is 17. However, if another card is drawn, say an eight, the ace's value

becomes one to avoid exceeding 21 and total hand values is now 15. A hand that contains

an Ace is called a soft total if the Ace can be counted as either 1 or 11 without the total

going over 21. For example (ace, 6) is a soft 17. The description stems from the fact that

the player can always draw another card to a soft total with no danger of busting by going

over 21. On the other hand, the hand (ace, 6, 10) is a hard 17, since the ace must be

counted as only one, again because counting it as 11 would make the hand go over 21.

Dealing the Cards

Once all the bets are made, the dealer will deal two cards to each player, then to himself.

In a shoe game, all player cards are dealt face up; however, the dealer's hand always has

one card dealt facing down and the other facing up. Once the cards are dealt, play proceeds

around the table, starting at the �rst seat to the dealer's left, also called �rst base. Players

are not allowed to remove the cards from the table, but can peek under the face-down card

to check its value (if not playing a shoe game). Each player indicates to the dealer how he
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wishes to play the hand. The player strategies which were available for our experiments are

covered in detail in the sections below. After each player has �nished his hand, the dealer

will complete his hand, and then pay or collect the player bets.

B.3 How the dealer plays his hand

The dealer's play is restricted to a common rule in many casinos: \Dealer stands on all 17s."

In this case, the dealer must continue to draw cards, i.e., hit, until his hand value totals

17 or greater. An ace in the dealer's hand is always counted as 11 if possible without the

dealer going over 21. For example, (ace, 8) would be 19 and the dealer would stop drawing

cards, i.e., stand. An (ace, 5) hand is only 16, so the dealer would continue to draw cards

until the hand's value is 17 or more. Again, the dealer has no choices to make in the play

of his hand. He cannot split pairs, but must instead simply hit until he reaches at least 17

or busts by going over 21.

B.4 Player Strategy

In addition to the rules listed earlier, their are particular strategies that more skill Blackjack

players can use to improve their odds of winning. Those strategies we consider listed below.

B.4.1 Hitting/Standing

The most common decision a player must make during the game is whether to draw another

card to the hand (\hit") or stop at the current total (\stand").

B.4.2 Doubling Down

The player is allowed to double the initial bet on his �rst two cards and receive exactly one

more card to improve his hand. The option to double is often permitted on the player's

�rst two cards only, although some casinos allow doubling after splitting a pair.

149



Splitting Pairs

If the �rst two cards a player is dealt are a pair, he may split them into two separate

hands, bet the same amount on each and then play them separately. Aces receive only one

additional card. After splitting, A-10 counts as 21 and not as Blackjack.
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APPENDIX C

Vision Action Recognition System (VARS)

C.1 Introduction

To implement the ideas presented in this dissertation, we have developed the Vision Action

Recognition System (VARS), a multi-application environment written in Microsoft Visual

C++. VARS runs on the Win9x/NT platform with Intel compatible processors. Using the

standard conversion of 62 lines of code per kilobyte, VARS is estimated to contain over

93,000 lines of code. In particular, the framework for ObjectSpaces has been duplicated in

software so that VARS executes in real-time or near real-time, depending on the availability

of systems resources, i.e., processor speed, memory, etc. With the exception of Matrox

drivers required for frame capture, all software written is original.



Figure C.1: VARS dialog for con�guring hand color distribution C: Using a manually placed cross-

hair cursor over the pixel of interest, the distribution adds all colors within the standard deviation

speci�ed by seed variation.
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Figure C.2: VARS dialog for con�guring HMM: Model topology and initial parameters are set here.
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Figure C.3: VARS dialog for con�guring hand region area (max. and min. ) and ration of bounding

box sides.
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Figure C.4: VARS dialog for con�guring scene: Know articles, activity zones, people, initial back-

ground, etc. are set up here.
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Figure C.5: Actual VARS screen capture shows evidence corresponding to data appearing in Table

6.1.
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APPENDIX D

A Grammar Overview

Through the pioneering e�orts of Noam Chomsky in the middle 1950s, several mathematical

models of grammar have been proposed. We begin with a brief review of grammar and other

concepts from formal language theory and computational linguistics.

D.1 Overview of Syntactic Pattern Recognition

Inspired by concepts from formal language theory and natural language processing in the

early 1960s, syntactic pattern recognition exploits the structure of patterns during classi-

�cation. This is in contrast to more conventional, analytical approaches that deal with

patterns on a more quantitative basis, often ignoring correlations between the components

of a pattern. For example, Figure D.1 shows a spiral pattern composed on crosses (\x") and

naughts (\o") with a single, unlabeled symbol represented by a question mark. To classify

the unlabeled symbol, conventional pattern classi�cation strategies might look toward the

nearest neighbor or may o�er some likelihood based on prior observations, either of which

might incorrectly label it as a naught. On the other hand, syntactic pattern approaches

attempt to capitalize on the apparent structure for labeling and classi�cation.

The problem of representing extended, complex activities is similar to the challenges

researchers have faced in other areas, such as speech recognition, computational linguistics,

and natural language processing. The HMM has a well documented history as a tool for

isolated word recognition. However, sentence and phrase recognition require additional

tools like grammar for aggregating isolated words. Similarly, syntactic approaches show

remarkable promise for addressing problems in understanding multitasked activity.

Syntactic pattern recognition has also been a valuable tool for characterizing multi-



Figure D.1: From inspection, we expect the ? to be a cross, despite the fact that its closest neigh-

bors are mostly naughts. Syntactic pattern classi�er utilize structure whereas conventional pattern

recognition approaches tend to rely on quantitative measures like distance. Provided courtesy of

Michael Alder.

dimensional structure and shape, such as classi�cation of chromosomes and alphanumeric

characters [139].

D.2 Types of Grammars

There are generally four types of grammars with each de�ned, in part, by how the rewriting

rules are designed. Naturally, the complexity and restrictions on the grammar, and con-

sequently, of the language generated by it are all a�ected by a grammar's production set

P.

De�nition D.1 Unrestricted Grammars

An unrestricted grammar has rewriting rules of the form �! �, where � 2 V +
G and � 2 V �G.

The only restriction on a production of an unrestricted grammar is that the left-hand side

(LHS) not be null.

De�nition D.2 Context-Sensitive Grammars

A context-sensitive grammar (CSG) has productions of the form �1A�2 ! �1��2, where

�1 and �2 are in V
�
G, � 2 V

+
G , and A 2 VN . This is to say that it is possible for �1 or �2 to
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be the null string. CSG allows replacement of the nontermial A by the string � only when

A appears in the context �1A�2 of strings �1 and �2. The length of the derived string

remains the same or increases with each rule application, i.e., CSG productions cannot

yield the null string �. A grammar is said to be positive if there are no null productions.

Context-sensitive grammars represent an intermediate step between the context-free and

the unrestricted grammars.

De�nition D.3 Context-Free Grammars

A context-free grammar (CFG) has productions of the form A ! �, where A 2 VN and

� 2 V �G. In a stochastic framework, context-freeness of a grammar translates into statistical

independence of its nonterminals. The name context-free arises from the fact that the

variable A may be replaced by a string � regardless of the context in which A appears.

When CFG has at most one nonterminal symbol on the right hand, that is, if j�jN � 1, it

is called linear.

A context-free grammar can form the language L(Gfree) = Lf : anbm : : :, where

correlations between n and m can be counted. Keep in mind that counting, in the linguistic

sense, refers to symbolic matching as opposed to counting in the mathematical sense. To

say that correlations between n and m can be counted means that we can enforce a relation

between n and m in Lf without requiring �xed values for n and m, i.e., anbm = a3mbm.

Moreover, counting is performed recursively so that each symbol b matches symbol a in

reverse order. Every positive CFG is also context-sensitive. However, any grammar that is

not CFG cannot be CSG.

Context freeness in grammar places no limitations on the applicability of a rule with

regard to task semantics, i.e., nonterminals generate the substring without regard to sur-

rounding symbols. This assumption, while convenient, is not strictly true in most cases as

there is likely some dependence between productions in a grammar. Adding the stochastic

component to context-free grammar can ameliorate this limitation so that parsing is more

\sensitive" to the context of surrounding symbols.

De�nition D.4 Regular Grammars
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Finally, a regular (or �nite-state) grammar is actually a context-free grammar in which each

rule has one of the following forms: (1) A! a, (2) A! aB, (3) A! �, where A and B are

nonterminal variables in VN , a is a terminal constant in VT , and � is a string in VN . Regular

grammar is used to form the simplest language models, generally of the form Lr : a
nbm : : :,

where n and m are independent.

The four grammars mentioned above provide a formal system for generating strings

over an alphabet. They also make up the Chomsky hierarchy, named after Noam Chomsky,

who proposed them as syntactic models of natural language [136]. Unrestricted, context-

sensitive, context-free, and regular grammars are referred to as type 0, type 1, type 2, and

type 3 grammars, respectively. The restrictions placed on the production rules increase

with the number of the grammar.

D.2.1 Machines

Procedures that check the syntax of a string to make sure it is derivable from the start

symbol using rules of the grammar are implemented by parsing algorithms or simply parsers.

Parsers requiring only a �xed (�nite) amount of memory for arbitrary input are called �nite-

state machines or �nite-state automata. In practice, strings of a regular language Lr can

be generated by �nite state machines which do not need extra stack memory. However, the

absence of stack memory in the parsing and generating mechanism of regular grammars is

one of its limiting factors [74]. Recursion is necessary for a �nite set of rules to generate

in�nite languages and strings of arbitrary length, i.e., the language given by faibiji � 0g.

Recursive relationships cannot be captured by regular grammar because extra memory is

required to represent the states of the parsing mechanism before and after the recursive

invocation. In other words, to accept the language faibig, a machine needs to record the

processing of any �nite number of a's. The restriction of having �nitely many states does

not allow the automaton to \remember" the number of a's in the input string, i.e., �nite

state machines can only count, or match, a �nite number symbols in the alphabet.

A push-down automaton (PDA) is a �nite-state machine augmented with external

stack memory, which provides the PDA with last-in, �rst-out memory management. By

utilizing stack and states, the PDA can accept the language given by faibiji � 0g, which
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cannot be handled by a deterministic �nite automaton. A context-free grammar is typically

realized as a push-down automaton, allowing for recursive invocations of the grammar

nonterminals. However, a PDA cannot model dependencies between more than two elements

of the alphabet, i.e., aibici are not realizable by a PDA.

A Turing machine is a �nite-state machine in which a transition prints a symbol on

tape, i.e., stores a symbol in memory. A Turing machine has no limitation on the amount

of time or memory available for computation. The \tape head" can move either left or right

in one direction, allowing the machine to read and manipulate the input as many times as

desired. Unlike �nite-state and push-down automata, a Turing machine need not read the

entire input string to accept the string. For this reason, unrestricted grammars are accepted

by Turing machines.

A linearly-bounded automaton (LBA) is a Turing machine in which the amount of

available tape is determined by the length of the input string. In other words, a LBA

is Turing machine with �nite tape. A Turing machine writes the rules of an unrestricted

grammar onto tape that is in�nite, i.e., in�nite memory. However, an LBA encodes the rules

in states and transitions due to the �nite amount of tape available. Due to computational

complexity of LBA, which are typically used to realize a context-sensitive language, CSGs

are much more diÆcult to realize than a CFG. The table below describes the machines that

are used to handle the respective grammar and language [136]. We will say more about

parsing in Section 6.4.2.

Grammars Languages Accepting Machines

Type 0 recursively enumerable Turing machines,

nondeterministic Turing machines

Type 1 context-sensitive Linear-bounded automata

Type 2 context-free Push-down automata

Type 3 regular deterministic �nite state automata,

non-deterministic �nite state automata
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D.3 Rule Probability Estimation for SCFGs

While rule probabilities can be set with empirically selected values initially, they bene�t from

more formal training exercises where likelihoods are adjusted to be more consistent with

actual observations. In estimating these probabilities, we are reminded of the similarities

between SCFG and the HMM. In the HMM, the process that determines state transitions,

i.e., state derivation, is hidden, but can be solved using the Baum-Welch method. Similarly,

for stochastic context-free grammar, rule derivations are unobservable and can be solved us-

ing familiar Expectation-Maximization (EM) approaches. Baker provides an EM procedure

for obtaining maximum-likelihood (ML) estimates [9]. However, for small, task grammars

that have small symbol alphabets and productions that generate only a few nonterminals,

an easier procedure for estimating rule probabilities based on bigram probability estimation

is generally suÆcient.

We estimate rule probabilities by calculating the average production likelihood. The

average simply divides the count, the number of times a rule is applied, denoted c(X ! �)

for production X ! �, by the count of all rules with X on the LHS, i.e.,

P (X ! �) =
c(X ! �)X
�

c(X ! �)
; (D.1)

where � represents all nonterminals generated by nonterminal X.

D.4 Specifying Activities with Grammar

Rule-based activities, which are inherently structured and have de�ned sub-tasks, can be

represented appropriately using SCFG. In developing a grammar for a particular multi-

tasked activity, it is necessary to have a complete understanding of the component tasks

and events that are involved. To represent the overall structure of an activity in all of its

possible variations, the grammar's production rules must describe the syntactic dependen-

cies between these components. In other words, the basic events of a process or activity

become the terminal constants of the task grammar while the ordering between events is

represented by nonterminal variables. Since we are considering well-understood activities,

it is convenient to specify the underlying grammar by hand using known task rules or
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constraints. Attempting to \learn" the grammar is a diÆcult process that requires good

initial conditions, a prodigious amount of training data and, typically, a fair amount of

experimentation.

In practice, manually speci�ed grammar should be tested with actual training data

to make sure that it does not generate semantically illegitimate predictions or drive the

parser into an in�nite loop. Of particular concern are null productions, i.e., � ! �, which

can confuse the parsing engine [132]. In our approach, the detection of events, and hence

string generation, is driven by evidence collected from the environment. Since we only

generate strings from evidential measurements, there is no acceptable means of producing

a null string, aside from complete detecting inactivity, i.e., no evidence to collect. To avoid

this problem, we simply eliminate all null productions in the grammar, which may require

massaging the production set by adding additional nonterminal variables, but generally can

be accomplished without violating the semantic expressiveness of the grammar. We refer

the reader to Stolcke [133], who provides a formal procedure for eliminating null-productions

in SCFG. He also describes an alternative treatment that tolerates null productions. With

null productions eliminated, we are reminded that such a SCFG now becomes a stochastic

context-sensitive grammar as well.

D.5 Recursive Grammar

A left recursion occurs when productions of the form

A ! Aa

! a

appear in grammar. The parser will consider A ! :Aa and A ! :a during the �rst

prediction step. The �rst production will generate the same two again, and so forth. Left

recursions in SCFG can signi�cantly a�ect the total probability of a predicted state because

it will be added in�nitely many times. The treatment for a left-recursive expansion of this

nature requires a parsing concept called left corner remediation that collapses all repeated

prediction steps into a single, modi�ed prediction step and computes the corresponding

sums in closed form.
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S ! AB [p1]
! C [p2]
! d [p3]

A ! AB [p4]
! a [p5]

B ! bB [p6]
! b [p7]

C ! BC [p8]
! B [p9]
! c [p10]

PL S A B C RL S A B C

S p1 p2 S 1 �p1
�1+p4

p2p8 + p2p9 p2

A p4 A �1
�1+p4

B B 1
C p8 + p9 C p8 + p9 1

Table D.1: Left Corner PL and Reexive Transitive Closure RL matrices for a simple SCFG.

De�nition D.5 Two nonterminals X and Y are said to be in a left corner relation

X !L Y i� there exists a production for X that has a right hand side starting with Y , i.e.,

X ! Y �.

The probabilistic left-corner relation1 PL = PL(G) is the matrix of probabilitiesP (X !L Y ),

de�ned as the total probability of choosing a production for X that has Y as a left corner:

P (X !L Y ) =
X

X!Y �2G

P (X ! Y �): (D.2)

The left-corner relationship matrix PL is essentially the adjacency matrix that describes the

production probability associated with generating any pair of nonterminals in the grammar.

Because the production direction is one way, this matrix is intended to be read horizontally.

The only elements in the matrix represent the probabilities of productions starting with

nonterminals. For clarity, consider the example given in Table D.1. The only elements

in the matrix represent probabilities of nonterminal productions. The reexive, transitive

closure of X !L Y , i.e., X )�
L Y , exists i� X = Y or there is a nonterminal Z such

that X !L Z and Z )�
L Y . We can compute a total recursive contribution of each

left-recursive production rule using the probabilistic reexive, transitive left-corner relation

matrix RL = RL(G). This matrix is composed of probability sums R(X )�
L Y ), where

1If a probabilistic relation R is placed by its set-theoretic version R
0

, i.e., (x; y) 2 R
0

i� R(x; y) 6= 0,
then the closure operations used here reduce to their traditional discrete counterparts; hence the choice of
terminology
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each R(X )�
L Y ) is de�ned as a series

R(X )�
L Y ) = P (X = Y )

+P (X !L Y )

+
X
Z1

P (X !L Z1)P (Z1 !L Y )

+
X
Z1;Z2

P (X !L Z1)P (Z1 !L Z2)P (Z2 !L Y )

+ : : :

(D.3)

To express this a di�erent way, consider the productions X ! Y � and Y ! a�. If there is

a path between X and Y , we can predict the likelihood of emitting terminal a by summing

the probabilities along all of the paths connecting X with Y . Then we multiply this sum

by the probability of directly emitting a from Y , i.e., Y ! a�. We write this as

P (a) = P (Y ! a�)
X
8X

P (X )� Y )

= P (Y ! a�)fP0(X )� Y )

+P1(X )� Y )

+P2(X )� Y )

+ : : : g;

(D.4)

where Pk(X )� Y ) is the probability of a path from X to Y of length k = 1; : : : ;1. The

complete reexive transitive closure RL can be presented as a geometric series, which o�ers

a nice closed form solution, i.e.,

RL = P 0
L + P 1

L + P 2
L + : : : =

1X
k=0

P kL = (I � PL)
�1: (D.5)

The signi�cance of the matrix RL is that its elements are the sums of the probabilities of the

potentially in�nitely many prediction paths leading from state kX ! �:Z� to a predicted

state iY ! :� by way of any number of intermediate states. During the prediction stage,

i : kX ! �:Z� [�; ] =) iY ! :� (D.6)

for all productions Y ! � such that R(Z )�
L Y ) 6= 0. The recursive correction results in

more reliable forward and inner probabilities, now given by

�
0

=
X
8 �;�

�(i : kX ! �:Z�)R(Z )�
L Y )P (Y ! �) (D.7)


0

= P (Y ! �): (D.8)
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S ! AB [p1]
! C [p2]
! d [p3]

A ! AB [p4]
! a [p5]

B ! bB [p6]
! b [p7]

C ! BC [p8]
! B [p9]
! c [p10]

PU S A B C RU S A B C

S p2 S 1 p2p9 p2
A A 1
B B 1
C p9 C p9 1

Table D.2: Unit Production PU and Reexive Transitive Closure RU matrices for a simple SCFG.

There are other production relationships that can throw the parser into an in�nite

loop. Consider the productions,

A ! B

! a

B ! A

and the state i : jA! a: during the completion stage of set j, which contains

j : jA ! :B

j : jA ! :a

j : jB ! :A

This operation will generate several states including the unit production, i : jA! a:, which

will cause the parser to dive into an in�nite loop.

De�nition D.6 Two nonterminals are said to be in a unit production relation X !U Y

i� there is a production for X of the form X ! Y .

The probabilistic unit-production relation PU = PU (G) is the matrix of probabilities P (X !

Y ). Similarly to the case with prediction, we seek to compute the closed form for the

probabilistic reexive, transitive unit production relation matrix RU = RU (G), which is

given in closed form by

RU = (I � PU )
�1: (D.9)
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An example is given in Table D.2. Likewise, we seek estimates for the forward and inner

probabilities. We modify the completion stage such that

i : jY ! �: [�
00
; 

00
]

j : kX ! �:Z� [�; ]

9>=>; =) i : kX ! �Z:� [�
0

; 
0

] (D.10)

where the revised forward and inner probabilities are given, respectively, by

�
0

=
X
8�;�

�(i : kX ! �:Z�)R(Z )�
U Y )

00

(i : jY ! �:) (D.11)


0

=
X
8�;�

(i : kX ! �:Y �)R(Z )�
U Y )

00

(i : jY ! �:) (D.12)

In summary, we use matrix RU to collapse all unit completions into a single step. However, it

is still necessary to go through the normal procedure when encountering iterative completion

of non-unit productions.

D.6 Complexity of the Earley-Stolcke Algorithm

Most probabilistic parsers employ algorithms based on bottom-up parsing, such as the CYK

algorithm [132]. On the other hand, the Earley-Stolcke algorithm is more eÆcient than

bottom-up approaches because of its top-down prediction, which constrains the number of

potential continuations of the string. In the worst-case scenario, where every production in

the set is considered, the computational expense of the Earley-Stolcke algorithm performs

as well as other known specialized algorithms [133].

Naturally, the size of the grammar and the length of the input string are the two

biggest contributors to algorithm complexity. During parsing, the prediction and comple-

tion step are responsible for the bulk of the computation, especially if matrix inversions

required for RU and RL have to be computed iteratively. In most cases, matrix inversion

can be completed o�-line and stored in memory for later use. For an string of length l, the

complexity of the Earley-Stolcke algorithm is on the order of l3. However, the average algo-

rithm complexity of sparse grammars, which are more likely given the structure activities

we consider, approaches the order of l [133].
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S ! a [p] PL = q PU = 0
S ! SS [q] RL = (1� q)�1 = p�1 RU = (1� PU )

�1 = 1

� 

State set 0

0 ! :S 1 1
predicted

0S ! :a 1 � p�1p = 1 p

0S ! :SS 1 � p�1q = p�1q q

State set 1
scanned

0S ! a: p�1p = 1 p

completed

0S ! S:S p�1q � p = q q � p = pq

predicted

1S ! :a q � p�1p = q p

1S ! :SS q � p�1q = p�1q2 q

State set 2
scanned

1S ! a: q p

completed

1S ! S:S p�1q2 � p = q2 q � p = pq

0S ! SS: q � p = pq pq � p = p2q

0S ! S:S p�1q � p2q = pq2 q � p2q = p2q2

0 ! S: 1 � p2q = p2q 1 � p2q = p2q

predicted

2S ! :a (q2 + pq2) � p�1p = (1 + p)q2 p

2S ! :SS (q2 + pq2) � p�1q = (1 + p�1)q3 q

State set 3
scanned

2S ! a: (1 + p)q2 p

completed

2S ! S:S (1 + p�1)q3 � p = (1 + p)q3 q � p = pq

1S ! SS: q2 � p = pq2 pq � p = p2q

1S ! S:S p�1q2 � p2q = pq3 q � p2q = p2q2

0S ! SS: pq2 � p+ q � p2q = 2p2q2 p2q2 � p+ pq � p2q = 2p3q2

0S ! S:S p�1q � 2p3q2 = 2p2q3 q � 2p3q2 = 2p3q3

0S ! S: 1 � 2p3q2 = 2p3q2 1 � 2p3q2

Table D.3: Stolcke's example: (top) A simple SCFG with RL and RU . (lower) The left column

represents the parsing chart while the two right-most columns represent the forward and inner

probabilities, respectively, for each state. In both � and  columns, the \�" separates old factors

from new ones. \+" indicates multiple derivations of the same state.
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