
Command-form Coverage for
Testing DB Applications

Alessandro Orso
William G.J. Halfond

Georgia Institute of Technology

Supported by NSF awards CCR- 0205422 and CCR-0306372 to GA Tech
and by DHS and US Air Force under Contract No. FA8750-05-C-0179.

Alex Orso – ASE 2006 – September 2006

A Database Application

User Interface Application Database

Alex Orso – ASE 2006 – September 2006

1) SELECT title, author,
description, avg(rating) FROM
books WHERE isbn = <*>
GROUP BY isbn

2) SELECT title, author,
description, avg(rating) FROM
books WHERE author = ‘<*>’

...
18) SELECT title, author,

description, avg(rating) FROM
books WHERE author = ‘<*>’
GROUP BY rating

A Database Application

UI Application DB

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Faults in Generated DB Commands

1. Misspelled column
name “tiitle,”

2. Missing delimiter for a
concatenation

3. Lack of “GROUP BY”
clause for grouping
function

4. Missing delimiter
unless one specific
line is executed

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Faults in Generated DB Commands

1. Misspelled column
name “tiitle,”

2. Missing delimiter for a
concatenation

3. Lack of “GROUP BY”
clause for grouping
function

4. Missing delimiter
unless one specific
line is executed

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Faults in Generated DB Commands

1. Misspelled column
name “tiitle,”

2. Missing delimiter for a
concatenation

3. Lack of “GROUP BY”
clause for grouping
function

4. Missing delimiter
unless one specific
line is executed

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Faults in Generated DB Commands

1. Misspelled column
name “tiitle,”

2. Missing delimiter for a
concatenation

3. Lack of “GROUP BY”
clause for grouping
function

4. Missing delimiter
unless one specific
line is executed

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Traditional Testing
Test Cases

Faults Revealed

Queries Generated

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Traditional Testing
Test Cases

1. ("0123", 2, false, false, true)

Faults Revealed
1. #4

Queries Generated
1. SELECT title, author,

descriptionFROM books
WHERE isbn = 0123 GROUP
BY isbn

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Traditional Testing
Test Cases

1. ("0123", 2, false, false, true)
2. (“Poe", 1, false, false, false)

Faults Revealed
1. #4
2. #4

Queries Generated
1. SELECT title, author,

descriptionFROM books
WHERE isbn = 0123 GROUP
BY isbn

2. SELECT title, author,
descriptionFROM books
WHERE author = ‘Poe’

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Traditional Testing
Test Cases

1. ("0123", 2, false, false, true)
2. (“Poe", 1, false, false, false)
3. (“Poe", 1, true, true, false)

Faults Revealed
1. #4
2. #4
3. None

Queries Generated
1. SELECT title, author,

descriptionFROM books
WHERE isbn = 0123 GROUP
BY isbn

2. SELECT title, author,
descriptionFROM books
WHERE author = ‘Poe’

3. SELECT title, author,
description, avg(rating) FROM
books WHERE author = ‘Poe’
GROUP BY rating

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Traditional Testing
Test Cases

1. ("0123", 2, false, false, true)
2. (“Poe", 1, false, false, false)
3. (“Poe", 1, true, true, false)

Faults Revealed
1. #4
2. #4
3. None

Queries Generated
1. SELECT title, author,

descriptionFROM books
WHERE isbn = 0123 GROUP
BY isbn

2. SELECT title, author,
descriptionFROM books
WHERE author = ‘Poe’

3. SELECT title, author,
description, avg(rating) FROM
books WHERE author = ‘Poe’
GROUP BY rating

ResultSet srchBook(String searchString,
int searchType, bool showRating,
bool grpByRating, bool grpByISBN) {

 String[] srchFields =
{"tiitle", "author", "isbn"};

 String queryStr =
"SELECT title, author, description";

 if (showRating)
queryStr += ", avg(rating) ";

 queryStr += "FROM books WHERE ";
 if (searchType==2)

queryStr += srchFields[searchType] +
" = " + searchString;

 else
queryStr += searchFields[searchType]
+ " = ’“ + searchString + "’ ";

 if (grpByRating)
queryStr += "GROUP BY rating ";

 else if (grpByISBN)
queryStr += " GROUP BY isbn ";

 return db.executeQuery(queryStr);
}

Alex Orso – ASE 2006 – September 2006

Outline

• Motivation and background
• Command-form coverage
• DITTO coverage tool
• Empirical evaluation
• Conclusion and future work

Alex Orso – ASE 2006 – September 2006

DB Command-form

Given a DB application:
(Database) command form: Equivalence class

that groups database commands, generated by
the application, that differ only in the possible
value of their indeterminate parts

Indeterminate part: Part of a command form that
cannot be determined statically (substrings that
correspond to user input)

User Interface Application Database

Alex Orso – ASE 2006 – September 2006

DB Command-form

Given a DB application:
(Database) command form: Equivalence class

that groups database commands, generated by
the application, that differ only in the possible
value of their indeterminate parts

Example:
SELECT title, author, description FROM books WHERE author = ‘Poe’
SELECT title, author, description FROM books WHERE author = ‘Capote’
SELECT title, author, description FROM books WHERE author = ‘Dante’
=> SELECT title, author, description FROM books WHERE author = ‘<*>’

User Interface Application Database

Alex Orso – ASE 2006 – September 2006

Using the Criterion

1. Compute the command forms
2. Collect coverage information at runtime
3. Determine/report coverage information

Alex Orso – ASE 2006 – September 2006

1. Compute Command Forms

a. Perform string analysis on the application
=> char-level NFAs for each query string at
each DB interaction point

b. Group SQL keywords and operators in
NFAs and determinize
=> SQL command-form models (DFAs)

c. Assign unique ID to each command form

Alex Orso – ASE 2006 – September 2006

1. Compute Command Forms

a. Perform string analysis on the application
=> char-level NFAs for each query string at
each DB interaction point

b. Group SQL keywords and operators in
NFAs and determinize
=> SQL command-form models (DFAs)

c. Assign unique ID to each command form

Alex Orso – ASE 2006 – September 2006

String Analysis

public ResultSet searchBooks(String searchString, int
searchType, boolean showRating, boolean groupByRating,
boolean groupByISBN) {

1. String[] searchFields = {"tiitle", "author", "isbn"};
2. String queryStr= "SELECT title, author, description";
3. if (showRating)
4. queryStr += ", avg(rating) ";

…
14. return database.executeQuery(queryStr);

String analysis => NFAs for strings at DB interaction points

[Christensen, Møller, and Schwartzbach 2003]

Alex Orso – ASE 2006 – September 2006

1. Compute Command Forms

a. Perform string analysis on the application
=> char-level NFAs for each query string at
each DB interaction point

b. Group SQL keywords and operators in
NFAs and determinize
=> SQL command-form models (DFAs)

c. Assign unique ID to each command form

Alex Orso – ASE 2006 – September 2006

Build Command-form Models
Group SQL keywords/operators => SQL command-form models

Alex Orso – ASE 2006 – September 2006

Group SQL keywords/operators => SQL command-form models
Build Command-form Models

By construction, a path in the model identifies a command
form (concatenation of transition labels)

=> The complete set of command forms (i.e., requirements)
is given by the set of paths in all models

Alex Orso – ASE 2006 – September 2006

1. Compute Command Forms

a. Perform string analysis on the application
=> char-level NFAs for each query string at
each DB interaction point

b. Group SQL keywords and operators in
NFAs and determinize
=> SQL command-form models (DFAs)

c. Assign unique ID to each command form

Alex Orso – ASE 2006 – September 2006

[+6]

[+2]
[+1]

Assign unique ID to each command form
Assign Command-form IDs

• Efficient path-profiling technique => edge labels
• Sum of edge labels along a path gives unique ID for the

path (i.e., for the corresponding command form)
• No need to enumerate all forms
• Straightforward computation of coverage

[Ball and Larus 1996]

Alex Orso – ASE 2006 – September 2006

2. Collect Coverage Information

At runtime: Match dynamically-generated queries to command forms
(i.e., to paths in the command-form models)

SELECT title , author , description ,
avg(rating) FROM books WHERE
author = ’ Poe ’ GROUP BY rating

Query:

[+9]

Alex Orso – ASE 2006 – September 2006

2. Collect Coverage Information

SELECT title , author , description ,
avg(rating) FROM books WHERE
author = ’ Poe ’ GROUP BY rating

Query:

[+3]

[+6]

[+2]

At runtime: Match dynamically-generated queries to command forms
(i.e., to paths in the command-form models)

Alex Orso – ASE 2006 – September 2006

2. Collect Coverage Information

SELECT title, author, description,
avg(rating) FROM books WHERE
author = ’<*>’ GROUP BY rating

SELECT title , author , description ,
avg(rating) FROM books WHERE
author = ’ Poe ’ GROUP BY rating

covers

Query:

Command
form:

At runtime: Match dynamically-generated queries to command forms
(i.e., to paths in the command-form models)

Alex Orso – ASE 2006 – September 2006

3. Coverage Analysis and Feedback

number of command forms covered
total number of command formsCoverage =

Alex Orso – ASE 2006 – September 2006

The DITTO Coverage Tool

Database-Interaction Testing TOol

Alex Orso – ASE 2006 – September 2006

Empirical Evaluation

• Study 1: Perform a proof-of-concept
evaluation on a commercial application and
test suite

• Study 2: Investigate whether command-
form coverage provides for a more
thorough testing of database applications
than traditional approaches

Alex Orso – ASE 2006 – September 2006

Study 1 — Feasibility

• Is the approach feasible?
• What is the command-form coverage achieved by the

existing test suite?

Subject: Bookstore
• 27 servlets, ~17 KLOC

Test cases: Test suite from related work
• ~7,000 test cases

Results:
• DITTO was able to compute command forms and measure

command-form coverage for the test suite
• Command-form coverage between 1% and 13%
=> Initial evidence that command-form coverage cannot be trivially

achieved

Alex Orso – ASE 2006 – September 2006

Study 2 — Usefulness

• Is command-form coverage useful?
• Does it provide something more than

traditional testing?

• Compare with a traditional criterion (branch
coverage)

• Ideally, compare fault detection capability, but
• few data points for real faults
• difficult to seed faults in an unbiased way

=> Indirect comparison through estimation

Alex Orso – ASE 2006 – September 2006

Study 2: Protocol

Estimate number of command forms covered by a
branch-adequate test suite for Bookstore (B)
• Compute total number of command forms for B
• Identify subset B’ of B involved in building command

forms; backward slices from DB interaction points
• Estimate the number of test cases needed to cover all

branches in B’; cyclomatic complexity (overestimate)
• Assume each test case covers one command form

(overestimate)
• Compare estimated number of command forms covered

and total number of command forms

Alex Orso – ASE 2006 – September 2006

Results for Study 2

211621MembersGrid

all11AdminMenu

all202ShoppingCart

263941OrdersGrid

316171AdminBooks

15015834BookDetail

all61MyInfo

Estimated # comm. forms covered
by branch-adequate test suite

command
forms

DIPServlet

Alex Orso – ASE 2006 – September 2006

Related Work

Specific coverage for DB applications
• Chan and Cheung, 1999
• Kapfhammer and Soffa, 2003
• Suárez-Cabal and Tuya, 2004
• Willmor and Embury, 2005

Static checking of DB applications
• Christensen, Møller, and Schartzbachthe, 2003
• Gould, Su, and Devanbu, 2004

Other paradigms
• McClure and Krüger, 2005
• Cook and Rai, 2005

Test case generation for DB applications
• Frankl et al., 2000, 2004, 2005
• Zhang, Xu, and Cheung, 2001

Alex Orso – ASE 2006 – September 2006

Conclusion and Future Work
Conclusion

• Technique to adequately test DB applications
(in particular, interactions application-DB)

• Approach based on command-form coverage
• DITTO tool that implements the approach
• Initial evaluation

• Approach is feasible
• Approach is potentially useful

Future work
• More extensive empirical studies

• More subjects
• Direct comparison with other criteria

• Improvement of the technique by leveraging info
about the DB (e.g., DB schema)

Alex Orso – ASE 2006 – September 2006

Questions?

