
Gammatella: Visualizing Program-Execution Data for Deployed

Software∗

James A. Jones, Alessandro Orso, and Mary Jean Harrold

College of Computing

Georgia Institute of Technology

{jjones,orso,harrold}@cc.gatech.edu

Abstract

Software systems are often released with missing
functionality, errors, or incompatibilities that may
result in failures in the field, inferior performances,
or, more generally, user dissatisfaction. In previous
work, some of the authors presented the Gamma ap-
proach, whose goal is to improve software quality by
augmenting software-engineering tasks with dynamic
information collected from deployed software. The
Gamma approach enables analyses that (1) rely on
actual field data instead of synthetic in-house data
and (2) leverage the vast and heterogeneous resources
of an entire user community instead of limited, and
often homogeneous, in-house resources.

When monitoring a large number of deployed in-
stances of a software product, however, a significant
amount of data is collected. Such raw data are use-
less in the absence of suitable data-mining and vi-
sualization techniques that support exploration and
understanding of the data. In this paper, we present
a new technique for collecting, storing, and visualiz-
ing program-execution data gathered from deployed
instances of a software product. We also present a
prototype toolset, Gammatella, that implements
the technique. Finally, we show how the visualiza-
tion capabilities of Gammatella facilitate effective
investigation of several kinds of execution-related in-
formation in an interactive fashion, and discuss our
initial experience with a semi-public display of Gam-

matella.

Keywords

Gamma technology, software visualization, remote
monitoring

∗An earlier version of the material presented in this paper
appeared in the Proceedings of the ACM Symposium on Soft-

ware Visualization (June, 2003) [16].

1 Introduction

Developing reliable, safe, and efficient software is dif-
ficult. Quality assurance tasks, such as testing, anal-
ysis, and performance optimization, are often con-
strained because of time-to-market pressures and be-
cause products must function in a number of vari-
able configurations. Consequently, released software
products may exhibit missing functionality, errors, in-
compatibility with the running environment, security
holes, or inferior performance and usability.

Many of these problems arise only when the soft-
ware runs in the users’ environments and cannot be
easily detected or investigated in-house. We believe,
and our previous research suggests, that software de-
velopment can greatly benefit from augmenting anal-
ysis and measurement tasks performed in-house with
program-execution data—information, such as cover-
age data, exception-related information, and perfor-
mance related data that is collected from deployed
software while it is used in the field. We call this
approach the Gamma approach.1 The Gamma ap-
proach aims to improve software quality through con-
tinuous monitoring and analysis of software after de-
ployment [6, 15, 17].

Monitoring of a high number of deployed instances
of a software product, however, can produce a huge
amount of program-execution data. For example, in
a preliminary study that involved only a few users
and only one system, we collected more than 1,000
program-execution data in less than a month. If we
multiply that number by a realistic number of users
for an average system, it is easy to see that the quan-
tities involved are on the order of millions of program-
execution data per system.

Furthermore, when collecting more and more kinds
of program-execution data from the field, not only

1We call the approach Gamma because it can be seen as
the next phase after α-testing, performed in-house, and beta-
testing, performed in the field by a set of selected users.

1



does the size of the data grow, but also their com-
plexity: different kinds of data may have intricate
relationships and dependences that require such data
to be analyzed together to be understood.

Such a huge and complex amount of data can-
not be analyzed manually. To be able to extract
meaningful information about program behavior from
the raw data and exploit their potential, we need
suitable data-mining and visualization techniques.
In particular, visualization techniques can be effec-
tive in transforming program-execution data into vi-
sual information that can be explored and under-
stood [2, 9, 20, 22, 24].

In this paper, we present a new visualization ap-
proach that can efficiently represent different kinds
of program-execution data and that facilitates inves-
tigation of the data to study the behavior of pro-
grams in the field. The approach is defined for a con-
text in which a number of instances of a program
are continuously monitored, and has the following
characteristics: (1) it provides a hierarchical view
of the code, so that the user can navigate the pro-
gram at different levels of detail while studying the
program-execution data; (2) it is flexible in the kind
of program-execution data it can show for each exe-
cution; and (3) it accounts for a dynamic, constantly
increasing, and possibly very large number of execu-
tions through the use of filters and summarizers.

We also present a prototype toolset, Gam-

matella, that implements the visualization ap-
proach and provides capabilities for instrumenting
the code, collecting program-execution data from the
field, and storing and retrieving the data locally.

Finally, we report two possible applications of
our visualization technique—exception and profiling
analyses—and a feasibility study. In the study, we
use Gammatella, displayed on a semi-public dis-
play in our lab, to collect, store, visualize, and in-
vestigate program-execution data gathered from in-
stances of a real software system distributed to a set
of users. The study shows how the visualization ca-
pabilities of Gammatella let us effectively investi-
gate several kinds of program-execution data in an
interactive fashion and get meaningful insights into
the monitored program’s behavior. Our initial expe-
rience with the semi-public display of Gammatella

is also discussed.
The main contributions of the paper are:

• a new visualization approach that facilitates vi-
sualization of various kinds of program-execution
data and interactive study of a program’s behav-
ior;

• a toolset, Gammatella, that implements the
visualization approach and provides instrumen-

tation and data-collection capabilities; and

• a case study that shows the feasibility of the ap-
proach.

In the next section, we describe the new visual-
ization approach that we use to represent program-
execution data. Section 3 describes the components
of the Gammatella toolset and discusses our setup
for and initial experience with a semi-public display of
Gammatella. Section 4 presents two applications of
our approach and a feasibility study performed using
the tool. Section 5 discusses related work. Finally,
Section 6 presents some conclusions and discusses fu-
ture work.

2 Visualization Technique

In this section, we describe the visualization approach
that we defined to enable continuous monitoring and
exploration of program-execution data collected from
deployed software.

One goal of our work is to provide an interface
that can scale to large programs and that can handle
a number of executions by many users. To achieve
this goal, we defined a visualization approach that
provides:

• representation of software systems at different
levels of detail;

• use of coloring to represent program-execution
data;

• explicit representation and visualization of
program-execution data about each execution
together with its properties; and

• capabilities for filtering and summarizing the
program-execution data in an interactive way.

To minimize the interaction required by a user to
see all dimensions of the display, we chose to focus
our attention on two-dimensional visualization tech-
niques rather than three-dimensional techniques. For
example, in our approach, the user is not required to
rotate the display to reveal obscured features. Ob-
viously, a height dimension could be added to our
visualization to let more variables be displayed.

2.1 Representation Levels

To investigate the program-execution data efficiently,
we must be able to view the data at different levels
of detail. In our visualization approach, we represent
software systems at three different levels: statement
level, file level, and system level.

2



Statement level. The lowest level of representa-
tion in our visualization is the statement level. At
this level, the visualization represents source code,
and each line of code is suitably colored (in cases
where the information being represented does involve
coloring). Figure 1 shows an example of a colored set
of statements in this view. For example, if we are
visualizing statement-coverage information, each line
of code is colored based on whether it was covered
by the considered execution(s) (e.g., gray if not cov-
ered and green if covered). The statement level is the
level at which users can get the most detail about
the code. However, directly viewing the code is not
efficient for programs of non-trivial size. To allevi-
ate this problem, our visualization approach provides
representations at higher levels of abstraction.

File level. The representation at the file level pro-
vides a miniaturized view of the source code. This
technique is similar to the one introduced by Eick
and colleagues in the SeeSoft system [3, 8]: the tech-
nique maps each line in the source code to a short,
horizontal line of pixels. Figure 2 shows an exam-
ple of a file-level view for the statements in Figure 1.
This “zoomed away” perspective lets more of the soft-
ware system be presented on one screen. Colors of
the statements are still visible at this scale, and the
relative colorings of many statements can be com-
pared. This approach presents the source code in a
fashion that is intuitive and familiar because it has
the same visual structure as the source code viewed
in a text editor. This miniaturized view can display
many statements at once. However, even for medium-
size programs, significant scrolling is still necessary to
view the entire system. For example, the subject pro-
gram for our feasibility study, which consists of about
60,000 lines of code, requires several full screens to be
represented with this view. Monitoring a program of
this size would require scrolling back and forth across
the file-level view of the entire program, which may
cause users to miss important details of the visual-
ization.

System level. The system level is the most ab-
stracted level in our visualization. The representa-
tion at this level uses the treemap view developed by
Shneiderman [21] as well as extensions to this view
developed by Bruls and colleagues [7]. The treemap
visualization is a two-dimensional, space-filling ap-
proach to visualizing a tree structure in which each
node is a rectangle whose area is proportional to some
attribute of that node. Treemaps are extremely ef-
fective in showing attributes of leaf nodes by size and
color coding. We chose to use treemaps because they

are especially effective in letting users spot unusual
patterns in the represented data. Moreover, treemaps
can efficiently encode information for large-sized pro-
grams: in a 1280x1024 display, treemaps can visual-
ize, on average, programs of more than 4,000 files [21].

In our development of the system-level view, we
considered other visualization techniques such as
Stasko and Zhang’s Sunburst visualization [23] or
Lamping, Rao, and Pirolli’s Hyberbolic Tree visual-
ization [12]. These techniques, however, focus more
on the hierarchical structure of the information they
represent, and use a considerable amount of screen
space to represent such structure. For our applica-
tion, the hierarchical structure of the program mod-
ules is less important than representing as much in-
formation as possible at each level of the hierarchy.
With treemaps, the entire screen space can be used
to represent the color information for the hierarchical
level being considered (e.g., a package or the classes
in a package) without using valuable screen space to
encode redundant information about nodes’ parents.
The hierarchical structure is used only to group nodes
belonging to common branches of the tree.

Figure 3 shows an example hierarchy and the re-
sulting treemap. The traditional tree view shows
eight nodes: the five leaf nodes representing program
classes of varying sizes (shown in parentheses) and
the non-leaf nodes representing their packages. The
treemap view shows these eight nodes as rectangles,
where the area of each rectangle is proportional to the
relative size of the file (or package). For example, the
rectangle for HashMap occupies 40% of the treemap
area because the size of HashMap is 40% of the size of
the java package.

An algorithm to build treemaps (1) starts with a
rectangle that represents the root node and occupies
the entire visualization area, (2) divides the root-node
rectangle so that each child is allotted an area pro-
portional to its size (or the sum of the sizes of its
leaves), and (3) recurses for each of its children until
the leaf nodes are reached.

For our system-level view, we build a tree structure
that represents the system. The root node represents
the entire system. The intermediate non-leaf nodes
represent modularizations of the system (e.g. Java
packages). The leaf nodes represent source files in
the system. We then apply the treemap visualization
to this tree. The size of the leaf nodes is proportional
to the number of executable statements in the source
file that it represents.

3



...
finallyMethod.setName(
    handlers.getFinallyNameForCFGStartOffset(finallyStartOffsets[i] ));
if ( numFinallyBlocks != 0 ) {
    finallyMethod.setType(Primitive.valueOf(Primitive.VOID));
    finallyMethod.setContainingType(parentMethod.getContainingType());
}
finallyMethod.getContainingType().getProgram().addSymbol( finallyMethod );
finallyMethod.setDescriptor( new String("()V") );
finallyMethod.setSignature( parentMethod.
...

Figure 1: Example of statement-level view.

...

...

Figure 2: Example of file-level view.

Object(10) System(20) HashMap(40) Stack(10) Vector(20)

util(70)lang(30)

java (100)

Object

System

HashMap

Stack

Vector

T
ra

di
tio

na
l t

re
e 

vi
ew

T
re

em
ap

 v
ie

w

Figure 3: Example of treemap view applied to a
sample hierarchy.

Figure 4: Example that illustrates the steps of the treemap node drawing.

2.2 Coloring

We use coloring to summarize information about the
program-execution data. The coloring technique that
we apply is a generalization of the coloring tech-
nique defined by Jones, Harrold, and Stasko for fault-
localization [11]. In the following, we first describe
the general coloring mechanism, without considering
the different levels of the representation. Then, we
describe how the coloring approach maps to the three
levels. The key idea of our coloring is to represent
one- or two-dimensional information for each state-
ment using the hue and the brightness components.
If higher-dimensional information had to be visual-
ized, the visualization approach could be suitably ex-
tended. For example, we could use saturation and
textures to encode additional dimensions.

Hue component. For the hue component, our de-
fault color space is a continuous spectrum of colors
from red to yellow to green. The range of hues con-
sidered is therefore one third of the color wheel. With

this subset of colors, we convey notions analogous to a
traffic light: colors red, yellow, and green intuitively
convey the concepts of danger, caution, and safety,
respectively, and can therefore be used to identify
statements that require high, medium, or no atten-
tion. Although to account for different types of color
blindness we use other ranges of the color spectrum,
our discussion here will be limited to the red-yellow-
green sub-spectrum. The same ideas can be applied
to other sub-spectra as well.

Without loss of generality, we express the hue in
terms of degrees on the color wheel, with red rep-
resented by value 0 and green represented by value
120. Each statement is assigned a hue in such range.
The way colors are assigned to statements depends
on the kinds of program-execution data represented.
Section 4 provides examples of uses of the coloring
information for two applications.

Brightness component. For the brightness com-
ponent, we use the entire range of possible values.

4



We express the brightness using a real number and
assign value min to the minimum brightness and max
to the maximum brightness. The values min and max
are determined based on visual ranges that are per-
ceptible to the human eye—typically, this means a
value of about 0.3 for min and 1 for max. Again,
the way the value for brightness is assigned to each
statement depends on the kind of program-execution
data represented, as shown in Section 4.

Each statement in the program is assigned a color
depending on the task being performed, but the col-
oring applies differently to the different visual repre-
sentation levels. For the statement-level and the file-
level representations, no mapping is necessary: for
each statement, the color (i.e., hue and brightness) of
the statement is used to color the corresponding line
of code in the statement-level representation and the
corresponding line of pixels in the file-level represen-
tation. (For the sake of simplicity, we assume that
each line of code contains at most one statement. If
this is not the case, the code can always be suitably
formatted to satisfy this requirement, or the color can
be averaged.)

For the system-level representation, there is no one-
to-one mapping between statements and visual enti-
ties. Therefore, we defined a mapping to maintain
color-related information in the treemap view. Each
leaf node (i.e., rectangle) in the treemap view repre-
sents a source file.

To map the color distribution of the statements in
a source file to the coloring of the node that repre-
sents that source file, we use, in turn, a treemap-
like representation to further partition each node (in
this sense, we are embedding a treemap within each
treemap node). For example, if half the statements
in a source file were colored bright red, and the other
half were colored dark green, the treemap node would
be colored as such—half of it would be colored bright
red and half of it would be colored dark green.

However, using a traditional treemap algorithm for
coloring the nodes would likely cause the colors to be
laid out in a different fashion for different nodes. For
example, suppose the colors assigned to the state-
ments in source file A were evenly distributed among
four colors: bright red, dark red, bright green, and
dark green. To color the node in the treemap view,
we may use a traditional treemap algorithm to further
divide node A (that represents source file A) into four
equally-sized blocks, each colored by one of the spec-
ified colors. However in a traditional treemap algo-
rithm, relative placement of nodes is not guaranteed.
So, in node A, the bright red block may be placed in
the upper-right corner, but in node B, which repre-

sents similar proportions of colored statements, the
bright red block may be placed in the lower-left cor-
ner. In a treemap view that contains many nodes, a
non-uniform appearance of the nodes will likely cause
confusion as to where the boundaries of the nodes lie.
Therefore, we chose to keep the same layout of colors
within each node while still showing the color distri-
bution in a treemap-like fashion. The layout we use
is characterized by varying the hue across the hori-
zontal axis and by varying the brightness across the
vertical axis. Figure 4(b) shows an example of this
layout.

This layout determines the relative placement of
the colors within each treemap node, but does not de-
fine how the colors are mapped to colors assigned in
the statement-level or file-level representations. We
thus defined a technique for skewing the colors of
Figure 4(b) to present the appropriate proportions
of colors assigned while preserving the layout of the
colors.

We explain this technique while illustrating it on
the example in Figure 4. Assume that the sample
file-level view shown in Figure 4(a) is a source file
composed of a set of statements, with related color-
ings, to be mapped into a treemap node.

The skewing of the color layout is performed in four
steps. The first step plots the color of each statement
onto a coordinate system with hue varying across the
horizontal axis and brightness varying across the ver-
tical axis. For the example, this step would result in
the points plotted on the hue/brightness space in Fig-
ure 4(b), in which each point represents a statement
in Figure 4(a) positioned at the appropriate hue and
brightness.

The second step segments the space horizontally
and vertically into equal-sized blocks to create a dis-
crete bucket for each block, so as to categorize the
statements’ colors. This segmentation is shown in
Figure 4(c). For the sake of simplicity, in this exam-
ple, we use only four segments vertically and four seg-
ments horizontally, resulting in sixteen blocks; how-
ever, in a real application, we would normally per-
form a finer-grained categorization. After the seg-
mentation is complete, each block is drawn with a
representative color—the median color of the colors
in the block.

The third step determines, for each row, the width
of each block. To this end, the technique computes
the ratio of the number of statements in the block
to the number of statements in the entire row. The
width of each block is proportional to this ratio. The
widths of the blocks for the example are shown in Fig-
ure 4(d). The technique assigns the leftmost block in
the first row 5/6th of the total width of the node be-

5



Figure 5: Example of execution bar.

cause five of the six points in the row fall into this
block. Likewise, the coloring technique assigns the
rightmost block the remaining 1/6th of the width of
the node. The middle two blocks in the first row are
eliminated (i.e., they are assigned width 0) because
they contain no points. Note that the technique as-
signs no widths for the second row because no points
fall into this row.

The final step determines the height of each row
by computing the ratio of the number of statements
in the row to the number of statements in the entire
node. The heights of the blocks for the example are
shown in Figure 4(e), which is the final representa-
tion of the node. The technique assigns the first row
6/10th of the total height of the node because six of
the ten points in the node fall into this row. The last
two rows are each assigned 2/10ths of the total height
of the node.

This coloring technique results in blocks that are
proportional in size to the number of statements plot-
ted in them and, in addition, maintains the layout
of the color blocks for each node. For example, the
brightest green block, which contained five of the ten
statements, results in half of the total area of the
node (5/6 ∗ 6/10 = 1/2).

2.3 Representation of Executions

To represent executions, we use an execution bar : a
virtually infinite rectangular bar, of which only a sub-
set is visible at any time. The bar consists of bands
of the same height of the bar but of minimal width.
Minimal width refers to a width that is as little as
possible but can still be seen. The actual width de-
pends on the characteristics of the graphical environ-
ment, such as the size and resolution of the display.
Figure 5 shows a simple example of an execution bar.

Each band in the execution bar represents a differ-
ent execution of the monitored program in the field
(i.e., a run of the program and the data collected
during such execution). Depending on the kind of
program-execution data that we are representing, the
bands in the execution bar may or may not be col-
ored. For the coloring of the bands, our technique
can use one or both of the two dimensions that we
use for the code coloring: hue (from red to green) and
brightness.

We defined the execution bar to be of virtually in-
finite size to account for a high and continuously in-
creasing number of program-execution data collected
from the field. Because we can show only a part of
the execution bar on the screen, we assume the ac-
tual implementation of an execution bar to provide
navigation capabilities, such as scroll bars.

2.4 Filtering and Summarization

To support the investigation of a possibly high num-
ber of program-execution data, our visualization
technique includes filtering and summarization capa-
bilities. Before describing filtering and summariza-
tion, we briefly discuss the concept of execution prop-
erties. Execution properties are properties that we
associate with each execution. Examples of execu-
tion properties are the version of the Java Virtual
Machine used to perform the execution, the ID of the
user that performed the execution, and the name and
version of the operating system used.

The set of execution properties collected may de-
pend on the specific execution context and on the goal
of the monitoring. For the discussion of filtering and
summarization it is enough to know that we consider
execution properties that can be expressed as a set of
alphanumeric pairs (key, value). Table 1 presents an
example for the four properties mentioned above.

java.version = 1.4.1 01
user.id = nXrPEQ7zq8w5JY9FAfThrFn
os.name = Linux
os.version = 2.4.18-18.8.0

Table 1: Four example properties.

Section 3 discusses in greater detail the specific set
of properties that we currently collect from deployed
software.

Filters. A filter lets the user select only a subset
of executions to be visualized. A user can include or
exclude a set of executions based on the properties of
such executions. For example, the user may choose
to show only the executions that were run at a par-
ticular site, on a particular day, and to exclude those
executions that raised a particular type of exception.
More precisely, a filter is expressed as a disjunction
or conjunction of predicates over the set of execution
properties, with the syntax described in Table 2. For
example, the following filter

(java.version 6= ′1.3.0′) and (os.name = ′Linux′)

6



would select only those executions of the monitored
program for which the version of the Java Virtual
Machine used is not 1.3.0 and the operating system
is Linux.

Our language is simple and much less expressive
than full-fledged query languages, such as SQL. For
our purposes, however, our language is a good bal-
ance of functionality and usability. More powerful
querying capabilities could be implemented, if re-
quired.

〈filter〉 ::= 〈predicate list〉
〈predicate list〉 ::= 〈predicate〉 | ′(′ 〈predicate list〉

〈bool op〉 〈predicate list〉 ′)′

〈predicate〉 ::= 〈property〉 〈op〉 〈value〉
〈op〉 ::= ′ =′ |′ 6=′ |′ <′ |′ >′ |′ <=′ |′ >=′

〈bool op〉 ::= ′and′ | ′or′

〈value〉 ::= alphanumeric string
〈property〉 ::= property name

Table 2: Syntax for the filters.

Summarizers. A summarizer lets the user aggre-
gate the program-execution data for a set of execu-
tions. A summarizer is simply expressed as a list of
properties over which to aggregate:

〈summarizer〉 ::= (〈property〉)∗

For example, summarizer “java.version, user.id”
would group all the executions for which the prop-
erties java.version and user.id have the same value.
This operation corresponds to identifying equivalence
classes in the executions with respect to the specified
properties. From the visualization standpoint, all the
executions in an equivalence class are represented by
only one band in the execution bar. If the summariza-
tion is performed for a representation that involves
coloring of the execution bar, the color of each band
is computed as the average color, in terms of both
hue and brightness, among all the bands whose exe-
cutions are in the corresponding equivalence class.

Filtering and summarization are powerful instru-
ments for managing, investigating, and understand-
ing the large amount of program-execution data. Fil-
tering can help the user focus on only a subset of
executions at a time. Summarization can help the
user identify correlations among executions. Sec-
tion 4 provides examples of the usefulness of these
two features.

3 The Toolset

In this section, we describe the Gammatella toolset.
Besides implementing the visualization approach de-
scribed in Section 2, Gammatella also provides

execution
data

Database

Software
Developer

execution
data

visualization/
interaction

instrumented
program

Program
Visualizer

...

program

data queries

A
t D

ev
el

op
er

s’
 S

ite
In

 th
e 

Fi
el

d

Data Collection
Daemon

    User  2     User N     User 1

Instrumenter
InsECT

Figure 6: A high-level view of the Gammatella
toolset.

capabilities for instrumenting the code, collecting
program-execution data from the field, and storing
and retrieving the data locally. Figure 6 shows a high-
level view of Gammatella and represents the flow
of information throughout the various tools that are
part of the toolset.

Gammatella is written in Java, supports the
monitoring of Java programs, and consists of three
main components: an Instrumentation, Execution,
and Coverage Tool (called InsECT), a Data Collec-
tion Daemon, and a Program Visualizer.

3.1 InsECT

Before describing InsECT, we introduce the con-
cepts of code coverage, profiling, and instrumenta-
tion. Code coverage is a measure of the extent to
which some entities in a program have been exer-
cised as a consequence of one or more executions of
the program. In general, code coverage for a given
set N of entities with respect to a set of executions
E is expressed in terms of the percentage of entities
in N exercised by E. For example, statement cover-
age is expressed as the percentage of statements in
the program exercised by the considered executions
with respect to the total number of statements in the
program.

Profiling is a measure of how much entities in a
program have been exercised during one or more ex-

7



ecutions of the program. In general, profiling for an
entity n with respect to a set of executions E is ex-
pressed in terms of how many times n has been ex-
ercised by E. Program profiles are often collected to
identify where in the code a program spends its time.

Code coverage and profiling information can be
gathered using two alternative approaches: instru-
mentation and access to the run-time system. Instru-
mentation works by (1) inserting probes in specific
parts of the code prior to execution so as to report
when they are executed, and (2) adding a monitor-
ing mechanism to the code to record the information
provided by the probes. For example, for statement
profiling, a probe can be inserted for each statement
so that, as the program executes, the probes report
to the monitoring mechanism that keeps track of the
number of times each statement is executed. Access
to the run-time system can be used as an alternative
to instrumentation when the run-time system pro-
vides an interface for gathering dynamic information
during execution. For example, Java Virtual Ma-
chines usually provide an interface called JVMPI2

(Java Virtual Machine Profiling Interface). JVMPI
can be used to get notifications of various events, such
as heap allocations or method calls, at run-time.

In Gammatella, we chose to use instrumentation
instead of access to the run-time system for three
main reasons. First, instrumentation gives us com-
plete control over the kind of information collected.
Second, we found instrumentation to be more efficient
than JVMPI. Third, to take advantage of JVMPI,
the user must launch the program using some specific
parameters, thus complicating the use of JVMPI for
deployed software.

Before developing InsECT, we considered existing
instrumentation tools, such as Gretel [18] and a few
commercial tools. None of the considered tools, how-
ever, provided the kind of flexibility and customiz-
ability that we needed with our approach. Moreover,
none of the tools provided exception-coverage infor-
mation, which is required for one of the applications
that we consider.

InsECT is a modular, extensible, and customiz-
able instrumenter and coverage analyzer that we de-
veloped in Java. InsECT inputs a Java program and
outputs an instrumented version of the program that
contains the probes for reporting executed entities
along with a set of monitor classes that collect the
information at runtime. InsECT works at the byte-
code level and can instrument the whole program or
only parts of it. For example, for a program that
consists of multiple components, InsECT can instru-
ment only a subset of the components (e.g., the ones

2http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/

developed in house or the most critical ones) so that
as the instrumented program executes, it collects ex-
ecution data only for those components.

Within Gammatella, InsECT instruments for
statement coverage, branch coverage, call coverage,
exception coverage, and statement and branch profil-
ing. The instrumented program is then deployed to
the customers for their use in the field. For exception
coverage, InsECT inserts probes in the instrumented
program so that, as the program executes in the field,
it reports information for each exception thrown, the
type of the exception, the throw statement responsi-
ble for throwing the exception, and the catch block
that caught the exception (if any). The instrumented
program also reports uncaught exceptions because,
during instrumentation, InsECT suitably wraps the
program. In addition, the instrumented program re-
ports, for each execution, various kinds of informa-
tion about the user environment, including a unique
identifier for the machine and the user, the operat-
ing system brand and version, and the Java Virtual
Machine brand and version.

The information reported by the probes is collected
during the execution by the monitor classes that are
called by the probes inserted in the code. At the end
of the execution, or at given time intervals (e.g., in
the case of continuously running applications), the
information is dumped, compressed, and sent back
to a central server over the network. For the sake
of the description, and without loss of generality, we
assume a network connection to be available. If this
is not the case, the information can be stored locally
and sent when a connection is available.

We use the Simple Mail Transfer Protocol
(SMTP [19]) to transfer the program-execution data
from the users’ machines to the central server col-
lecting them (collection server hereafter). The com-
pressed data are attached to a regular electronic-mail
message whose recipient is a special user (collection
user hereafter) on the collection server and whose
subject contains a given label (coverage label here-
after) and an alphanumeric ID that uniquely identi-
fies both the program that sent the data and its ver-
sion. The only requirement for the collection server
is thus to run an SMTP server.

3.2 Data Collection Daemon

The Data Collection Daemon is a simple tool writ-
ten in Java that runs as a daemon process on a server
on which we store the execution data. Each instance
of the tool monitors for execution data from all in-
stances of a specific version of a specific program,
provided to the tool in the form of the corresponding

8



(a) (b)

Figure 7: Windows that show execution properties.

alphanumeric ID. The tool, upon execution, retrieves
the incoming mail for the collection user from the col-
lection server. To facilitate access of the data from
different machines, we use the Internet Message Ac-
cess Protocol (IMAP [25]).

For each message retrieved, the daemon parses the
subject of the message to check whether (1) the mes-
sage contains coverage information (i.e., the subject
contains the coverage label), and (2) the information
is coming from the correct program and version (i.e.,
the ID provided to the daemon matches the one in the
subject). If both conditions are satisfied, the daemon
extracts the attachment from the message, uncom-
presses it, and suitably stores the program-execution
data in a database. The additional information about
each execution, such as the Java Virtual Machine ver-
sion and the user ID, are stored as properties of the
execution. This approach lets us efficiently perform
filtering and summarization over the executions, as
described in Section 2.

3.3 Program Visualizer

The Program Visualizer is the module of Gam-

matella that implements the visualization tech-
nique described in Section 2. The visualizer is divided
into JavaBeans components written in Java using the
graphical capabilities of the Swing toolkit. The visu-
alizer retrieves and queries the coverage data stored
by the Data Collection Daemon. These data are used
to update all appropriate views. The Program Visu-
alizer, shown in Figure 11, consists of three main com-
ponents (Execution Bar, Code Viewer, and Treemap
Viewer) and a set of additional widgets (interactive
color legend, statistics pane, color slider, and color-

space control menus).
It is worthwhile to note that each window pane can

be dynamically resized so that the user can choose
the appropriate proportion of the total window real
estate allocated to each component. We describe each
component and widget in detail.

Execution Bar. In the Execution Bar, executions
are displayed as (possibly colored) vertical bands, as
described in Section 2. Each band represents one
or more executions (this latter case occurs when us-
ing summarizers). The user of Gammatella can
interact with the execution bar in a variety of ways.
The scroll bar below the Execution Bar lets the user
quickly navigate the set of executions. The user can
also use the two pairs of red and green arrows on
each side of the bar to navigate to the previous (or
next) red- and green-colored execution, respectively.
Selecting an execution or a set of executions causes
the other displays to update their views to show only
the information pertaining to the selected executions.
Executions can be selected by left-clicking with the
mouse on the corresponding band(s). In addition, the
three buttons immediately under the execution bar
let the user select all red-colored, all green-colored,
or all executions.

Right-clicking on a band causes a modal window
to appear. This window shows one of two possible
types of information: (1) if the band represents only
one execution, it shows all the properties of the ex-
ecution in plain textual format (Figure 7(a)); (2) if
the band represents the summary of more executions,
it shows only the common properties of those execu-
tions (Figure 7(b)).

The Execution Bar contains also three buttons:

9



Figure 8: Dialog window for the definition and editing
of filtering rules.

Execution filters, Execution summaries, and Reset ex-
ecution bar (see Figure 11). Clicking on button Ex-
ecution filters displays a dialog window in which the
user can construct filtering rules to be applied to the
executions set or modify existing filters. Figure 8
shows a screenshot of a window in which a filter is
being defined. Analogously, clicking on button Exe-
cution summarizers displays a window in which the
user can define new summarizers or modify existing
ones. Button Reset execution bar provides a conve-
nient way to remove all filters and summarizers at
once and show all the executions.

Code Viewer. The Code Viewer displays both the
file-level view and the statement-level view described
in Section 2. Right-clicking on a statement in the
file-level view causes a context menu to appear. This
menu permits the viewing of different types of in-
formation about the statement, such as the number
executions that covered it or the types of exceptions
that were thrown by the executions that covered it.
The statement-level view shows a small number of
statements in its full-sized text, at the bottom of the
Code Viewer window. Moving the mouse cursor over
the file-level view causes the statement-level view to
display those statements under the cursor, so allow-
ing the user of the Program Visualizer to investigate
sections of code in detail.

Treemap Viewer. The Treemap Viewer displays
the system-level view described in Section 2. On
the upper-left corner, each node shows the name of
the file it represents (without the .java extension),
which also corresponds to the name of the public class
in the file. Moving the mouse cursor over a node
causes a tool tip to appear. This tool tip describes
the name of the package to which the represented
file (i.e., the classes in the file) belongs. We utilized
the TreeMap Java Library by Bouthier [5] to imple-
ment the treemap algorithm that performs the layout

of the source-file and package nodes. We also uti-
lized the squarified treemap algorithm built into the
library [7] to present more visible nodes. Initially, the
Treemap Viewer displays the system as described in
Section 2, where each node represents an individual
source file. Additionally, the user can collapse all files
in a package into a node representing the color distri-
bution for all of the files in that package. This can be
done iteratively until eventually the entire treemap
contains one node that represents the color distribu-
tion for the entire system. Likewise, the user can
dissect the package-level treemap nodes to their re-
spective components and eventually to their source
files. Package-level treemaps can be collapsed and
dissected both one at a time and all at once. The
user can also zoom into any particular area of the
treemap to provide a more detailed view of the cor-
responding nodes.

Additional Widgets. In addition to the three
major components, the Program Visualizer contains
some components for convenience and informational
purposes: an interactive color legend, a statistics
pane, a color slider, and color-space control menus.

The interactive color legend is located in the lower
right part of the Program Visualizer (see Figure 11).
The color legend is drawn as a two-dimensional plane
with hue varying on the horizontal axis and bright-
ness varying on the vertical axis. The legend con-
tains a black dot at each position in the color space
occupied by a source-code statement. By rubber-
banding a rectangle around some points in this re-
gion, the viewer can modify (filter) the main display
area, showing and coloring only statements having
the selected color and brightness values.

The statistics pane is located above the interac-
tive color legend. This pane shows information about
the last statement for which the mouse cursor was
moved over in the file-level or source-level views. For
example, in Figure 11, the mouse was last placed
over line 456 of file jaba/graph/icfg/ICFGImpl.java.
The statistics pane shows that (1) this line was ex-
ecuted by 40 of the 707 executions, (2) of the 707
executions, 695 terminated normally and 12 termi-
nated with an exception, (3) 28 of the normally-
terminating executions executed this line, and (4) all
of the 12 exceptionally-terminating executions exe-
cuted this line.

The color slider is located in the upper left cor-
ner of Program Visualizer. This widget is a slider
that controls the brightness of the gray color used to
color lines, such as comments, unexecuted lines, and
filtered lines, that are not being drawn using the red-
yellow-green mapping. The slider can be used, for

10



Figure 9: Gammatella Program Visualizer in two-window modality.

Figure 10: Gammatella Program Visualizer in three-window modality.

instance, to make all gray statements almost disap-
pear and let the user focus only on the colored ones,
while inspecting the execution data. In Figure 11,
the slider is positioned to color those statements us-
ing light gray. In cases in which users interact with
the slider rarely, they can resize the slider’s pane and
make it disappear, so as to have more screen real es-
tate available to the other components, as discussed
in Section 3.3.

Finally, the color-space control menus are located
under the menu named Preferences. These menus are
controls to change the color-space used. In our cur-
rent implementation, this menus let the user switch
from the red-yellow-green spectrum to an alternative
spectrum that is suitable for color-blind users.

11



Figure 11: A screenshot of the Gammatella Program Visualizer.

Figure 12: Developers’ semi-public display of Gammatella.

12



The Program Visualizer can be displayed in three
alternative configurations, or modalities. The first
modality is the one shown in Figure 11, in which all
three main components are aggregated in one win-
dow. The second modality is based on a dual-window
representation, in which one window contains the Ex-
ecution Bar and the Code Viewer, and a second win-
dow contains the Treemap Viewer. Finally, in the
third modality, all three major components are dis-
played in separate windows. Figures 9 and 10 show
snapshots of Gammatella in the second and third
modality, respectively.

The different modalities are defined to accom-
modate different configurations of the visualization
hardware. In particular, we defined the modalities
to accommodate the presence of multiple monitors.
For example, for our semi-public display of Gam-

matella we used the dual-window modality on a
machine with two monitors, as discussed in the next
section. In the two- and three-windowed modes, we
chose to place the system-level view in its own win-
dow to have the most screen real estate for the view
that represents the most code. In the three-windowed
mode, we chose to place the code-level view in its
own window because we did not want to use a small
window-pane for the view that contains the most de-
tailed information (i.e., the actual code). However,
due to the modular nature of the system, the config-
uration of the components in the different modalities
can be changed easily.

The visual components in the Program Visualizer
communicate and interact with one another. For ex-
ample, the selection of executions in the execution
bar causes the source-level, file-level, and system-
level views to update their displays to display only
the information about those executions. Due to the
component-based architecture of our implementation,
additional views can be integrated and the current
components can be updated and substituted with lit-
tle effort.

The Program Visualizer dynamically updates the
information displayed to reflect the latest data: As
the Data Collection Daemon receives additional exe-
cutions from the field, all visual components are up-
dated based on the new information. This approach
permits an almost real-time monitoring of the be-
havior of the monitored program by developers and
maintainers.

3.4 Semi-public Display of Gam-

matella

To investigate the usefulness of Gammatella from
a team of developer’s perspective, we have placed

a semi-public display running the tool in our lab.
Semi-public displays [10] are public displays for small
groups of people to make certain information visi-
ble to the environment and to promote collaboration.
The semi-public display of Gammatella is placed in
the workplace of the software engineers that have de-
veloped and are maintaining the deployed, monitored
system. The goal is to promote awareness of the sys-
tem’s behavior in the field and to promote interaction
among the developers in regard to this information.
We provide more details about the monitored pro-
gram and its users in Section 4.3.

In our current setup, the semi-public display of
Gammatella runs, in dual-window mode, on a ma-
chine installed in the common area of our lab, and
continuously visualizes the exception-analysis infor-
mation described in Section 4.1. The machine is con-
nected to two 23-inch flat-panel monitors, each one
displaying one of the two Gammatella windows.
Users can interact with Gammatella through a tra-
ditional keyboard and mouse. Figure 12 shows a pho-
tograph of the semi-public display area. In the next
section, we describe our initial experience with the
semi-public display of Gammatella.

4 Applications

To investigate the feasibility of our data collection
and visualization technique, we applied it to two
tasks: investigation of exceptions generated during
users’ executions and profiling analysis. We also per-
formed a feasibility study for the exception investiga-
tion that involved the collection of data from a real
program deployed to a set of real users. The study
also involved the installation of a semi-public display
of Gammatella in our lab, where the information
collected from the deployed program is continuously
shown. In the rest of this section, we describe the two
applications, present the feasibility study, and discuss
our initial experience with the semi-public display of
Gammatella.

4.1 Exceptions Analysis

We applied our technique to the visualization of
exception-related information. To this end, we used
the approach defined by Jones, Harrold, and Stasko
for fault localization [11]. The idea is to assign a
color to each statement in the program to represent
the likelihood that the statement is responsible for
the behavior that led to the exception being thrown.
Red, yellow, and green are used in this case to repre-
sent “very likely,” “possibly,” and “unlikely,” respec-
tively.

13



Consider a statement s, a set of executions that re-
sult in an uncaught exception (call this F ), and a set
of executions that do not result in an uncaught ex-
ception (call this P ). Let f represent the percentage
of executions in F that execute s, and let p represent
the percentage of executions in P that execute s. We
assign to s a hue value based on the percentages f
and p. As a result, if p is larger than f , s is assigned
a greener hue to represent some confidence in its cor-
rectness. Conversely, if f is larger than p for s, a
redder hue is assigned to represent suspiciousness of
the correctness of s.

We use the brightness component to encode the rel-
evance of the information represented by statement
s. More precisely, we use the larger of the two per-
centages f and p. Reference [11] provides additional
details on the described coloring technique.

4.2 Profiling Analysis

The second application of our technique is the visual-
ization of profiling information. The goal is to let the
user identify hot spots in the programs (i.e., places in
the code that are executed most often). This infor-
mation is valuable for several software-related tasks
such as targeting parts of code for optimization, de-
termining feature-usage, aiding in the reduction of
software-bloat, and aiding the guidance of future en-
hancements.

For profiling analysis, we assign a color to each
statement in the program to represent how often the
statement is executed: a red statement is executed
very often, a yellow statement is executed often, and
a green statement is executed rarely. For each state-
ment s and set of executions E that traverse s, we
first assign to s a score by adding the number of times
s is traversed in all executions in E. Then, we nor-
malize the computed score for all statements over the
range 0–120, and we assign to each statement a hue
corresponding to the normalized score.

For this application, we do not currently need to
represent two-dimensional information. Therefore,
we assign a constant value to the brightness com-
ponent of the coloring. In future work, we will in-
vestigate the usefulness of the brightness component
to represent additional information about the profil-
ing. First, we will investigate the use of brightness
to distinguish between statements that are executed
by only a small number of executions and statements
that are executed by most executions. Second, we
will use the brightness to dim the information per-
taining to older executions. (Because the profiling
information is likely to change over time, it is impor-
tant to characterize the time frame of the visualized
information.)

4.3 Feasibility Study

We implemented in Gammatella the visualization
for exceptions analysis described in Section 4.1 and
performed a feasibility study using a real system:
Jaba. The goal of our feasibility study was to show
that our framework could be applied to these tasks,
as well as to show that we could do this for a real, de-
ployed system with real users in the field. Jaba (Java
Architecture for Bytecode Analysis [1]) is a frame-
work for analyzing Java programs developed in Java
within our research group that consists of 550 classes,
2,800 methods, and approximately 60,000 lines of
code. Jaba consists of components that read byte-
code from Java class files and perform analyses such
as control flow and data flow, thus enabling the devel-
opment of program-analysis techniques and program-
analysis-based software-engineering tools for Java.

We instrumented Jaba using the InsECT compo-
nent of Gammatella and released it to a set of users
who agreed to have information collected during ex-
ecution and sent back to our server. In our internal
tests, the instrumentation caused an average over-
head of 24% in terms of execution time. It is worth
noting that this is the overhead for the fully instru-
mented code and with unoptimized instrumentation;
better engineering would likely reduce this figure. We
distributed the first release of the instrumented Jaba

to nine users, who used it for two months. This first
release helped us tune the approach in terms of in-
strumentation, data collection, and interaction with
the user’s platform [16].

Using the information we obtained from this first
release, we created a second instrumented version of
Jaba, and distributed it to 14 users. The studies
reported in this paper are based on the data collected
using the second release of our tool. Five of the 14
users had already used Jaba for their work (and were
part of the first data collection experiment), whereas
the other nine users had just started projects that
involved the use of Jaba.

Seven of the 14 users involved in the studies are
working in our lab: four are part of our group and
use Jaba for their research; another two are students
working in our department who use Jaba for their
graduate-level projects; the last one is a Ph.D. stu-
dent who is using a regression testing tool built on
Jaba. The remaining seven users are four researchers
and three students working in three different univer-
sities across three countries.

After releasing the instrumented version of Jaba,
we started the Data Collection Daemon on a dedi-
cated machine in our lab. While users used Jaba for
their work and the program-execution data were sent

14



to the collection server, the Data Collection Daemon
retrieved and stored the data, and the Program Vi-
sualizer visualized the corresponding information on
a semi-public display, as described in Section 3.4.

In a period of 12 weeks, we collected about 1,500
executions. Using Gammatella, we have been able
to save the information about the executions auto-
matically and visualize them. We have also been able
to use Gammatella to perform an initial investiga-
tion of the data.

The first, immediate finding of our investigation,
not directly related to the exceptions analysis, was
that a number of classes were never used in any
of the executions, illustrated by gray nodes in the
treemap view. In particular, the entire Jaba pack-
age responsible for performing dominance analysis
was never utilized. The treemap view provided by
Gammatella let us immediately spot the large un-
covered parts and identify the corresponding parts in
the code. Such a situation occurred for both releases
of Jaba to external users and motivated our decision
to build a trimmed-down version of Jaba—one in
which the unused parts are released as an additional,
optional package.

Another finding of our investigation is related to
the occurrence of exceptions and their meaning in
terms of anomalies in the program behavior. By
inspecting the program-execution data using Gam-

matella, we realized that in most cases exceptions
are raised because of trivial errors on the user side
(e.g., errors in the parameters passed to Jaba and
errors in setting the classpath). In all such cases,
considering the corresponding execution as a failure
is misleading and distracting from real sources of er-
rors. Using the tool, we have been able to identify at
least two exceptions that are always generated due
to users’ errors. Then, we used such information to
filter out all the executions resulting in an uncaught
exception of one of those two types, thereby reducing
the amount of spurious information.

Yet another important finding was that there is
a specific combination of operating system and Java
Virtual Machine for which executions of Jaba fail
systematically. Using the summarization facilities of
the tool and summarizing per user, we discovered
that all executions for one user were terminating with
an exception. By looking at the execution properties
for the executions coming from that user, we discov-
ered that all the failing executions were performed
using the Sun Java Virtual Machine version 1.4.0 on
Solaris 2.8, a combination that no other user was
using and that caused Jaba to fail. Although this
problem could have been discovered in-house, during
testing, such a discovery would have required testing

the software in that specific configuration. This is an
ideal example of the kind of problems for which the
Gamma approach was defined: in general, it is very
difficult to test adequately, in-house, software that
must function in many different environments and
configurations. For this kind of software, feedback
from the field can provide invaluable information.

As far as the semi-public display is concerned, we
have begun our experimentation with it and have
started to collect feedback. This feedback has let us
assess how the tool is perceived and identified char-
acteristics of the tool that could be improved.

As far as the general perception of the tool is con-
cerned, the users found it interesting and informative.
The developers of the system can see that the pro-
gram is being used and get a first assessment of how
it is being used. For example, they can keep track
of users that are having problems with the program
(those with executions that are terminating with an
exception). In addition, usage measures of the vari-
ous components of the tool can be assessed to provide
feedback on which features of the program are most
useful. In terms of areas for improvement, the main
complaint from the users concerns the speed of the
tool. Gammatella is still a prototypal implemen-
tation, and no effort has yet been made to optimize
it. Some users also provided interesting suggestions
on ways to improve the interface of Gammatella in
general. Based on the initial feedback for the semi-
public display, we are currently investigating ways to
improve the efficiency of the tool. In the meanwhile,
we will continue the semi-public display study and
the collection of users’ feedback.

5 Related Work

There are several visualization techniques that are
related to our approach.

Eick and colleagues developed the SeeSoft sys-
tem [8], which shows source code by mapping each
line of code to a row of pixels. We utilize a similar
technique for our file-level view of the code. We have
extended this work by applying our coloring tech-
nique to the visualization, as well as by applying the
visualization to a new domain.

Shneiderman developed the treemap visualiza-
tion [21] for visualizing hierarchical data in a space-
filling manner. Bruls and colleagues developed an
approach [7] to display treemaps in a “squarified”
fashion to reduce the aspect ratio of the nodes. We
utilized both techniques for our system-level view of
the code. We have extended this work by defining
a technique for coloring the nodes of the treemap in
a treemap-like fashion that has two properties: (1)

15



preservation of the color layout within the nodes, and
(2) visualization of the appropriate proportions of col-
ors to reflect the coloring of the entities represented
by each node. Such a technique can be applied in
general for the layout of treemaps that represent flat
hierarchies (i.e., with depth of one) in situations in
which preservation of node layout is important.

Baker and Eick developed the SeeSys system [2],
which shows source code in a treemap fashion. They
used this system to show various properties of the
source code. We utilize this idea of applying treemaps
to software to visualize properties of the software.
In our approach, we use a different technique, based
on visualization of two-dimensional data, to represent
the information within the treemap nodes.

Leon, Podgurski, and White, in their work on
observation-based testing, describe some uses of mul-
tivariate visualization [13] applied to execution pro-
files. They use multivariate visualization to project
many-dimensional profiling information onto a spe-
cific visualization, a two-dimensional scatter plot.
Their approach is related to ours because they too vi-
sualize information about multiple executions. How-
ever, their approach is targeted to a specific goal,
namely, clustering of similar executions according to
some criteria, whereas our goal is to provide a generic
visualization framework that can be instantiated for
different tasks.

Reiss and Renieris developed the Bloom sys-
tem [20], which provides a framework for software
visualization and exploration. Similarly, we have sev-
eral components that visualize software, its execu-
tion, and its properties. In fact, the visualization
techniques described in this paper may also be im-
plemented leveraging the Bloom framework.

Storey and colleagues developed the SHriMP Views
system [4, 24], which is a visualization based on zoom-
ing to display hierarchical views of software. Their
work is mainly concerned with exploring the software
itself and its hierarchical structure, whereas the tech-
nique described in this paper is directed at visual-
izing program-execution data and its relationship to
the program.

Jones, Harrold, and Stasko developed the Taran-
tula [11] system to visualize test-case information for
fault localization. In this paper, we utilized and ab-
stracted the color-mapping concepts from that work
for a variety of purposes. In fact, Tarantula’s fault-
localization technique can be considered a specific in-
stance of the approach described in this paper.

There is also related work in the area of collecting
information from deployed software. Liblit, Aiken,
and colleagues [14] developed a lightweight instru-
mentation infrastructure based on statistical sam-

pling for gathering information from users’ executions
and used it to localize faults. Bowring, Orso, and
Harrold introduce the concept of software tomogra-
phy [6], which enables lightweight collection of run-
time information from deployed software based on
sparse sampling. Both those approaches are not con-
cerned with visualization and are complementary to
this work: we could leverage lightweight instrumen-
tation approaches to reduce the overhead of our data-
collection phase.

6 Conclusion

In this paper, we presented a new approach for visual-
izing program-execution data collected from deployed
instances of a software system. Our technique is
generic enough to enable the representation of differ-
ent kinds of data, and to allow for investigating such
data visually to study the software system’s behavior.
Furthermore, because of its hierarchical approach to
visualization and its coloring, filtering, and summa-
rization capabilities, the technique lets the user effi-
ciently visualize and explore large amounts of data
and large programs.

We presented the Gammatella toolset, which im-
plements our approach, and a feasibility study in
which we used the toolset on a real program deployed
to a set of real users. Besides showing the feasibility
of the approach, the study led to some initial dis-
coveries about the subject program and the way it is
used. Although such discoveries are preliminary, they
provide evidence of the usefulness of the approach.
We also discussed our initial experience with a semi-
public display of Gammatella, in our lab.

The feasibility study and the initial semi-public dis-
play experience also helped us identify a number of
important directions for future work.

First, we will investigate scalability issues. To this
end, we will expand the initial study to involve ad-
ditional participants. We will also consider using
other widely-used and freely-available subjects, such
as open-source software systems. Finally, we will in-
vestigate monitoring at a higher level of abstraction
than statements (e.g., procedures).

Second, we will further investigate the use of the
approach for exception analysis. We will investigate
the use of data-mining techniques to improve the
visualization (e.g., by automatically grouping corre-
lated executions or by automatically excluding some
kinds of exceptions) and consider monitoring and vi-
sualizing different kinds of information, such as fea-
tures usage and memory layouts.

Third, we will investigate additional tasks to which
our approach can be applied. We will select a num-

16



ber of these tasks, apply our visualization approach
to them, and evaluate the results. During these inves-
tigations, we may discover the need for optimization
of the visualization for the specific tasks, such as the
need for different summary colorings in the treemap,
or the need for new visualizations altogether. These
investigations will also give us the opportunity to
make our framework easier to customize, so as to let
users develop their own visualization.

Finally, we will continue our semi-public display ex-
perience, which already provided some initial, useful
feedback.

Acknowledgments

This work was supported in part by National Science
Foundation awards CCR-0306372, CCR-0205422,
CCR-9988294, CCR-0209322, and SBE-0123532 to
Georgia Tech, and by the State of Georgia to Geor-
gia Tech under the Yamacraw Mission. Preeti Bhat
helped with the implementation of the visualization
components in the Program Visualization module of
Gammatella. Anil Chawla co-developed InsECT

and helped with its integration in Gammatella.
Jim McPherson aided in the development and inte-
gration of the tool. John Stasko provided many use-
ful suggestions and comments that helped improve
the work and the paper. The anonymous reviewers
provided comments that helped improve the paper’s
presentation.

References

[1] Aristotle Research Group. Jaba: Java Archi-
tecture for Bytecode Analysis. http://www.

cc.gatech.edu/aristotle/Tools/jaba.html,
2003.

[2] Marla J. Baker and Stephen G. Eick. Space-
filling software visualization. Journal of Visual
Languages and Computing, 6(2):119–133, 1995.

[3] Thomas Ball and Stephen G. Eick. Software vi-
sualization in the large. Computer, 29(4):33–43,
April 1996.

[4] Casey Best, Margaret-Anne D. Storey, and Jeff
Michaud. SHriMP views: An interactive and
customizable environment for software explo-
ration. In Proceedings of International Work-
shop on Program Comprehension (IWPC ’2001),
2001.

[5] Christophe Bouthier. TreeMap Java Library,
2002. http://treemap.sourceforge.net/.

[6] Jim Bowring, Alessandro Orso, and Mary Jean
Harrold. Monitoring deployed software using
software tomography. In Proceedings of the
ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineer-
ing (PASTE 2002), pages 2–8, Nov 2002.

[7] Mark Bruls, Kees Huizing, and Jarke J. van
Wijk. Squarified treemaps. In Proceedings of
the Joint Eurographics and IEEE TCVG Sym-
posium on Visualization, pages 33–42, 2000.

[8] Stephen G. Eick, Joseph L. Steffen, and Eric E.
Sumner. Seesoft – a tool for visualizing line ori-
ented software. IEEE Transactions on Software
Engineering, 18(11):957–968, Nov 1992.

[9] Jim Gray, Donald Slutz, Alexander Szalay, Ani
Thakar, Jan vandenBerg, Peter Kunszt, and
Chris Stoughton. Data Mining the SDSS Sky-
Server Database. Technical Report MSR-TR-
2002-01, Microsoft Research, January 2002.

[10] Elaine M. Huang and Elizabeth D. My-
natt. Semi-public displays for small, co-located
groups. In Proceedings of the Conference on Hu-
man Factors in Computing Systems, pages 49–
56, 2003.

[11] James A. Jones, Mary Jean Harrold, and John
Stasko. Visualization of test information to as-
sist fault localization. In Proceedings of the 24th
International Conference on Software Engineer-
ing (ICSE’01), pages 467–477, May 2001.

[12] John Lamping, Ramana Rao, and Peter Pirolli.
A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies. In
Proceedings of the Conference on Human Factors
in Computing Systems, pages 401–408, 1995.

[13] David Leon, Andy Podgurski, and Lee J. White.
Multivariate visualization in observation-based
testing. In Proceedings of the 22th International
Conference on Software Engineering (ICSE’00),
pages 116–125, June 2000.

[14] Ben Liblit, Alex Aiken, Alice X. Zheng, and
Michael I. Jordan. Bug isolation via remote pro-
gram sampling. In Proceedings of the ACM SIG-
PLAN 2003 Conference on Programming Lan-
guage Design and Implementation, June 2003.

[15] Alessandro Orso, Taweesup Apiwattanapong,
and Mary Jean Harrold. Leveraging field data
for impact analysis and regression testing. In
Proceedings of the European Software Engineer-
ing Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering,
September 2003.

17



[16] Alessandro Orso, James Jones, and Mary Jean
Harrold. Visualization of program-execution
data for deployed software. In Proc. of the ACM
Symposium on Software Visualization, pages 67–
76, Jun 2003.

[17] Alessandro Orso, Donglin Liang, Mary Jean
Harrold, and Richard Lipton. Gamma system:
Continuous evolution of software after deploy-
ment. In Proceedings of the International Sym-
posium on Software Testing and Analysis (IS-
STA’02), pages 65–69, Jul 2002.

[18] Christina Pavlopoulou and Michael Young.
Residual test coverage monitoring. In Proceed-
ings of the International Conference on Software
Engineering, pages 277–284, 1999.

[19] Jonathan B. Postel. RFC821: Simple Mail
Transfer Protocol, 1982. http://www.ietf.

org/rfc/rfc0821.txt.

[20] Steven P. Reiss and Manos Renieris. Encoding
program executions. Proceedings of the 23rd In-
ternational Conference on Software Engineering
(ICSE’01), pages 221–230, may 2001.

[21] Ben Shneiderman. Tree visualization with tree-
maps: A 2-D space-filling approach. ACM
Transactions on Graphics, 11(1):92–99, 1992.

[22] John Stasko, John Domingue, Marc Brown, and
Blaine Price, editors. Software Visualization:
Programming as a Multimedia Experience. MIT
Press, Cambridge, MA, 1998.

[23] John Stasko and Eugene Zhang. Focus+context
display and navigation techniques for enhancing
radial, space-filling hierarchy visualizations. In
Proceedings of the IEEE Symposium on Infor-
mation Visualization, pages 57–65, 2000.

[24] Margaret-Anne D. Storey and Hausi A. Müller.
Manipulating and documenting software struc-
tures using SHriMP views. In Proceedings of
the 1995 International Conference on Software
Maintenance (ICSM ’95).

[25] University of Washington. The IMAP Connec-
tion, 2002. http://www.imap.org/.

18


