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Abstract

This paper presents a technique for computing and clas-
sifying data dependences that takes into account the com-
plexities introduced by specific languageconstructs, such as
pointers, arrays, and structures. The classification is finer-
grained than previously proposed classifications. Moreover,
unlike previous work, the paper presents empirical results
that illustrate the distribution of data dependences for a set
of C subjects. The paper also presents a potential applica-
tion for the proposed classification—program slicing—and
a technique that computes slices based on data-dependence
types. This technique facilitates the use of slicing for pro-
gram understanding because a user can either augment
a slice incrementally, by incorporating data dependences
based on their relevance, or focus on specific kinds of de-
pendences. Finally, the paper presents a case study that
shows how the incremental addition of data dependences
allows for growing the size of the slices in steps.

1 Introduction

Understanding data dependences in programs is a pre-
requisite to several program-comprehension-related activi-
ties, such as reverse engineering, impact analysis, and de-
bugging. In particular, slicing techniques, which are often
used for program understanding, depend on the availability
of reliable information about dependences among program
variables. Such dependences can be identified by comput-
ing definition-use (def-use) associations, which relate state-
ments that assign values to variables to statements that use
those values. The problem of computing def-use associa-
tions in the absence of pointers is relatively straightforward.
In such cases, definitions and uses of variables can be iden-
tified by using only syntactic information. Once definitions
and uses are known, def-use associations can be computed
using a traditional data-flow analysis algorithm [2].

Unfortunately, traditional approaches for computing def-
use associations are inadequate in the presence of pro-
gramming language constructs such as pointers, arrays, and
structures. The possibility of directlyaccessing memory lo-
cations, in languages such as C, complicates the identifica-
tion of definitions and uses in the code. For example, a vari-
able may be accessed at a given statement without syntacti-
cally appearing in it, if the access occurs through a pointer
dereference. Therefore, syntactic information is not suffi-
cient in the presence of pointers, and the set of memory
locations that can be accessed through a dereference must
be determined prior to the computation of def-use associa-
tions. Moreover, because an assignment or use through the
dereference of a pointer can potentially assign a value to, or
use the value of, one of several variables, these indirect as-
signments and uses must be treated differently from direct
(i.e., syntactic) assignments.

In the first part of this paper, we extend previously
presented classification schemes to allow for a more fine-
grained taxonomy of def-use associations. In our scheme,
a def-use association is classified into one of 24 categories.
This classification is based on the kinds of the definition
and the use—either definite or possible—in the def-use as-
sociation, and on the types of paths occurring between the
definition and the use. In this way,each def-use associa-
tion corresponds to a specific kind of data dependence. We
extend the traditional reaching-definition algorithm to com-
pute and classify def-use associations according to our clas-
sification scheme. We also present and discuss empirical
results, for a set of C subjects, about the distribution of def-
use associations into various categories.

In the second part of the paper, we present some pos-
sible applications of the proposed classification. In par-
ticular, we evaluate the effects of classifying data depen-
dences on program slicing: we introduce a slicing paradigm
in which slices are computed by following only specified
types of data dependences. Based on this paradigm, we
present an incremental slicing technique. The technique



can start the analysis of a program by computing slices that
consider only “strong” (i.e., definite) data dependences, and
then augment the slices incrementally by incorporating ad-
ditional, “weaker,” data dependences. This slicing approach
lets the user first focus on a smaller, and thus easier to un-
derstand, subset of the program, and then consider increas-
ingly bigger parts of the code. The technique also provides
a way to isolate the data dependences that are caused by
the presence of pointers. In this way, it is possible to high-
light subtle data dependences that can affect the behavior
of the program in possibly unforeseen ways, and provide
useful information about those dependences. Finally, the
technique offers a way of controlling the size of a slice by
eliminating certain data dependences from the slices. We
also present a case study that we performed to investigate
the practical usability of the presented technique.

The main contributions of the paper are:

• A fine-grained classification of data dependences for
languages, such as C, that let the programmer directly
manipulate memory.

• Empirical results that illustrate the distribution of data
dependences into various categories.

• A new slicing technique that allows for building slices
by considering only a subset of data dependences,
based on their relevance.

• A case study that shows the results of the application
of the slicing technique to a real example.

The rest of the paper in organized as follows. The next
section provides background information about data depen-
dences, alias analysis techniques, and program slicing. Sec-
tion 3 presents a classification scheme for data dependences
and a technique for computing data dependences accord-
ing to the classification. Section 4 illustrates the application
of the data-dependence classification scheme for program
slicing. Section 5 discusses related work. Finally, Section 6
presents conclusions and identifies potential future work.

2 Background

In this section, we define data dependences. We also
briefly describe alias analyses and program slicing.

Data-flow analysis techniques require the control-flow
relation of the program being analyzed. This relation can
be represented as a control-flow graph. Acontrol-flow
graph (CFG) contains nodes, which represent statements,
and edges, which represent potential flow of control among
the statements. In addition, the CFG contains a unique en-
try node and a unique exit node. Foreach call site, the CFG
contains a call node and a return node. For example, Figure
1 presents a sample program and the CFG for the program.
Each node in the CFG represents a statement in the pro-

1  begin M
2    read x

  3    read y
4    if x > y then
5      read x
6      print x

7      print y
     endif
8  end M

     else

def={} use={x}

def={x} use={} def={} use={y}

def={} use={x,y}

def={y} use={}

def={x} use={}
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Figure 1. Sample program to illustrate definitions,
uses, and data dependences (above); control-flow
graph for the program annotated with def and use
sets (below).

gram1 and each edge represents a transfer of control from
the statement represented by the source of the edge to the
statement represented by the target of the edge; nodes 1 and
8 are the entry and exit nodes, respectively.

A statementdefinesa variable if the statement assigns a
value to that variable. A statementusesa variables if the
statement reads the value stored in that variable. For exam-
ple, in the sample program, statement 2 defines variablex ,
statement 3 defines variabley , and statement 4 uses both
x andy . To perform data-flow analyses, we associate two
sets of variables with eachnode in the CFG: thedefinition
set, def (n), for a noden contains those variables that are
defined at noden; theuse set, use(n) contains those vari-
ables that are used at noden. For example, in the sample
program, def(3) ={y} and use(4) ={x , y}.

A pathin a CFG is a sequence of nodes(n1, n2, . . . , nk),
k ≥ 0, such that, ifk ≥ 2, for i = 1, 2, . . . , k − 1,
(ni, ni+1) is an edge in the CFG. Adefinition-clear path
(def-clear path) with respect to a variablev is a path
(i, n1, n2, . . . , nk, j) such that no node inn1, n2, . . . , nk
definesv. For example, in the sample program, (2, 3, 4)
is a def-clear path with respect to variablex , whereas, be-
cause of the definition ofx at node 5, path (2, 3, 4, 5, 6) is

1A CFG can also be built at the basic-block level; in such a CFG, each
node represents a sequence of single-entry, single-exit statements.
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int i;
main() {

int *p;
int j, sum1, sum2;

1. sum1 = 0;
2. sum2 = 0;
3. read i, j;
4. while ( i < 10 ) {
5. if ( j < 0 ) {
6. p = &sum1;

}
else {

7. p = &sum2;
}

8. *p = add( j, *p );
9. read j;

}
10. sum1 = add( j, sum1 );
11. print sum1, sum2;

}

int add( int val, int sum ) {
int *q, k;

12. read k;
13. if ( sum > 100 ) {
14. i = 9;

}
15. sum = sum + i;
16. if ( i < k ) {
17. q = &val;

}
else {

18. q = &k;
}

19. sum = sum + *q;
20. i = i + 1;
21. return sum;

}

Figure 2. Program Sum.

not. A definitiond2 kills a definitiond1 if both d1 andd2

refer to the same variablev, and there exists a def-clear path
betweend1 andd2. For example, the definition ofx at node
5 kills the definition ofx at node 2.

A reaching-definition set, rd(j ), defined with respect to
a nodej, is the set of variable–node pairs< v, i > such that
v ∈ def(i) and there exists a def-clear path with respect to
v from i to j. A data dependenceis a triple(d, u, v) such
thatv ∈ use(u) and< v, d >∈ rd(u). A data dependence is
also referred to as adefinition-use association(def-use as-
sociation, or DUA). The computation of data dependences
can be performed by first computing reaching definitions,
and then examining, for each use, the reaching definitions
for that use.

An alias is a name referring to the same memory loca-
tion as another name, at a given program point. In such a
case, that memory location can be accessed through any of
these two names. An alias relation at program pointn is a
may aliasrelation if the relation holds on some, but not all,
program paths leading up ton. An alias relation at point
n is a must aliasrelation if the relation holds on all paths
up ton. As an example, consider programSum(Figure 2).
On line 8,*p is a may alias forsum1 andsum2, because
it can refer to eithersum1 or sum2, depending on the path
followed to get to statement 8 (i.e., depending on whether
statement 6 or statement 7 is executed). Therefore, the alias
set for*p at statement 8 contains two elements:sum1 and
sum2. A variety of alias-analysis algorithms have been pre-
sented in the literature, which vary in the efficiency and the
precision with which they compute the alias relations (e.g.,
[3, 15, 25, 16]). For the empirical studies reported in this
paper, we used the may-alias information computed by the
flow-sensitive, context-sensitive alias algorithm described
by Landi and Ryder [15].

Program slicingis a technique for identifying transitive
control and data dependences in a program. Abackward
slice for a programP , computed with respect to aslicing
criterion< s, V >, wheres is a program point andV is a
set of program variables referenced ats, includes statements
in P that may influence the values of the variables inV at
s [28].2 There are two alternative approaches to comput-
ing slices that either propagate solutions of data-flow equa-
tions using a control-flow representation [12, 28] or perform
graph reachability on dependence graphs [14, 24]. For this
work, we extended the dependence-graph-based approach
to computing slices [14, 24].

3 Data Dependences in the Presence of Point-
ers

The presence of pointers causes complex data-
dependence relationships. Because of pointers and alias-
ing, it may not be possible to identify unambiguously the
variable that is actually defined (resp., used) at a statement
containing a definition (resp., use). Toaccount for such ef-
fects, we classify data dependences based on two factors:
(1) types of definitions and uses, (2) types of the paths from
the definitions to the uses. In the rest of this section, we
present a new classification scheme that extends the classi-
fication scheme presented by Ostrand and Weyuker [20].

2A slice can also be computed in the forward direction: a forward slice
includes those statements inP that may be influenced by the values of the
variables inV ats.
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Figure 3. Control-flow graphs for program Sum(Figure 2) with definite and possible definition and use sets at
each node.

3.1 Classification of definitions and uses

In the presence of pointers, the traditional data-flow def-
initions, presented in Section 2, prove to be inadequate. In
programs with pointers, accesses to a variable that involve
a dereference of a pointer can potentially access one of sev-
eral variables. The traditional notion of definitions and uses
fails to distinguish suchaccesses from those in which only a
single variable can be referenced. For example, in program
Sum, we can identify unambiguously the variables that are
defined at statement 3—those variables are alwaysi and
j . However, for the definition in statement 8, the variable
that is actually defined is the variable to whichp points at
that statement. Depending on the execution path to that
statement,p can point to different variables: if the predi-
cate in statement 5 is true,p points tosum1 at statement 8,
whereas if the predicate in statement 5 is false,p points to
sum2 at that statement. Thus, statement 8 can potentially
define eithersum1 orsum2. Unlike the definitions ofi and
j at statement 3, however, neither of these two definitions is
definite. To distinguish these types of definitions, we clas-
sify the definitions in statement 3 as definite definitions, and
those in statement 9 as possible definitions.

A definition (resp., use) of variablev through an expres-
sion e at statements is a definite definition(resp.,definite
use) of v if and only if static analysis determines that, at
statements, the only variable that can be accessed through
e is v. A definition (resp., use) of variablev through an
expressione at statements is a possible definition(resp.,

Table 1. Def-use types based on the types of defi-
nitions and uses.

Definite definition Possible definition

Definite use def-use type 1 def-use type 3
Possible use def-use type 2 def-use type 4

possible use) if and only if static analysis determines that,
at statements, a set of variablesV can be accessed through
e, wherev ∈ V andV contains at least two elements. Note
that an access to a variable through a pointer dereference,
such that the pointer can point to a single variable, is still
considered a possible definition (use) of that variable. This
occurs because of the limitations of static analysis in ap-
proximating the dereferenced memory locations in certain
cases, such as when the dereferenced location is an element
of an array or a heap element. For example, consider a
statementn, p = &a[i] , where the index variablei is
a loop-control variable or is passed in as a parameter to the
procedure that contains the statement. In this case, static
analysis cannot determine all memory locations to which
*p can be aliased to atn; typically, static analysis would
approximate the aliases of*p with a single element alias
set—{a[] }. Although the alias set for*p contains a single
element, a definition or use that occurs through*p is not a
definite definition or definite use. A similar problem occurs
if *p is aliased to a heap location. Therefore, to preserve the
safety of the reaching-definition analysis in the presence of
such alias relations, definition and uses that occur through
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Table 2. Classification of Π—paths from definitions to uses—after incorporating the occurrences of definite
killing paths. The last base type for Π is listed only to illustrate the completeness of the base cl assification of
Π; for such base types of Π, the definitions and uses do not constitute def-use associations.

Base type ofΠ Occurrence of definite killing path inΠ Extended type ofΠ

no possible def-clear ∀π ∈ Π: π is not definite killing DRD-K
∃π ∈ Π: π is definite killing DRD+K

some possible def-clear ∀π ∈ Π: π is not definite killing DPRD-K
∃π ∈ Π: π is definite killing DPRD+K

all possible def-clear ∀π ∈ Π: π is not definite killing PRD-K
∃π ∈ Π: π is definite killing PRD+K

all definite kill ∀π ∈ Π: π is definite killing N/A

single-element alias sets are classified as possible.
Because each definition is either definite or possible, we

associate with eachnode in the CFG two sets of definitions:
the definite-definition set, ddef (n), for a noden contains
those variables that are definitely defined at noden; the
possible-definition set, pdef (n), for a noden contains those
variables that are possibly defined at noden. Analogously,
we associate with eachnode in the CFG two sets of uses:
the definite-use set, duse(n), for a noden contains those
variables that are definitely used at noden; thepossible-use
set, puse(n), for a noden contains those variables that are
possibly used at noden. For example, Figure 3 shows the
CFGs for the procedures inSum, and lists the ddef, pdef,
duse, and puse sets for eachnode; for clarity, we show only
the non-empty sets ateachnode in the figure.

Based on the types of definitions and uses, it is thus pos-
sible to have four types of def-use associations, shown in
Table 1.

3.2 Classification of def-clear paths

The second dimension for the classification of a def-use
association considers the types of paths from the definition
to the use. Let(d, u, v) be a def-use association. In the
absence of the effects of pointer variables, it is sufficient
to classify each pathπ from d to u into one of two types,
based on whether the definition atd is killed along pathπ.
However, the presence of possible definitions introduces an
additional category in whichπ can be classified: a definition
may be possibly killed alongπ. Thus, in the presence of
pointers, we classifyπ into one of three types:

A definite def-clear pathwith respect to variablev is
a path(i, n1, n2, . . . , nk, j) such that no node inn1, n2,
. . . , nk contains either a definite or a possible definition of
v. For example, in programSum, path (1, 2, 3, 4, 10a) is a
definite def-clear path with respect to variablesum1.

A possible def-clear pathwith respect to variablev is a
path(i, n1, n2, . . . , nk, j) such that there exists at least one

ni, 1 ≤ i ≤ k, that contains a possible definition ofv, but
no node inn1, n2, . . . , nk contains a definite definition ofv.
For example, in programSum, the path (8a, 8b, 9, 4, 10a)
is a possible def-clear path with respect to variablesum1,
becausenode 8b contains a possible definition ofsum1 and
no other node in the path contains a definite definition of
sum1.

A definite killing pathwith respect to variablev is a path
(i, n1, n2, . . . , nk, j) such that there exists at least oneni,
1 ≤ i ≤ k, that contains a definite definition ofv. For ex-
ample, in programSum, the path (10a, 10b, 11) is a definite
killing path with respect to variablesum1, becausenode
10b contains a definite definition ofsum1.

Based on the above definitions, we classify the set of
paths from the definition to the use for a def-use association.
Let (d, u, v) be a def-use association and letΠ be the set of
paths fromd to u; we classifyΠ into one of three types:

1. Π is no possible def-clearif and only if there exists at
least one path inΠ that is a definite def-clear path with
respect tov, and no path inΠ is a possible def-clear
path with respect tov.

2. Π is some possible def-clearif and only if there exists
at least one path inΠ that is a definite def-clear path
with respect tov, and there exists at least one path in
Π that is a possible def-clear path with respect tov.

3. Π is all possible def-clearif and only if there exists
at least one path inΠ that is a possible def-clear path
with respect tov, and no path inΠ is a definite def-
clear path with respect tov.

For example, in programSum, for def-use association
(1, 8a,sum1), Π is no possible def-clear; for def-use as-
sociation (8b, 11,sum2), Π is all possible-def clear; and,
for def-use association (2, 11,sum2), Π is some possible
def-clear.

To investigate further the occurrences of various types
of def-use associations and the significance of those occur-
rences, we extend the above classification by considering
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Table 3. Classification of def-use associations: 24 types that result from a cross product of def-use types
(Table 1) and the second alternative for path classification (column 3 of Table 2).

def-use type 1 def-use type 2 def-use type 3 def-use-type 4

DRD-K DUA type 1 DUA type 7 DUA type 13 DUA type 19
DPRD-K DUA type 2 DUA type 8 DUA type 14 DUA type 20
DRD+K DUA type 3 DUA type 9 DUA type 15 DUA type 21
DPRD+K DUA type 4 DUA type 10 DUA type 16 DUA type 22
PRD-K DUA type 5 DUA type 11 DUA type 17 DUA type 23
PRD+K DUA type 6 DUA type 12 DUA type 18 DUA type 24

Table 4. Def-use associations, with their types, that occur in program Sum.

Def-use association Type Def-use association Type Def-use association Type
(1, 8a,sum1) type 8 (1, 10a,sum1) type 2 (2, 8a,sum2) type 8
(2, 11,sum2) type 2 (3, 4, i ) type 1 (3, 5,j ) type 3

(3, 8a,j ) type 3 (3, 10a,j ) type 3 (6, 8a,p) type 3
(7, 8a,p) type 3 (8a, 8a,sum1) type 20 (8a, 10a,sum1) type 14

(8a, 8a,sum2) type 20 (8a, 11,sum2) type 14 (9, 5,j ) type 3
(9, 8a,j ) type 3 (9, 10a,j ) type 3 (10a, 11,sum1) type 1

(12, 16,k) type 1 (12, 19,k) type 7 (14, 15,i ) type 1
(14, 16,i ) type 1 (14, 20,i ) type 1 (15, 19,sum) type 1
(17, 19,q) type 1 (18, 19,q) type 1 (19, 21,sum) type 1

the occurrences of definite killing paths inΠ. As a result,
we obtain six types of paths from definitions to uses, which
are summarized in Table 2. For completeness, in Table 2
we also mention a fourth type ofΠ, all definite kill. We do
not consider this type in our classification because it refers
to the case in which all the paths between the definition and
the use are definitely not def-clear, and therefore the defini-
tion and the use are not part of a def-use association.

3.3 Classification of def-use associations

We classify def-use associations based on the types of
the definition and the use (Table 1) and the types of the path
between the definition and the use (Table 2). This cross
product results in 24 types of def-use associations, shown
in Table 3. Table 4 lists all the def-use associations that
occur in programSum, together with their types.

Our classification scheme extends the one proposed by
Ostrand and Weyuker [20]. Ostrand and Weyuker's ap-
proach is coarser with respect to two different aspects. First,
Ostrand and Weyuker do not distinguish sets of paths based
on the presence of definite killing path (i.e., they classify
paths according to the classification in column 1 of Table 2).
Second, although such a classification allows for identify-
ing 12 types of def-use associations, Ostrand and Weyuker
consider separately only three of these types:strongdef-
use association (def-use type 1, no possible def-clear paths),

firm def-use association (def-use type 1, some possible def-
clear paths), andweakdef-use association (def-use type 1,
all possible def-clear paths). They group the remaining
nine types—in which either the definition or the use is not
definite—into one type, which they callvery weakdef-use
association.

3.4 Computation of def-use associations

To compute the different types of def-use associations
identified in the previous section, we modify both steps
of the traditional algorithm for computing def-use associ-
ations: (1) the computation of reaching definitions using
data-flow equations, and (2) the computation of the def-use
associations using the reaching definitions.

The traditional algorithm for computing reaching defi-
nitions propagates iteratively a set of data-flow facts—the
definite reaching definitions—until the value of the set at
each statement reaches a fixed point. To compute the value
of the set at each statement, the algorithm uses a pair of
equations. The first equation describes the value of the set
at the beginning of a statement, based on the value of the
set at the end of each control-flow predecessor of the state-
ment. The second equation describes the value of the set
at the end of a statement, based on the transformation of
the set by the statement. To facilitate the identification of
each of the 24 types of def-use associations, we extend the
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Figure 4. Distribution of data-dependence types using our classification and Ostrand and Weyuker's classifica-
tion; types 12, 18, 21, and 24 did not occur in the subjects.

reaching-definition algorithm to propagate two additional
sets of data-flow facts at each statement. The first set con-
tains the possible definitions that reach a statement; the sec-
ond set contains the killed definitions that reach a statement.
The extended algorithm computes the three sets iteratively
until the sets converge. To compute each of the additional
sets, the algorithm uses a pair of data-flow equations that
describe, respectively, the values of the sets at the begin-
ning and the end of a statement; Reference [19] provides
details of the algorithm and the data-flow equations.

In the second step of computing def-use associations, the
algorithm performs set operations on the three sets com-
puted during the first step to identify definitions that reach
each statement along each of the six types of paths listed in
column 3 of Table 2. Finally, using the types of the reaching
definitions, the types of the uses, and the types of the paths
along which the definitions reach the uses, the algorithm
computes and classifies the def-use associations [19].

The time and space complexity of the extended algo-
rithm is similar to that of the traditional algorithm. The ex-
tended algorithm computes two additional sets of data-flow
facts; however, these sets can be represented and manipu-
lated efficiently using bit vectors. The iterative propagation
can be implemented efficiently using a depth-first ordering
of the nodes in the CFG [2]. The extended algorithm com-
putes the same number of def-use associations as the tradi-
tional algorithm.

3.5 Distribution of data-dependence types

To investigate the distribution of data dependences into
various types, we implemented a prototype and performed
empirical studies with a set of C subjects. We imple-

mented the reaching-definition algorithm using the ARIS-
TOTLE analysis system [13]. To account for the effects
of aliases, we replaced the ARISTOTLE front-end with
the PROLANGS Analysis Framework (PAF) [10]. We
used PAF to gather control-flow, local data-flow, alias, and
symbol-table information; we then used this information to
interface with the ARISTOTLE tools. We used the programs
listed in Table 5 for the empirical studies.

Table 5. Programs used for the empirical studies
reported in the paper.

Subject Description LOC

armenu Aristotle Analysis system interface 11320
dejavu Regression test selector 3166
lharc Compress/extract utility 2550
replace Search-and-replace utility 551
space Parser for antenna array description6201

language
tot info Statistical information combiner 477
unzip Compress/extract utility 2906

Figure 4 illustrates the distribution of data-dependence
types for the subjects. Each bar in the figure corresponds
to a data-dependence type and represents the percentage of
data-dependences for that type. The data in the figure il-
lustrate that data dependences fall predominantly into only
a few types. DUA type 1, DUA type 3, and DUA type 20
occur most frequently: together these three types account
for over 86% of the total data dependences. These types
along with DUA types 19 and 20 together constitute 99.4%
of data dependences. Of the remaining 19 types of data
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dependences, 15 types occur in marginal numbers and ac-
count for the remaining 0.6% of the data dependences. The
remaining 4 types of data dependences—types 12, 18, 21,
and 24—do not occur in the subjects; these types are not
listed along the horizontal axis in Figure 4.

The results of this study are preliminary in nature. Al-
though the data in Figure 4 shows trends in the distribution
of data-dependence types, the scarcity of the data points,
prevents us from drawing any conclusions about the dis-
tribution. Further experimentation with more and diverse
subjects will help determine if trends, such as the frequent
occurrence of DUA type 23, persist. The data in the fig-
ure shows that for over 24% of the data dependences, no
path from the definition to the use contains a redefinition
of the relevant variable. This result is important for struc-
tural testing because it means that a test case that covers the
definition and use statements also covers the corresponding
def-use association.

The last four bars in Figure 4 show the distribution of
data-dependence types according to Ostrand and Weyuker's
classification [20]. According to their classification, over
60% of the data dependences are strong, and over 39%
of the data dependences are very weak. Firm and weak
data dependences constitute a little over 1% of data depen-
dences.

4 Applications of the Data-Dependence Clas-
sification

The ability to classify data dependences can be exploited
for different applications. For example, data dependences
that are ordered based on their “strength” can guide a data-
flow testing strategy [9], can be used to perform impact
analyses focused on different kinds of dependences, and can
be analyzed to identify parts of the code where possibly un-
foreseen data dependences require careful software inspec-
tions. In short, all activities that depend on data-dependence
information can utilize such a classification. In this pa-
per, we focus on an application that is related to program
understanding—program slicing. In the following section,
we define a slicing technique that lets us compute slices
based on data-dependence types; we also illustrate a case
study in which we apply the technique.

4.1 Program Slicing

Traditional slicing techniques (e.g., [12, 14, 28]) include
in the slice all statements that affect the slicing criterion
through direct or transitive control and data dependences.
Such techniques compute the slice by computing the transi-
tive closure of all control and all data dependences starting
at the slicing criterion. The classification of data depen-
dences into different types leads to a new paradigm for slic-
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Figure 5. Percentage of slices for unzip —in each
of slice sets for data-dependence types 1, 1–3, and
1–24—that included various percentages of pro-
gram statements.

ing, in which the transitive closure is performed over only
the specified types of data dependences, rather than over all
data dependences. In this slicing paradigm, a slicing crite-
rion is a triple< s, V, T >, wheres is a program point,V is
a set of program variables referenced ats, andT identifies
one or more types of data dependences. The slice includes
those statements that may affect the value of the variables in
V at s through transitive control or specified types of data
dependences.

Using the new slicing paradigm, we define a slicing tech-
nique that increases the scope of a slice incrementally by
including data dependences of different types. The tech-
nique starts by considering the stronger types of data de-
pendences and computes the slice based on those data de-
pendences. Then, it increments the slice by considering ad-
ditional types of (weaker) data dependences and adding to
the slice statements that affect the slicing criterion through
the weaker data dependences. This technique offers several
advantages. First, it focuses the attention on specific types
of data dependences and enables us to consider in stages the
effects of various types of data dependences on slices. Sec-
ond, it enables us to control the size of a slice by eliminating
certain dependences initially and incorporating them later if
required.

The new slicing paradigm and the incremental slicing
technique apply to both the data-flow-based [12, 28] and
the dependence-graph-based [14, 24] approaches for com-
puting slices. To perform the case study, we extended
the dependence-graph-based approach to represent data-
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dependence types.

4.2 Case Study for Slicing

To investigate the performance of the new slicing tech-
nique, we used the prototype for classifying data depen-
dences and extended the dependence-graph-based slicer in
the ARISTOTLE analysis system. We selected one subject,
unzip , for the study. Based on the distribution of data-
dependence types inunzip , we computed three sets of
slices: the first set were based only on DUA type 1, the
second set included DUA types 1 through 3, and the last set
included all DUA types.

Figure 5 presents data to illustrate the growth in sizes
of the slices in each set. It shows the distribution of the
slices for unzip according to their sizes. The vertical axis
represents the percentage of the slices forunzip (we com-
puted 1861 slices forunzip ); each segmented bar repre-
sents slices from one set; and the segments in the bar repre-
sent various ranges of the slice sizes. The figure illustrates
how the distribution changed from one set to the next. In
the first set of slices, which were computed by considering
only DUA type 1, each slice contains fewer than 20% of the
program statements. However, when we also consider DUA
types 2 and 3, 45% of the slices contain between 20% and
40% of the program statements. In the third set of slices,
which were computed by considering all types of data de-
pendences, over 73% of the slices contain between 40% and
60% of the program statements.

Although the differences in the slice sizes between the
first two sets are not related to the presence of pointers3,
the differences themselves are significant. Thus, the incre-
mental slicing approach appears promising in reducing the
sizes of slices. The differences in the sizes of the slices be-
tween the second and third sets are related to the effects of
pointers. We examined manually the differences in some
of the slices and found that the slices in the third set in-
cluded statements that were related by subtle, hard-to-detect
pointer-induced data dependences. The technique, thus, ap-
pears to be useful in isolating, and focusing attention on,
such dependences. In future work, we intend to conduct
more extensive empirical studies to evaluate the effective-
ness of the slicing technique.

5 Related Work

Ostrand and Weyuker [20] extend the traditional data-
flow testing techniques [9, 22] to programs that contain
pointers and aliasing. To define testing criteria that ade-
quately test the data-flow relationships in programs with

3This occurs becauseunzip contained no DUA type 2. Therefore, the
second set of slices were based on DUA types 1 and 3, neither of which
involve pointers.

pointers, they consider the effects of pointers and aliasing
on definitions and uses. They classify definitions, uses,
and def-clear paths depending on the occurrences of pointer
dereferences in those entities. Based on these classifi-
cations, they identify four types of def-use associations:
strong, firm, weak, and very weak. The strong def-use as-
sociation corresponds to DUA types 1 and 3 in our clas-
sification; the firm def-use association corresponds to DUA
types 2 and and 4; the weak def-use association corresponds
to DUA types 5 and 6; and finally, the very weak def-use
association correspond to the remaining 18 types of def-
use associations in our scheme. Our classification is finer
grained. Ostrand and Weyuker's classification groups sev-
eral types of dependences together, and thus, may miss the
differences caused by such dependences.

Pande, Landi, and Ryder [21] describe an algorithm for
computing interprocedural reaching definitions in the pres-
ence of pointers. They definea conditional reaching defi-
nition as a reaching definition that holds under the assumed
conditions for aliasing.

Merlo and Antoniol [18] present techniques to identify
implications among data dependences in the presence of
pointers. They also distinguish definite and possible defi-
nitions and uses and, based on these, identify definite and
possible data dependences. The definite data dependence
corresponds to data-dependence types 1 and 3 in our classi-
fication, whereas the possible data dependence corresponds
to types 2, 4–6, 8, 10–12, 14, 16–18, 20, and 22–24; the
remaining types in our classification fall in neither the defi-
nite nor the possible data-dependence category in Merlo and
Antoniol's classification.

Several researchers have considered the effects of point-
ers on program slicing and have presented results to per-
form slicing more effectively in the presence of pointers
(e.g. [1, 4, 6, 7, 17]). Some researchers have also evalu-
ated the effects of the precision of the pointer analysis on
subsequent analyses, such as the computation of def-use as-
sociations (e.g., [26]) and program slicing (e.g., [5, 16, 23]).
However, none of that work considers definitions, uses, and
def-use associations in terms of the certainty with which
those entities occur. Tonella and colleagues [27] analyze
the effects of the precision of the reaching-definition com-
putation on def-use associations.

Other researchers (e.g., [8, 11]) have investigated vari-
ous ways to reduce the sizes of slices. However, they have
not considered classifying data dependences and computing
slices based on different types of data dependences.

6 Summary and Future Work

In this paper, we presented a technique for comput-
ing and classifying data dependences in programs that use
pointers. Our classification is finer grained with respect to
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previously presented classifications, and allows for parti-
tioning of data dependences into 24 types, based on their
“strength.” We also presented the first set of experimental
results that illustrates the distribution of data dependences
for a set of C subjects. Although we can draw no conclu-
sive inference, the data gathered so far show trends that are
worth further investigation.

We illustrated a potential application of the proposed
classification for program slicing. Our slicing technique lets
the user first focus on a smaller, thus easier to understand,
subset of the program, and then consider increasingly big-
ger parts of the code. We have also presented a case study
that shows how the addition of “weak” data dependences
allows for incrementally growing the size of the slices.

In future work, we will conduct further empirical stud-
ies to evaluate both the distribution of the data dependences
and the effectiveness of the incremental slicing technique.
Our future work also includes the extensions of our proto-
type to use a different, more efficient, alias analysis algo-
rithm. This improvement will allow us (1) to perform ex-
periments on subjects of bigger size, and (2) to study the
relation between the distribution of data dependences and
the precision of the underlying alias analysis. We also plan
to perform a study of the source code of the subjects try-
ing to identify patterns in that code that can cause specific
types of data dependences. We believe that such patterns
could be of great help to tune program-analysis algorithms
and provide guidelines for programmers.
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