
Classifying Data Dependences in the Presence of

Pointers for Program Comprehension, Testing, and

Debugging

ALESSANDRO ORSO, SAURABH SINHA, and MARY JEAN HARROLD

College of Computing, Georgia Institute of Technology

Understanding data dependences in programs is important for many software-engineering activ-

ities, such as program understanding, impact analysis, reverse engineering, and debugging. The

presence of pointers can cause subtle and complex data dependences that can be difficult to un-

derstand. For example, in languages such as C, an assignment made through a pointer dereference

can assign a value to one of several variables, none of which may appear syntactically in that state-

ment. In the first part of this paper, we describe two techniques for classifying data dependences
in the presence of pointer dereferences. The first technique classifies data dependences based on
definition type, use type, and path type. The second technique classifies data dependences based
on span. We present empirical results to illustrate the distribution of data-dependence types and
spans for a set of real C programs. In the second part of the paper, we discuss two applications
of the classification techniques. First, we investigate different ways in which the classification can

be used to facilitate data-flow testing. We outline an approach that uses types and spans of data
dependences to determine the appropriate verification technique for different data dependences;

we present empirical results to illustrate the approach. Second, we present a new slicing approach
that computes slices based on types of data dependences. Based on the new approach, we define
an incremental slicing technique that computes a slice in multiple steps. We present empirical re-
sults to illustrate the sizes of incremental slices and the potential usefulness of incremental slicing

for debugging.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; Testing tools; D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement—Restructuring, reverse engineering, and reengineering ; D.2.8 [Software Engi-

neering]: Metrics—Complexity measures

General Terms: Algorithms,Experimentation,Measurement

Additional Key Words and Phrases: Data dependences, data-flow testing, debugging, incremental

slicing, pointers, program comprehension, program slicing

This work was supported in part by a grant from Boeing Commercial Airplanes to Georgia Tech, by

National Science Foundation awards CCR-0306372, CCR-0205422, CCR-9988294, CCR-0209322,

and SBE-0123532 to Georgia Tech, and by the State of Georgia to Georgia Tech under the Ya-
macraw Mission.

Authors’ address: College of Computing, Georgia Institute of Technology, 801 Atlantic Drive,
Atlanta, GA 30332

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20Y ACM 0164-0925/20Y/0500-0001 $5.00

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y, Pages 1–40.

2 · Alessandro Orso et al.

1. INTRODUCTION

Understanding data dependences in programs is important for many software-
engineering activities, such as program understanding, impact analysis, reverse
engineering, and debugging. In fact, the effectiveness of such activities depends, to
a large extent, on the availability of reliable information about data dependences
among program variables. Such dependences relate statements that assign values
to variables to statements that use those values. In the absence of pointers, defi-
nitions and uses of variables can be identified by using only syntactic information.
However, the use of pointers can cause subtle and complex data dependences that
can be difficult to understand. For example, an assignment made through a pointer
dereference, in a language such as C, can assign a value to one of several variables,
none of which may appear syntactically in that statement. Understanding the data
dependences caused by such assignments is more difficult than understanding the
dependences caused by direct (i.e., syntactic) assignments.

To assist software developers in the complex task of understanding data depen-
dences, we have developed two techniques for classifying data dependences based
on their characteristics. We have also investigated the application of the techniques
to data-flow testing and debugging.

In the first part of this paper, we present our two techniques for classifying
data dependences. The first technique classifies a data dependence based on the
types of definition and use and the types of paths between the definition and the
use. This technique distinguishes data dependences based on their strength, that
is, the likelihood that a data dependence identified statically occurs dynamically.
The technique extends the classification presented by Ostrand and Weyuker [1991]
to provide a finer-grained and more general taxonomy of data dependences. The
second technique classifies data dependences based on their spans. The span of
a data dependence identifies the extent (or the reach) of that data dependence in
the program, either at the procedure level or at the statement level. To compute
and classify data dependences according to our classification schemes, we extend
an existing algorithm for computing interprocedural data dependences.

The main benefit of these classification techniques is that they provide addi-
tional information about data dependences—information that can be used to com-
pare, rank, prioritize, and understand data dependences, and can benefit software-
engineering activities that use such dependences. In the first part of the paper, we
also present empirical results to illustrate the distribution of types and spans of
data dependences for a set of real C programs.

In the second part of the paper, we present two applications of the classification
techniques. In the first application, we investigate how the classification techniques
can be used to facilitate data-flow testing. Although data-flow testing techniques
[Frankl and Weyuker 1988; Rapps and Weyuker 1985] have long been known, they
are rarely used in practice, primarily because of their high costs [Beizer 1990].
The main factors that contribute to the high costs are (1) the large number of
data dependences to be covered, a number of which may be infeasible,1 (2) the

1A data dependence is infeasible if there exists no input to the program that causes that association

to be exercised.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 3

difficulty of generating test inputs to cover the data dependences, and (3) the
expensive program instrumentation required to determine the data dependences
that are covered by test inputs.

We investigate how classifying data dependences can help reduce the costs of
data-flow testing by providing ways to order data dependences for coverage, to
estimate the extent of data-flow coverage achieved through less-expensive testing,
and to suggest the appropriate verification technique based on the types of data
dependences that occur in a program. In the absence of information about data
dependences, all data dependences are treated uniformly for data-flow testing. By
providing information about various characteristics of a data dependence, the clas-
sification techniques can provide testers not only guidance in ordering data depen-
dences for coverage, but also help in generating test inputs to cover them. We
outline an approach that uses types and spans of data dependences to determine
the appropriate verification technique for different data dependences and present
empirical results to illustrate the approach.

In the second application, we present a new slicing approach that computes
program slices [Weiser 1984] by considering only a subset of data dependences.
This approach lets developers focus only on particular kinds of data dependences
(e.g., strong data dependences) and provides a way to reduce the sizes of slices,
thus making the slices more manageable and usable.

Based on the new slicing approach, we present an incremental slicing technique
that computes a slice in steps by incorporating different types of data dependences
at each step. Consider, for instance, the use of slicing for program comprehension.
When developers are trying to understand just the overall structure of a program,
they can ignore weaker data dependences and focus on stronger data dependences
only. To do this, they can use the incremental slicing technique to start the analysis
by considering only stronger data dependences, and then augment the slice incre-
mentally by incorporating additional weaker data dependences. This approach lets
developers focus initially on a smaller, and thus potentially easier to understand,
subset of the program and then consider increasingly larger parts of the program.
Alternatively, for applications such as debugging, developers may want to start fo-
cusing on weak, and therefore not obvious, data dependences. By doing this, they
can identify subtle pointer-related dependences that may cause unforeseen behav-
ior in the program. For debugging, the approach also lets developers focus on only
those data dependences that are related to the failure.

To evaluate our incremental slicing approach, we implemented the technique—
by extending the SDG-based approach for slicing [Horwitz et al. 1990; Reps et al.
1994; Sinha et al. 1999]—and performed two empirical studies. The first study
shows the potential usefulness of the approach for reducing the fault-detection time
during debugging. The second study shows that the results of incremental slicing
generalize over a number of subjects, thus making the technique more likely to be
applicable.

The main contributions of the paper are:

—Two techniques, one based on data-dependence types and the other based on
data-dependence spans, for classifying data dependences in languages such as C.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

4 · Alessandro Orso et al.

—Empirical results that illustrate the occurrences of data-dependence types and
spans for a set of real C programs.

—Application of the classification techniques to facilitate data-flow testing.

—Empirical results that demonstrate how the classification can be used to estimate
data-flow coverage and select the appropriate verification technique for data de-
pendences.

—A new approach for slicing, in which slices are computed based on types of data
dependences, and an incremental slicing technique that computes a slice in steps
by incorporating additional types of data dependences at each step.

—Empirical studies that illustrate the sizes of incremental slices and the usefulness
of incremental slicing for debugging.

The rest of the paper is organized as follows. In the next section, we present
background material. In Section 3, we present our techniques for classifying data
dependences in the presence of pointers; we also present empirical data to illustrate
the distribution of data dependences for a set of C programs. In Section 4, we
present two applications of the classification techniques. First, in Section 4.1, we
discuss how the classification can be applied to data-flow testing. Second, in Section
4.2, we present a new slicing approach in which slices are computed based on
data-dependence types; based on the approach, we present an incremental slicing
technique. In Section 5, we discuss related work, and finally, in Section 6, we present
conclusions and identify potential future work.

2. BACKGROUND

In this section, we present background material for the paper: data-flow analysis,
alias analysis, data-flow testing, and program slicing.

2.1 Data-flow analysis

Data-flow analysis techniques require the control-flow relation of the program being
analyzed. This relation can be represented in a control-flow graph. A control-flow

graph (CFG) contains nodes that represent statements,2 and edges that represent
potential flow of control among the statements. In addition, the CFG contains a
unique entry node and a unique exit node. For each call site, the CFG contains a
call node and a return node. For example, Figure 1 presents program Sum1 and the
CFGs for the procedures in the program.

A statement defines a variable if the statement assigns a value to that variable.
A statement uses a variable if the statement reads the value of that variable. For
example, in Sum1, statement 1 defines variable i and statement 4 uses i; statement
9 uses j and sum and defines sum. To compute data dependences, the nodes in a
CFG are annotated with two sets of variables: the definition set, def (n), for a node
n contains those variables that are defined at node n; the use set, use(n), contains
those variables that are used at node n. For example, in Sum1, def(9) = {sum}, and
use(9) = {j, sum}.

2A CFG can also be built at the basic-block level; in such a CFG, each node represents a sequence

of single-entry, single-exit statements.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 5

int i, j;

main() {

int sum;

1 read i;

2 read j;

3 sum = 0;

4 while (i < 10) {

5 sum = add(sum);

}

6 print sum;

}

int add(int sum) {

7 if (sum > 100) {

8 i = 9;

}

9 sum = sum + j;

10 read j;

11 i = i + 1;

12 return sum; }

11

exit

use={i}
def={i}

use={j,sum}
def={sum}

9

1

2

3

entry

4

exit

6

entry

use={sum}12

def={j}10

use={sum}

def={i}

T
F
7

8

F T

def={i}

def={j}

5a

5b

use={sum} use={sum}

def={sum}

def={sum}

use={i}

Fig. 1. Program Sum1 to illustrate definitions, uses, and data dependences (top); control-flow

graphs for the program annotated with def and use sets (bottom).

A path in a CFG is a sequence of nodes (n1, n2, . . . , nk), k ≥ 0, such that, if
k ≥ 2, for i = 1, 2, . . . , k − 1, (ni, ni+1) is an edge in the CFG. A definition-clear

path (def-clear path) with respect to a variable v is a path (y, n1, n2, . . . , nk, z) such
that no node in n1, n2, . . . , nk defines v. For example, in Sum1, (7, 9, 10, 11) is a
def-clear path with respect to variable i, whereas, because of the definition of i at
node 8, path (7, 8, 9, 10, 11) is not. A definition d2 kills a definition d1 if both d1

and d2 refer to the same variable v, and there exists a def-clear path with respect
to v from d1 to d2. For example, the definition of i at node 11 kills the definition
of i at node 8.

A reaching-definition set, rd(z), defined with respect to a node z, is the set of
variable–node pairs 〈v, y〉 such that v ∈ def(y) and there exists a def-clear path with
respect to v from y to z. A data dependence is a triple (d, u, v), defined with respect
to nodes d and u and variable v, such that v ∈ use(u) and 〈v, d〉 ∈ rd(u). A data
dependence is also referred to as a definition-use association (def-use association or
DUA). The computation of data dependences can be performed by first computing
reaching definitions, and then examining, for each use, the reaching definitions for
that use [Aho et al. 1986].

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

6 · Alessandro Orso et al.

int i;

main() {

int *p;

int j, sum1, sum2;

1. sum1 = 0;

2. sum2 = 0;

3. read i, j;

4. while (i < 10) {

5. if (j < 0) {

6. p = &sum1;

}

else {

7. p = &sum2;

}

8. *p = add(j, *p);

9. read j;

}

10. sum1 = add(j, sum1);

11. print sum1, sum2;

}

int add(int val, int sum) {

int *q, k;

12. read k;

13. if (sum > 100) {

14. i = 9;

}

15. sum = sum + i;

16. if (i < k) {

17. q = &val;

}

else {

18. q = &k;

}

19. sum = sum + *q;

20. i = i + 1;

21. return sum;

}

Fig. 2. Program Sum2.

2.2 Alias analysis

In languages that contain usage of pointers, the computation of data dependences
requires the identification of alias relations. An alias occurs at a program point
if two or more names refer to the same memory location at that point. An alias
relation at program point n is a may alias relation if the relation holds on some,
but not all, program paths leading up to n. An alias relation at point n is a
must alias relation if the relation holds on all paths up to n. As an example,
consider program Sum2 (Figure 2).3 In line 8, *p is a may alias for sum1 and sum2,
because it can refer to either sum1 or sum2, depending on the path followed to reach
statement 8 (i.e., depending on whether statement 6 or statement 7 is executed).
Alias analysis or points-to analysis determines, at each statement that contains a
pointer dereference, the set of memory locations that can be accessed through the
dereference. For example, the alias set for *p at statement 8 contains two elements:
sum1 and sum2. A variety of alias-analysis algorithms have been presented in the
literature; these algorithms vary in the efficiency and the precision with which they
compute the alias relations (e.g., [Andersen 1994; Landi and Ryder 1992; Liang and
Harrold 1999a; Steensgaard 1996]).

2.3 Data-flow testing

Data-flow testing techniques use the data-flow relationships in a program to guide
the selection of test inputs (e.g., [Harrold and Soffa 1991; Laski and Korel 1983;
Ntafos 1984; Rapps and Weyuker 1985]). For example, the all-defs criterion [Frankl
and Weyuker 1988; Rapps and Weyuker 1985] requires the coverage of each defini-
tion in the program to some reachable use; the stronger all-uses criterion requires

3Sum2 is an extension of Sum1 with the addition of pointers; it is overly complicated to illustrate

our technique and the complex dependences that can be caused by pointers.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 7

the coverage of each data dependence in the program. Other criteria require the
coverage of chains (of different lengths) of data dependences [Ntafos 1984].

2.4 Program slicing

A program slice of a program P, computed with respect to a slicing criterion 〈s, V 〉,
where s is a program point and V is a set of program variables, includes statements
in P that may influence, or be influenced by, the values of the variables in V at
s [Weiser 1984]. A program slice identifies statements that are related to the slicing
criterion through transitive data and control dependences.4

Interprocedural slicing techniques based on the system-dependence graph (SDG)
[Horwitz et al. 1990; Sinha et al. 1999] and data-flow equations [Harrold and Ci
1998; Weiser 1984] form two alternative, general classes of slicing techniques. For
this work, we extend the SDG-based slicing approach [Horwitz et al. 1990; Reps
et al. 1994; Sinha et al. 1999] (the approach based on data-flow equations [Harrold
and Ci 1998; Weiser 1984] could be extended similarly). The SDG-based approach
precomputes all dependences and represents them in the SDG, and then computes
slices using graph reachability.

Unlike static slicing techniques, which consider dependences that can occur in
any execution of a program, dynamic slicing techniques [Agrawal and Horgan 1990;
Korel and Laski 1988] consider only those dependences that occur in a particular
execution of the program; dynamic slicing techniques, thus, ignore those static de-
pendences that do not occur in that execution. A dynamic slicing criterion contains
an input to the program, an instance of a program statement in the execution trace,
and a set of variables.

3. DATA DEPENDENCES IN THE PRESENCE OF POINTERS

In the presence of pointer dereferences, it may not be possible to identify unam-
biguously the variable that is actually defined (or used) at a statement containing a
definition (or use) [Horwitz 1997]. To account for such effects, we developed a tech-
nique for classifying data dependences into different types; this technique extends
the classification presented by Ostrand and Weyuker [1991]. In Section 3.2, we
present a second technique for classifying data dependences, based on their spans.
In Section 3.3, we briefly describe our algorithms for computing types and spans.
In Section 3.4, we present empirical results to illustrate the occurrences of different
data-dependence types and spans in practice.

3.1 Classification of data dependences based on types

We classify data dependences based on the types of definitions and uses, and the
types of paths from definitions to uses.

3.1.1 Types of definitions and uses. In the presence of pointers, memory loca-
tions can be accessed not only directly through variable names, but also indirectly
through pointer dereferences. Unlike a direct access, an access through a pointer

4A statement s is control dependent on a predicate p if, in the CFG, there are two edges out of

the node for p such that by following one edge, the node for s is definitely reached, whereas by

following the other edge, the node for s may not be reached.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

8 · Alessandro Orso et al.

dereference can potentially access one of several memory locations. For example, in
program Sum2 (Figure 2), statement 2 defines sum2 through direct access. Whereas,
statement 8 defines variables through indirect access: the variable that is actually
defined at statement 8 is the variable to which p points at that statement. Depend-
ing on the execution path to statement 8, p can point to different variables: if the
predicate in statement 5 is true, p points to sum1 at statement 8, whereas if the
predicate in statement 5 is false, p points to sum2 at statement 8. Thus, statement
8 can potentially define either sum1 or sum2.

The traditional notion of definitions and uses does not differentiate direct ac-
cesses from indirect accesses, and can thus provide misleading information about
the occurrences of those accesses. In the example just described, statement 2 defines
sum2 on all executions, whereas statement 8 can define sum1 on some executions
and sum2 on other executions. Thus, the execution of statement 8 is not sufficient
for either of these definitions to occur, which has important implications. For ex-
ample, consider a code based-testing technique that targets memory accesses for
coverage. To cover a direct access, the technique can target the statement con-
taining the access; however, to cover an indirect access, the technique must target
not only the statement containing the access, but also statements that establish
the alias relations for the indirect access. Thus, distinguishing direct accesses from
indirect accesses provides useful information for understanding how execution of
statements can result in memory accesses.

To distinguish different ways in which memory can be accessed in the presence of
pointers, we define three types of memory accesses: direct, single alias, and multiple
alias. A direct access involves no pointer dereference. A single-alias access occurs
through a dereference of a pointer that can point to a single memory location.
A multiple-alias access occurs through a dereference of a pointer that can point to
multiple memory locations. These types of memory accesses result in either definite
or possible definitions and uses. A direct access results in a definite definition or
definite use of the memory location being accessed, whereas a multiple-alias access
results in a possible definition or possible use of the memory location being accessed.
A single alias can result in either a definite access or a possible access of a memory
location. Consider the two examples shown in Figure 3. The example on the left
illustrates the case in which a single-alias access results in a definite access: the
use of a through *p in line 4 is a definite use. The example on the right illustrates
the case in which a single-alias access results in a possible access: the definition of
a[i] in line 4 is a possible definition, and the use of a[j] at line 5 is a possible use.
(In this case, the definition and the use are not definite because, in general, static
analyses cannot distinguish between different elements of an array.) Therefore, to
be conservative, we consider a single-alias access to be a possible definition or use
of the accessed memory location.

Based on the types of definitions and uses, there are nine possible types of data
dependences because both the definition and the use can be of three different types.
Figure 4 shows the CFGs for the procedures in Sum2 and lists, for each node in the
CFG, the definite and possible definitions and uses that occur at that node. In the
figure, sets ddef and duse indicate definite definitions and uses, whereas sets pdef

and puse indicate possible definitions and uses.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 9

1. int a, b, *p;

2. a = 1;

3. p = &a;

4. b = *p;

1. int i,j;

2. int a[3] = {1,2,3};

3. scanf("%d %d", &i, &j);

4. a[i] = 5;

5. printf("%d\n", a[j]);

Fig. 3. Examples to illustrate single-alias access. In the example on the left, the
single-alias use of a in line 4 is a definite use, whereas, in the example on the right,
the single-alias use of a[j] in line 5 is a possible use.

1

2

3

12

13

entry

14

4

5

6 7

entry

8a

8b

10a

10b

11

exit

puse={sum1,sum2}
duse={j,p}

15

16

1817

19

20

21

exit

ddef={sum}

duse={q,sum}
puse={k,val}

duse={i,sum}
ddef={sum}

duse={i}
ddef={i}

ddef={sum1}

duse={sum1,sum2}

9

duse={j,sum1}

ddef={k}

duse={sum}

ddef={i}

ddef={sum2}

ddef={sum1}

ddef={i,j}

pdef={sum1,sum2}

ddef={p}

ddef={p}

duse={j}

ddef={j}

duse={i}

duse={p}

duse={i,k}

ddef={q} ddef={q}

duse={sum}

TF

T F
T F

T
F

Fig. 4. Control-flow graphs for the procedures in Sum2 (Figure 2) with definite and
possible definition and use sets at each node.

3.1.2 Types of paths from definitions to uses. Types of definitions and uses pro-
vide information about the occurrences of the definition and the use for a data
dependence. However, this information is insufficient—the classification provides
no information about the paths over which the definition may propagate to the use.
Such paths can contain definite or possible redefinitions (or kills) of the relevant
variable, which can prevent the definition from propagating to the use. Failure to
distinguish possible kills along a path can provide misleading information about
paths between definitions and uses: a path that contains only possible kills would
be identified as containing no kills by a conservative data-flow analysis [Aho et al.
1986]. Thus, a definition may actually not reach a use along such a path, although
the analysis would not account for this possibility.

We classify paths from definitions to uses based on the occurrences of definite,
possible, or no kills along the paths. Let (d, u, v) be a data dependence. In the
absence of pointer dereferences, it is sufficient to classify each path π from d to u into

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

10 · Alessandro Orso et al.

Table I. Seven rd types based on the occurrences of green (definite def-clear), yellow (possible

def-clear), and red (definite killing) paths in the set of paths from definitions to uses.

Occurrence of green, yellow, and red paths Rd type

{green} G

{green, red} GR

{green, yellow} GY

{green, yellow, red} GYR

{yellow} Y

{yellow, red} YR

{red} R

one of two types, based on whether the definition at d is killed along π. However, the
presence of single-alias and multiple-alias accesses introduces an additional category
in which π can be classified: a definition may be possibly killed along π. Thus, in
the presence of pointers, we classify π into one of three types.

A definite def-clear path with respect to variable v is a path (y, n1, n2, . . . , nk, z)
such that no node in n1, n2, . . . , nk contains either a definite or a possible definition
of v. For example, in program Sum2, path (1, 2, 3, 4, 10a) is a definite def-clear
path with respect to variable sum1.

A possible def-clear path with respect to variable v is a path (y, n1, n2, . . . , nk, z)
such that there exists at least one ni, 1 ≤ i ≤ k, that contains a possible definition
of v, but no node in n1, n2, . . . , nk contains a definite definition of v. For example,
in program Sum2 (Figure 4), the path (8a, 8b, 9, 4, 10a) is a possible def-clear path
with respect to variable sum1, because node 8b contains a possible definition of
sum1 and no node in the path contains a definite definition of sum1.

A definite killing path with respect to variable v is a path (y, n1, n2, . . . , nk, z)
such that there exists at least one ni, 1 ≤ i ≤ k, that contains a definite definition
of v. For example, in program Sum2, the path (1, 2, 3, 4, 10a, 10b, 11) is a definite
killing path with respect to variable sum1, because node 10b contains a definite
definition of sum1.

To ease the presentation, we associate colors green, yellow, and red with the three
types of paths: green (G) with definite def-clear paths, yellow (Y) with possible
def-clear paths, and red (R) with definite killing paths. The analogy with a traffic
light provides intuition about the meaning of the path colors: a green path for
memory location v propagates definitions of v from the beginning of the path to
the end of the path; a yellow path for v may or may not propagate definitions of v;
and a red path for v does not propagate definitions of v to the end of the path.

Typically, for a data dependence, there is a set of paths from the definition to
the use. Because each path in this set can be classified as green, yellow, or red, the
set of paths can be classified in seven ways, depending on the occurrence of green,
yellow, and red paths in the set. We refer to the classification of the set of paths
from definition to use as the reaching-definition type or the rd type. Table I lists
the seven possible rd types for a data dependence. The seventh type consists only
of red paths; in this case, because the definition is killed along all paths from the
definition to the use, the definition and the use do not form a data dependence.
Thus, there are six meaningful rd types.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 11

Table II. Data dependences, with their types, that occur in program Sum2.

Data Type Data Type Data Type
dependence dependence Type dependence Type

(1, 8a, sum1) (D, MA, GY) (7, 8a, p) (D, D, GR) (14, 16, i) (D, D, G)

(1, 10a, sum1) (D, D, GY) (8b, 8a, sum1) (MA, MA, GY) (14, 20, i) (D, D, G)

(2, 8a, sum2) (D, MA, GY) (8b, 10a, sum1) (MA, D, GY) (15, 19, sum) (D, D, G)

(2, 11, sum2) (D, D, GY) (8b, 8a, sum2) (MA, MA, GY) (17, 19, q) (D, D, G)
(3, 4, i) (D, D, G) (8b, 11, sum2) (MA, D, GY) (18, 19, q) (D, D, G)

(3, 15, i) (D, D, GR) (9, 5, j) (D, D, GR) (19, 21, sum) (D, D, G)

(3, 16, i) (D, D, GR) (9, 8a, j) (D, D, GR) (20, 4, i) (D, D, GR)

(3, 20, i) (D, D, GR) (9, 10a, j) (D, D, GR) (20, 15, i) (D, D, GR)

(3, 5, j) (D, D, GR) (10a, 11, sum1) (D, D, G) (20, 16, i) (D, D, GR)
(3, 8a, j) (D, D, GR) (12, 16, k) (D, D, G) (20, 20, i) (D, D, GR)

(3, 10a, j) (D, D, GR) (12, 19, k) (D, MA, G)

(6, 8a, p) (D, D, GR) (14, 15, i) (D, D, G)

For example, in program Sum2, for data dependence (1, 8a, sum1), the rd type is
GY, whereas, for data dependence (3, 8a, j), the rd type is GR; for data dependence
(3, 4, i), the rd type is G.

3.1.3 Types of data dependences. Based on the types of definitions and uses
and the rd types, a data dependence can be classified into one of 54 types (nine
combinations of definition and use types, together with six rd types). Table II
lists the data dependences, along with their types, that occur in program Sum2;
the type of a data dependence is listed using the triple (def type, use type, rd
type). To succinctly identify definition and use types, we use the abbreviations
D for direct, SA for single-alias, and MA for multiple-alias accesses. For example,
data dependence (1, 8a, sum1) has type (D, MA, GY), which corresponds to a direct
definition, multiple-alias use, and {green, yellow} paths between the definition and
the use.

3.2 Classification of data dependences based on spans

Although types of data dependences are useful for understanding how a data de-
pendence occurs, they do not provide information about parts of a program that
may need to be examined to understand a data dependence. To provide such infor-
mation, we present an alternative way to classify data dependences based on spans.
Intuitively, the span of a data dependence is the extent, or the reach, of the data
dependence: it is the portion of the program over which the data dependence ex-
tends and, therefore, includes parts of the program that may need to be examined
to understand the data dependence. Like data-dependence types, data-dependence
spans can be used to group and order data dependences. Spans can potentially be
useful for understanding data dependences and for generating test inputs to cover
data dependences. Spans also provide an intuitive measure of the complexity of
data dependences. A data dependence with smaller span can be understood by ex-
amining smaller portions of the program than one with a larger span. The one with
larger span extends over a larger portion of a program, with kills or potential kills
occuring in several different procedures. Such a data dependence is, thus, likely to
be more complex. A span can be defined at different levels of granularity, such as
procedures and statements.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

12 · Alessandro Orso et al.

A procedure span of a data dependence (d, u, v) is a set of triples 〈proc, occ, color〉;
the set contains a triple for the procedure that contains the definition d, a triple for
the procedure that contains the use u, and a triple for each procedure that contains
a definite or possible kill for the data dependence. Each triple is composed as
follows:

—proc identifies the procedure.

—occ specifies the occurrence type for the procedure: whether the procedure con-
tains definition, use, or kill for the data dependence, or any combination of the
three. The possible values for occ are d for definition, u for use, k for kill, or any
combination of the three: du, dk, uk, or duk.

—color identifies the types of kills that occur in the procedure, if any. The pos-
sible values for color are: (1) G, if the procedure contains no kills (that is, the
occurrence type is d, u, or du), (2) R, if the procedure contains only definite kills,
(3) Y, if the procedure contains only possible kills, and (4) YR, if the procedure
contains definite and possible kills.

The size of a procedure span for an intraprocedural data dependence is one; for
an interprocedural data dependence, the size of a procedure span can vary from
one to the number of procedures in the program. For example, the procedure span
for data dependence (9, 5, j) in program Sum2 is {〈main, duk, R〉}.

A statement span is defined similarly; its elements correspond to statements
instead of procedures. A statement span of a data dependence (d, u, v) is a set of
quadruples 〈proc, stmt , occ, color〉; the set contains an element for the statement
that contains the definition d, an element for the statement that contains the use
u, and an element for each statement that contains a definite or possible kill for the
data dependence. Each element in a statement span is a quadruple:

—proc and stmt identify the procedure and the statement, respectively.

—occ specifies the occurrence type for the statement: whether the statement con-
tains definition, use, or kill for the data dependence, or any combination of the
three.

—color identifies the types of kills that occur in the statement. The possible values
for color are: (1) G, if the statement contains no kills (that is, the occurrence
type is d, u, or du), (2) R, if the statement contains a definite kill, and (3) Y, if
the statement contains a possible kill for the data dependence.

The size of a statement span can vary from one to the number of statements in
the program. For example, the statement span for data dependence (9, 5, j) in
program Sum2 is {〈main, 9, dk, R〉, 〈main, 5, u, G〉}.

The definition of span can be extended to incorporate other types of information.
For example, for each occurrence of a procedure (or statement) that contains a pos-
sible definition, the span can be expanded to include the procedures (or statements)
that introduce the alias relations relevant for that possible definition.

Data-dependence spans are related to data-dependence types. For example, the
rd type for a data dependence determines the occurrences of colors in the span for
that data dependence. For rd type G, at most two elements can appear in a span.
Spans provide a measure of the complexity of a data dependence that is different

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 13

from the measure provided by types; spans and types can be used in conjunction
to obtain a better and more complete estimate of the complexity of data flow in
a program. For example, data dependences can first be classified based on types;
then, for each type, the data dependences can be classified based on procedure or
statement spans. In Section 4, we illustrate how types and spans can be leveraged
for different applications of data dependences.

3.3 Computation of data-dependence types and spans

To compute and classify data dependences, we use an algorithm previously de-
veloped by some of the authors. Reference [Orso et al. 2002] contains a detailed
description of the algorithm. Here, we provide only a high-level description of the
algorithm and its complexity.

The algorithm extends the algorithm by Harrold and Soffa [1994], which computes
interprocedural data dependences in two phases. In the first phase, it analyzes
each procedure and computes information that is local to the procedure. The local
information consists of intraprocedural data dependences (along with their types)
and the information that is required for the interprocedural phase. In this phase, to
compute rd types for intraprocedural data dependences, we modify the traditional
algorithm for computing reaching definitions; the modified algorithm propagates
two additional sets of data-flow facts at each statement. The first set contains
the possible definitions that reach a statement; the second set contains the killed
definitions that reach a statement. In the second phase, the algorithm (1) builds a
representation, called the interprocedural flow graph, and (2) traverses the graph
to compute and classify interprocedural data dependences.

To compute spans of interprocedural data dependences, we leverage the same
algorithm. First, during the construction of the interprocedural flow graph, the
algorithm computes summary information about each procedure; the summary
information for a procedure P contains, for each definition that reaches from the
entry of P to the exit of P , the definite and possible kills that occur in P or in
some procedure directly or indirectly called in P . Second, during the traversal of
the interprocedural graph to compute a data dependence, the algorithm propagates
information about definite and possible kills.

The first phase of the algorithm analyzes each procedure separately and the
cost of processing a procedure is quadratic in the number of statements in the
procedure. In the second phase, the construction of the interprocedural flow graph
requires several traversals of each procedure’s subgraph, each of which is linear in
the size of the subgraph. The number of traversals for a procedure is bounded by
the number of non-local variables that are modified by the procedure. The final
step of computing interprocedural data dependences requires linear traversals of
the interprocedural flow graph, once for each definition (or use) in the program.

3.4 Empirical results

Our example (Sum2, Figure 2) shows that the presence of pointers and pointer deref-
erences can cause a number of different types of data dependences to occur: seven
different types of data dependences occur in Sum2. To investigate how these data-
dependence types occur in practice in real programs, we performed an empirical

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

14 · Alessandro Orso et al.

Table III. Programs used for the empirical studies reported in the paper.

Subject Description Procedures LOC

armenu Aristotle analysis system user interface 95 6067

bison Parser generator 131 5542

dejavu Interprocedural regression test selector 91 3166

flex Lexical analyzer generator 140 8264

larn A dungeon-type game program 292 7715

lharc Compress/extract utility 89 2500

mpegplay MPEG player 140 12354

mpegplayer Another MPEG player 106 5380

sed GNU batch stream editor 77 5418

space Parser for antenna-array description language 137 6199

T-W-MC Layout generator for cells in circuit design 225 21379

unzip Zipfile extract utility 41 2834

xearth Display program for a shaded image of the earth 101 21333

study. We implemented the reaching-definitions algorithm using the Aristotle

analysis system [Harrold and Rothermel 1997]. For alias information, we used the
alias analysis described in Reference [Liang and Harrold 2001]; that implementa-
tion is based on the PROLANGS Analysis Framework [Programming Language
Research Group 1998].

3.4.1 Goals and method. The overall goal of our empirical study was to examine
the occurrences of different data-dependence types and spans in real C programs.
We used 13 C programs, drawn from diverse sources, as subjects for the empirical
study. Table III describes the subject programs and lists the number of procedures
and the number of non-comment lines of code in each program.

For each subject program, we computed intraprocedural and interprocedural data
dependences and their types. First, we examined the number of different types of
data dependences that occurred in each subject and the frequency of those occur-
rences. Second, we studied the overall occurrences of data dependence types across
subjects. Finally, we studied the distribution of interprocedural data dependences
based on the sizes of their procedure spans.

3.4.2 Results and analysis.

Occurrences of data-dependence types within subjects. We begin by examining
the number of data dependences and the number of data-dependence types com-
puted for the subject programs. Table IV shows the number of intraprocedural
and interprocedural data dependences (DUAs) for each subject. The table also
shows the number of data-dependence types that occurred among the intraproce-
dural and interprocedural data dependences and overall for each subject. The data
in the table show that several types of data dependences can occur: the number of
data-dependence types that appears in a subject varies from 11 to as many as 35.
Programs that have a large number of data dependences, such as larn, mpegplay,
mpegplayer, and T-W-MC, also have many different types of data dependences. Even
programs such as lharc and unzip, that have relatively fewer data dependences,
have several types of data dependences occurring in them. For most of the sub-
jects, more types occurred among interprocedural data dependences than among
intraprocedural data dependences.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 15

Table IV. The number of data dependences and data-dependence types computed for the subjects.

Intraprocedural Interprocedural Total
Subject DUAs Types DUAs Types DUAs Types

armenu 2948 10 3139 22 6087 22

bison 9527 10 17423 8 26950 11

dejavu 2475 6 788 11 3263 11

flex 7344 13 6411 17 13755 18

larn 10638 20 182819 20 193457 22

lharc 2336 15 1281 19 3617 23

mpegplay 45429 17 462277 26 507706 30

mpegplayer 14821 24 77706 28 92527 35

sed 35193 12 23424 21 58617 23

space 18100 14 10898 15 28998 17

T-W-MC 48051 21 92011 20 140062 23

unzip 2128 15 1497 22 3625 23

xearth 3311 13 2200 11 5511 16

Given that a number of different types of data dependences can occur, next, we
examine the frequency with which the types occur. Figure 5 presents data about the
percentage of data dependences that were accounted for by the 10 most-frequently-
occurring data-dependence types. The figure contains one segmented bar per sub-
ject; the vertical axis represents the percentage of data dependences in the subjects.
The segments within each bar partition the 10 most-frequently-occurring data de-
pendences into four sets—top 1, top 2, top 3–5, and top 6–10—which represent,
respectively, the most-frequently-occurring, the second most-frequently-occurring,
the third to fifth most-frequently-occurring, and the sixth to tenth most-frequently-
occurring data-dependence types. For example, for armenu, the most-frequently-
occurring data-dependence type accounted for nearly 55% of the data dependences;
the next most-frequently-occurring data-dependence type accounted for another
24% of the data dependences.

We selected the sets to examine based on the following reasons. Examining top
1 and top 2 was of interest to see in what numbers do the most-frequent and the
second most-frequent data-dependence types occur. These numbers tell us whether
one or two data-dependence types occur in dominant numbers. (For all the subjects,
top 1 and top 2 accounted for more than 50% of the data dependences.) With the
top 10 types, we reached close to 100% of the data dependences for each of the
subjects; therefore, we did not examine additional types. After top 2, we could
have examined linearly top 3, top 4, etc. However, to simplify the presentation
of the data, we aggregated the data for those types. We increased the number of
types in each aggregate because the number of data dependences of those types
were decreasing.

The data in the figure show that, consistently across the subjects, a few types
account for a majority of data dependences. For all subjects except larn, the top
five data-dependence types account for more than 90% of the data dependences.
The number of data dependences of the most-frequently-occurring type vary from
32% for larn to 81% for bison. Thus, although a large number of different data-
dependence types occur (Table IV), few of those types occur in large numbers and

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

16 · Alessandro Orso et al.

occurring
DUA types

Top 6−10

Top 3−5

Top 2

Top 1

se
d

ar
me
nu

bi
so
n

de
ja
vu

fl
ex

T−
W−
MC

0

20

60

40

100

80

0

20

60

40

80

100

Most frequently

xe
ar
th

mp
eg
pl
ay
er

mp
eg
pl
ay

un
zi
p

sp
ac
e

lh
ar
c

la
rn

Fig. 5. Percentage of data dependences accounted for by the most-frequently-
occurring data-dependence types: top 1, top 2, top 3–5, and top 6–10.

the remaining types occur in very small numbers. For example, although 30 types
of data dependences occur in mpegplay, 10 of them account for over 99% of the
data dependences; the remaining 20 types together account for less than 1% of the
data dependences. Similarly, for T-W-MC, 10 of the 23 types that occur in that
subject account for 99% of the data dependences.

Table V lists the three most-frequently-occurring data-dependence types in the
subjects. (D, D, GR) is the type that occurs most commonly in the table: it is the
most-frequently-occurring type in six of the subjects, the second most-frequently-
occurring type in two subjects, and the third most-frequently-occurring type in
another two subjects. (D, D, GR) does not appear in the top three types for only
three of the subjects. (D, D, G) is the second most-frequently-occurring type in eight
of the subjects. (D, D, G) and (D, D, GR) are the simplest of the data-dependence
types because they involve no pointer dereferences at the definition or the use, or in
the paths between the definition and the use. Thus, the predominant occurrence of
such types in a program indicates that the program manipulates simple data struc-
tures and has relatively simple data flow. This is true of programs such as armenu,
bison, dejavu, flex, lharc, unzip, and xearth, as also confirmed by our man-
ual inspection of these subjects. Other subjects, such as mpegplay, mpegplayer,
and T-W-MC, manipulate complex data structures and, thus, have more complex
data-dependences types appearing predominantly in them: (SA, SA, Y) is the most-
frequently-occurring type in those three subjects.

Types in which the definitions or the uses involve multiple-alias accesses do not
appear prominently in Table V. In fact, such types occur only once in the table:
in mpegplayer, the third most-frequently-occurring type is (MA, MA, Y).

Another pattern evident in the data in Table V is that, for each type listed in
the table, except one ((D, SA, Y) for larn), the access type at the definition is the
same as the access type at the use. This may indicate a pattern in the way data
dependences occur in C programs.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 17

Table V. The top-three most-frequently-occurring types of data dependences.

Subject Top 1 Top 2 Top 3

armenu (D, D, GR) (D, D, G) (D, D, GYR)

bison (D, D, GR) (D, D, G) (SA, SA, GY)

dejavu (D, D, GR) (D, D, G) (SA, SA, GY)

flex (D, D, GR) (D, D, G) (SA, SA, GY)

larn (D, D, Y) (D, SA, Y) (SA, SA, Y)

lharc (D, D, GR) (D, D, G) (D, D, Y)

mpegplay (SA, SA, Y) (SA, SA, GY) (D, D, GR)

mpegplayer (SA, SA, Y) (D, D, GR) (MA, MA, Y)

sed (SA, SA, Y) (D, D, GR) (SA, SA, GY)

space (D, D, Y) (D, D, G) (SA, SA, Y)

T-W-MC (SA, SA, Y) (SA, SA, GY) (D, D, GR)

unzip (D, D, GR) (D, D, G) (SA, SA, GY)

xearth (D, D, GR) (D, D, G) (SA, SA, Y)

Table VI. The number of occurrences of each data-dependence type.

RD (D,D) (D,SA) (D,MA) (SA,D) (SA,SA) (SA,MA) (MA,D) (MA,SA) (MA,MA)
type

G 37469 127 24 528 3074 1 0 3 26

GY 21163 10845 80 13973 129576 737 49 739 2882

GR 124141 135 0 430 4 0 0 0 0

GYR 1341 440 4 456 184 0 1 0 18

Y 84178 38195 36 15357 583066 2150 4 728 11200

YR 354 335 1 29 80 0 6 0 6

Occurrences of data-dependence types across subjects. Next, we examine, for each
data-dependence type, the number of times it occurs over all subjects; Table VI
presents this data. The data in the table show that those types in which one
access, either at the definition or at the use, is multiple-alias and the other access
is direct (Columns 3 and 7) occur in very small numbers. Other data dependences
that involve a multiple-alias access (Columns 6, 8, and 9) also occur less frequently.
Data dependences involving a multiple-alias access (Columns 3, 6, 7, 8, and 9) occur
predominantly with rd types GY and Y (Rows 2 and 5); they occur in negligible
numbers with other rd types. This may indicate another pattern in the usage of
pointers in C programs. Another significant pattern in the data is that rd types
that involve a definite kill (i.e., rd types that include a red path), shown in Rows
3, 4, and 6, occur mostly in data dependences that involve a direct definition or a
direct use.

Spans of interprocedural data dependences. Finally, we examine, for each inter-
procedural data dependence, the number of procedures that appeared in the proce-
dure span of that dependence. As mentioned earlier, the size of the procedure span
of each intraprocedural data dependence is one; thus, it need not be examined.

Figure 6 presents the distribution of interprocedural data dependences based on
the sizes of the procedure spans. Each segmented bar in the figure represents 100%
of the interprocedural data dependences in that subject; the segments represent
the percentages of interprocedural data dependences in the subject that spanned

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

18 · Alessandro Orso et al.

[6, 10]

[11)

procedure
Size of

span

[3, 5]

[1]

se
d

ar
me
nu

bi
so
n

de
ja
vu

fl
ex

0

20

60

40

100

80

0

20

60

40

80

100
88 4 5 34 5 23 17 6 30 12 8 5

[2]

T−
W−
MC

xe
ar
th

mp
eg
pl
ay
er

mp
eg
pl
ay

un
zi
p

sp
ac
e

lh
ar
c

la
rn

Fig. 6. Distribution of interprocedural data dependences based on the number
of elements in the procedure spans. Each segment represents the percentage of
interprocedural data dependences that spanned a particular range of procedures.
The number at the top of each bar is the size of the largest procedure span for that
subject.

different numbers of procedures. The number at the top of each bar is the size of
the largest procedure span for that subject. The figure illustrates that the num-
ber of data dependences that span a single procedure is not negligible; such data
dependences occur because of successive calls to the same procedure, such that a
definition from one call reaches a use in the next call.

For all subjects except larn and mpegplay, most of the data dependences have a
procedure span of five or less. For six of the subjects, more than 80% of interproce-
dural data dependences have a span of one or two. For another two subjects, unzip
and xearth, more than 60% of data dependences have a span of one or two. Spans
greater than five occur in significant numbers in armenu, bison, larn, mpegplay,
and T-W-MC. Spans greater than 10 appear in five subjects but they appear in large
numbers in only one, larn, in which 23% of the interprocedural data dependences
have spans that include more then 10 procedures. The greatest span also occurs
in larn—it includes 34 of the 179 procedures in that subject. The greatest span,
in terms of the percentage of procedures included in the span, occurs in space—it
includes 30 (22%) of the 136 procedures in the program.

3.4.3 Discussion. The results of this study indicate several patterns in our sub-
jects. One pattern is that, although a number of different types of data dependences
can occur in real C programs, not all types occur in equally significant numbers.
A consistent result across our 13 subjects is that most of the data dependences fall
predominantly into a few types; these few types can account for up to 90% or more
of the data dependences in the programs. Our results also suggest that examining
the most-frequently occurring data-dependence types can help developers infer the

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 19

overall complexity of the data-flow relations in a program. This information can be
leveraged, for instance, when testing a program: programs with relatively simple
data dependences are likely to be suitable for data-flow testing; whereas programs
with complicated data dependences may be more suitable for alternative verifica-
tion techniques, such as software inspection. (We further discuss this application
of our classification in Section 4.1.) However, further empirical evaluation is neces-
sary to determine whether types and spans can be used to characterize programs
accurately.

Another pattern observable in the data is that multiple-alias accesses occur pre-
dominantly with rd types Y or GY; data dependences with such accesses rarely
have all green paths or a red path between the definitions and the uses (Table VI).
Although further empirical evaluation is needed to assess the usefulness of the iden-
tified patterns, our initial experience and the results of the study are promising:
they suggest that examining such patterns in a program can help the developers to
get an overall view of the data-flow structure of a program.

Overall, the results of the study show that a number of data-dependence types
occur in the subjects, which is an adequate reason to investigate how activities that
use data dependences can benefit from such information. In the next section, we
present two applications that leverage information about data-dependence types
and spans.

4. APPLICATIONS OF DATA-DEPENDENCE CLASSIFICATION

The classification of data dependences can be used for several different applications.
For example, data-dependence types can be used to define new data-flow testing
criteria that target specific types of data dependences for coverage [Ostrand and
Weyuker 1991]; data dependences can also be ordered or prioritized for coverage
based on their types. For another example, data-dependence types can be used
to support impact analysis by focusing the analysis on specific types of data de-
pendences. Data-dependence types can also be used for identifying parts of the
code where subtle and possibly unforeseen data dependences require careful soft-
ware inspections. In short, any activity that uses data-dependence information may
benefit from such a classification. The primary benefit is that the classification lets
such activities compare, group, rank, and prioritize data dependences, and process
various data dependences differently, based on their types, instead of processing all
data dependences in the same way.

To support this claim, in this section, we present two applications of our data-
dependence classification. First, we investigate how the classification can be used to
facilitate data-flow testing. Then, we present how the classification can be applied
to program slicing, for use in activities such as debugging.

4.1 Data-flow testing

Data-flow testing techniques have long been known [Frankl and Weyuker 1988;
Rapps and Weyuker 1985]; these techniques provide different coverage of the el-
ements of a program than other code-based testing techniques such as statement
testing (i.e., coverage of each statement in a program) and branch testing (i.e.,
coverage of each conditional branch in a program) [Clarke et al. 1989; Ntafos 1988;
Rapps and Weyuker 1985]. Previous research has also shown that data-flow testing

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

20 · Alessandro Orso et al.

can be more effective at detecting faults than branch testing [Frankl and Weiss
1993; Frankl and Weyuker 1993]. However, despite their apparent strengths and
benefits, data-flow testing techniques are rarely used in practice, primarily because
of their high costs [Beizer 1990]. As mentioned in Section 1, the main factors that
contribute to these high costs are (1) the large number of test requirements (or data
dependences) to be covered, a number of which may be infeasible, (2) the difficulty
of generating test inputs to cover the test requirements, and (3) expensive program
instrumentation required to determine the data dependences that are covered by
test inputs.

In the absence of information about data dependences, all data dependences
must necessarily be treated uniformly for data-flow testing. The tester has no
knowledge of the different costs associated with covering different data dependences;
thus, the tester has no guidance in ordering or prioritizing data dependences for
coverage to meet the constraints of time and cost. Moreover, in the absence of such
information, the number of data dependences is the only measure for determining
the viability of using data-flow testing for a program; the tester has no guidance
in deciding whether alternative verification techniques, such as code inspection,
may be more appropriate than testing. In the next three subsections, we discuss
how the classification techniques can help the tester in ordering data dependences
for coverage and generating test input to cover them (Section 4.1.1), estimating
data-flow coverage from existing test suites (Section 4.1.2), and determining the
appropriate verification technique for data flow (Section 4.1.3). In Section 4.1.4, we
outline an approach that uses types and spans to determine the verification strategy
for data dependences and present empirical results to illustrate the approach.

4.1.1 Ordering data dependences for coverage and test-input generation. Os-
trand and Weyuker [Ostrand and Weyuker 1991] define new data-flow testing cri-
teria that are designed to cover different types of data dependences. They discuss
how their classification of data dependences can be used to order data dependences,
on the basis of the strength of the relationships, for coverage. Similarly, our clas-
sification provides a systematic way of grouping data dependences and prioritizing
them for coverage.

Data dependences can be ordered based on types of definitions and uses, types of
rd paths, or a combination of the two. The ordering can be based on the expected
ease of covering the data dependences. For example, we expect data dependences
with direct definitions and uses to be easier to cover than those with multiple-
alias definitions and uses. To cover direct definitions and uses, it is sufficient to
cover the statements in which the accesses occur. In contrast, to cover multiple-
alias definitions and uses, not only must the statements containing the definitions
and uses be reached, they must also access the same memory location. Thus,
to cover such definitions and uses, the statements that establish the desired alias
relations must also be covered. Similarly, different rd types have different levels
of complexity associated with them for coverage. Green and red paths provide
definite information—they either propagate or do not propagate definitions each
time that they are executed. In contrast, yellow paths provide information that is
uncertain—they can propagate definitions on certain executions and not on others.
Therefore, intuitively, we expect covering a data dependence with rd type G to be

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 21

GY
GYR
Y
YR

(D,MA)
(SA,MA)
(MA,D)
(MA,SA)
(MA,MA)

(D,SA)
(SA,D)
(SA,SA)

use type
Definition/

GR

(D,D)

G

less moreDifficulty of covering

larger spansmaller span

RD type

Span

Fig. 7. Relative expected difficulties of covering different types of definitions, uses,
rd types, and spans.

much easier than covering a data dependence with rd type Y or YR. In the latter
case, not only must a yellow path be executed, but also the correct alias relations
must hold along the path so that the definition propagates to the use.

Information about spans can be combined with information about types to fur-
ther divide data dependences into subgroups. Data dependences with larger spans
will generally be more difficult to cover than those with smaller spans. For example,
data dependences with spans greater than a given threshold may be difficult to cover
because the interactions involve several procedures; occurrences of possible defini-
tions in these procedures will further complicate covering the data dependences.
Thus, such data dependences can be scheduled for coverage later in the testing pro-
cess, if sufficient time and resources permit them to be covered. Alternatively, such
data dependences may not be targeted for coverage at all. Figure 7 summarizes
the relative expected difficulties of covering different types of definitions, uses, rd
types, and spans.

Once data dependences have been ordered for coverage, the classification can also
aid with generating test input to cover the dependences. Using types, along with
statement and procedure spans, can guide the tester in identifying statements that
must be reached and those that should be avoided. Moreover, data-dependence
spans can be extended to provide additional support for test-data generation. For
example, the information can be extended to include alias information and alias-
introduction dependences. At each statement that appears in a statement span
and has color yellow associated with it, the span can be extended to include (1)
the number of aliases at that statement, and (2) the statements that introduce
the alias relations for that statement. The alias information could be computed
using an approach similar to the one used by Pande, Landi, and Ryder to compute
conditional reaching definitions [Pande et al. 1994]. This extended span information
would enable the tester to navigate from such statements to the alias-introduction
sites and better understand the conditions that must be satisfied to cover a data
dependence.

4.1.2 Estimating data-flow coverage achieved through less-expensive testing. The
classification of data dependences can be used to determine the percentage of data
dependences that may be covered through less-expensive testing, such as statement

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

22 · Alessandro Orso et al.

or branch testing. The extent of data-flow coverage attained through less-expensive
testing can be a useful measure of the adequacy of testing and the additional cost
of performing data-flow testing. The coverage of a large percentage of data de-
pendences increases the testers’ confidence in the adequacy of testing using weaker
criteria. On the one hand, it indicates to the testers that significant additional
coverage of data dependences may not be attained through data-flow testing. On
the other hand, it also indicates that data-flow coverage may be attained at a lower
cost—by generating test input, and selectively instrumenting, for only the (few)
remaining data dependences. In general, the classification can be used to guide the
testers in measuring what proportion of the task of data-flow testing has already
been completed and what remains to be done.

The classification can be used to estimate data-flow coverage in two ways. First,
the classification can be used to estimate statically, given coverage of all statements
or branches, the data dependences that are also definitely covered. This applies
to data dependences of type (D, D, G) in which either the definition dominates
the use or the use postdominates the definition.5 Such data dependences can be
covered simply by targeting either the definition statement or the use statement for
coverage. Thus, a test suite developed for statement coverage also covers all data
dependences of type (D, D, G) in which either the definition dominates the use or
the use postdominates the definition. The remaining data dependences of type (D,
D, G) can be covered by developing test inputs to traverse the definition and use
statements in order; we call this criterion def-use coverage. Def-use coverage is less
expensive than coverage of data dependences in both the effort required to generate
test inputs and the amount of instrumentation required to determine coverage.

Second, the classification can be used to infer, from coverage data gathered us-
ing instrumentation for def-use coverage, the data dependences that are covered in
addition to those that were targeted for coverage by the test suite. To do this, the
tester computes the statement spans of the remaining data dependences and orders
them by the size of the span, to first consider data dependences with smaller spans.
Next, the tester checks whether the coverage data for any test input includes the
definition and use statements for a data dependence, but excludes the kill state-
ments for the data dependence. If this is the case, the data dependence is covered
by the corresponding test input. To avoid iterating through all the remaining data
dependences, the tester can set a threshold value for the span size and consider
only data dependences with spans smaller than the threshold.

4.1.3 Determining the appropriate verification technique for data flow. The clas-
sification can also be used to determine the appropriate verification technique for
the data flow occurring in a program. Not all data dependences are equivalent
in terms of their complexity or the expected effort required to generate test in-
puts for them. Some data dependences, such as those that contain yellow paths
between definitions and uses and span multiple procedures, may be too compli-
cated to verify through testing. For such data dependences, alternative verification

5A statement si dominates a statement sj if each path from the beginning of the program to sj

goes through si. A statement si postdominates a statement sj if each path from sj to the end of

the program goes through si.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 23

techniques, such as code inspection, may be more appropriate. In the absence of
additional information about data dependences, such as types and spans, testers
have no guidance in determining the appropriate verification technique for different
data dependences.

4.1.4 Empirical results. To illustrate how the classification of data dependences
can be applied, in practice, to data-flow testing, we conducted an empirical study
using our subjects.

Goals and method. The overall goal of the study was to investigate whether
the classification can be used to support data-flow testing. The steps that we
used in the empirical study are as follows. First, for each subject, we determined
the percentage of data dependences that would be covered by statement coverage.
Then, we determined the additional data dependences that would be covered by
def-use coverage. Next, we ordered the remaining data dependences by types and,
within types, by spans. We then partitioned this set into those that could be
targeted for coverage and those whose complexity would likely make test-input
generation difficult. To partition the data, we selected threshold values based on
the complexity rankings shown in Figure 7.

As mentioned previously, data dependences of type (D, D, G) are implied by state-
ment and def-use coverage. The coverage of remaining data dependences with rd
type G requires the coverage of definition and use statements, ensuring that the
memory locations being accessed at the definition and use statements are the same.
By definition, such data dependences have a maximum procedure span of two.6

We expect the generation of test inputs for covering such data dependences to be
easier than the generation of inputs for dependences that have a red or a yellow
path between the definition and the use. Next, we considered data dependences
with rd type GR; for such data dependences, each path from the definition to the
use is definite def-clear or definite killing. Thus, intuitively, generating test inputs
for such data dependences should be easier than generating inputs for those in
which a yellow path appears between the definition and the use. For such data
dependences, we set a threshold of four for the procedure span: dependences with
procedure spans of four or less could be considered for coverage. We used a thresh-
old of three for the remaining data dependences, whose rd types included a yellow
path. Because generating test input in the presence of a yellow path can, in general,
be more challenging, we used a smaller threshold value for such data dependences.
Table VII lists the criteria that we used in the empirical study to determine the
appropriate verification technique.

Note that the values we selected are only one reasonable, possible set of values;
the rationale for the selection of the thresholds is that they can be varied for different
programs, based on the resources available for testing and on the testers’ knowledge
about the complexity of generating test input for dependences spanning multiple
procedures.

6Because data dependences of type (D, D, G) have no kills, their procedure spans contain at most

two triples—one for the procedure in which the definition occurs and the other for the procedure

in which the use occurs.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

24 · Alessandro Orso et al.

Table VII. The criteria used to determine the appropriate verification technique—testing or

inspection—for different types of data dependences.

RD (D,D) (D,SA) (D,MA) (SA,D) (SA,SA) (SA,MA) (MA,D) (MA,SA) (MA,MA)
type

statement/
G def-use testing

coverage
GY testing if procedure span ≤ 3, otherwise inspection
GR testing if procedure span ≤ 4, otherwise inspection
GYR testing if procedure span ≤ 3, otherwise inspection
Y testing if procedure span ≤ 3, otherwise inspection
YR testing if procedure span ≤ 3, otherwise inspection

def−use

Type of
coverage

statement

se
d

ar
me
nu

bi
so
n

de
ja
vu

fl
ex

T−
W−
MC

xe
ar
th

mp
eg
pl
ay
er

0

20

60

40

100

80

0

20

60

40

80

100

un
zi
p

sp
ac
e

lh
ar
c

la
rn

mp
eg
pl
ay

Fig. 8. Percentage of data dependences that are covered by statement coverage and
def-use coverage.

For the data dependences that were outside our thresholds—for whom we deemed
data-flow testing as being not practical and, thus, requiring an alternative verifi-
cation technique—we computed the combined span of the data dependences. By
computing the combined span, we were able to examine whether such complicated
data dependences cluster in certain parts of the program or spread all over the
program. The combined span identifies the parts of the program that would need
to be examined during inspection.

Results and analysis. Figure 8 presents, for each subject, the percentage of data
dependences that are covered by statement coverage and def-use coverage. Each
segmented bar represents the percentage of data dependences of type (D, D, G). The
darker segment within a bar represents those data dependences that are covered
by a test suite that provides 100% statement coverage. These data dependences
are a subset of the data dependences of type (D, D, G)—the subset in which either

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 25

Data dependences

proc span < 4
rd types,
remaining

proc span < 5
rd type GR,

that are candidates
for testing

rd type G

se
d

ar
me
nu

0

20

60

40

100

80

0

20

60

40

80

100

bi
so
n

de
ja
vu

fl
ex

T−
W−
MC

xe
ar
th

mp
eg
pl
ay
er

mp
eg
pl
ay

un
zi
p

sp
ac
e

lh
ar
c

la
rn

Fig. 9. Percentage of remaining data dependences of different types and procedure
spans that can be candidates for data-flow testing.

the definition dominates the use or the use postdominates the definition.7 The
percentage of data dependences covered by statement coverage varies from less
than 1% for larn and mpegplayer to more than 25% for dejavu and lharc.

Def-use coverage covers a noticeably larger number of data dependences than
statement coverage for six subjects; for the remaining subjects, def-use coverage
increased the coverage of data dependences marginally. Thus, this data indicate
that most of the data-dependences of type (D, D, G) occur intraprocedurally,8 and
that for most of them, covering either the definition or the use suffices to cover the
data dependence.

Figure 9 presents the data for determining the appropriate verification technique
for the remaining data dependences—those that are covered by neither statement
coverage nor def-use coverage. We order the remaining data dependences by types
and, within types, by procedure spans. First, we consider remaining data depen-
dences with rd type G (see Row 1 of Table VII). For such data dependences, the
definition or the use (or both) involves a non-direct access. Therefore, to cover
such data dependences, the definition and use statements must be reached and
both statements must access the same memory location. With the exception of
dejavu, such data dependences occur in very few numbers; covering them raises

7Our analysis tools currently compute intraprocedural dominance only. Therefore, the values

represented by the darker segments represent intraprocedural dependences only; they are lower
that what they would be had we analyzed interprocedural data dependences also. However, even

with interprocedural analysis, the height of each bar would remain unchanged because each bar

represents the total percentage of data dependences of type (D, D, G). The additional analysis can

only cause the darker segment to occupy a larger proportion of each bar.
8This follows from the fact that, because we used intraprocedural dominance, the darker segment

in Figure 8 represents intraprocedural data dependences of type (D,D,G) in which either the defi-
nition dominates the use or the use postdominates the definition. The lighter segment represents

the remaining data dependences, including interprocedural ones, of type (D,D,G).

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

26 · Alessandro Orso et al.

the total data-flow coverage of the programs marginally. For dejavu, the total of
number of data dependences covered at this step is more than 40%; for other sub-
jects, this percentage varies from under 2% to over 25%. In the second step, we
consider data dependences with rd types GR and whose procedure spans are four
or less. This step includes a large percentage of the data dependences in armenu,
bison, dejavu, flex, lharc, unzip, and xearth. However, for other subjects, such
as larn, mpegplay, and space, this step includes less than 5% of data dependences.
This step increases the data-flow coverage to over 60% for seven subjects and over
25% for another two subjects. However, for two of the remaining four subjects,
mpegplayer and space, data-flow coverage remains below 20%; and for the other
two, larn and mpegplay, it remains less than 7%.

In the final step, we consider the remaining data dependences; all of these data
dependences have at least one yellow path between the definition and the use.
For such data dependences, we considered procedure spans of three or less. A
majority of the data dependences in mpegplayer, sed, and space are included
in this step. For nine of the subjects, this step increases the number of data
dependences considered for testing to over 95% and, for another two subjects, to
over 80%. However, for larn and mpegplay, the data-flow coverage is below 40%.

Table VIII lists the remaining data dependences in each subject; such data depen-
dences can be candidates for verification using code inspection. Their complexity,
both in terms of their types and their spans, makes them extremely difficult to be
verified through testing. Generating test input for such data dependences, if at
all possible, may not be worth the time and effort that it would require. Table
VIII also lists the cumulative procedure spans of the remaining data dependences.
For subjects such as larn, mpegplay, and T-W-MC, that have a large number of
remaining data dependences, the data dependences together span more than half
the procedures in those subjects. These are the procedures that would have to be
examined during inspection to verify those data dependences. For space, which
has relatively few remaining data dependences, the dependences span a consider-
able percentage of the program—more than 69% of the procedures. Other subjects,
such as dejavu and xearth, have few remaining data dependences and those data
dependences span a small percentage of the procedures in those programs.

Again at this step, a subset of the data dependences can be selected, based on
types or spans or both, for verification through inspection. This would, in turn,
reduce the parts of the program that would need to be examined during inspection.

Discussion. In our empirical study, we have outlined an approach that can be
used to select data dependences and order them, for coverage, based on an estimate
of the ease of covering them. The approach that we have outlined and presented
in the study is one possible instance of the general approach; in practice, it can
be modified to suit the particular program being tested and the extent of data-
flow coverage and verification desired for the program. The starting point for the
approach is to determine the data-flow coverage attained from existing test suites.
Next, if def-use coverage can provide significant additional coverage, test inputs
can be developed, and the program instrumented, for def-use coverage. Finally,
for the remaining data dependences, the appropriate verification technique can be
selected. If, at any point in the process, the desired level of verification is attained,

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 27

Table VIII. Remaining data dependences that are candidates for verification through inspection

and the cumulative procedure spans of those data dependences.

Number of Cumulative

Subject data dependences procedure span

armenu 807 13.3% 37 39.0%

bison 4385 16.3% 48 36.7%

dejavu 26 0.8% 5 5.5%

flex 100 0.7% 21 15.0%

larn 159983 82.7% 159 54.5%

lharc 69 1.9% 16 18.0%

mpegplay 325717 64.2% 72 51.4%

mpegplayer 7467 8.1% 28 26.4%

sed 2804 4.8% 24 31.8%

space 745 2.6% 95 69.3%

T-W-MC 47442 33.9% 137 60.9%

unzip 138 3.8% 17 41.5%

xearth 145 2.6% 10 9.9%

the process can be terminated. The results of the study suggest that the approach
can be practical and useful. However, further empirical evaluation is needed to
determine the effectiveness of ordering data dependences based on types and spans.

Note that, in our study, we selected testing and software inspection as the ap-
propriate verification techniques for simple and complex data dependences, respec-
tively. However, other techniques may prove to be more effective in verifying these
kinds of data dependences. One important characteristic of our approach is that it
is not tied to a specific technique or set of techniques: it provides a general way to
group data dependences and to select different verification techniques for different
groups.

4.2 Incremental slicing based on data-dependence types

Traditional slicing techniques (e.g., [Harrold and Ci 1998; Horwitz et al. 1990;
Weiser 1984]) include in the slice all statements that can affect the slicing crite-
rion through direct or transitive control and data dependences. Such techniques
compute a slice by computing the transitive closure of all control dependences and
all data dependences starting at the slicing criterion. The classification of data
dependences into different types leads to a new approach for slicing, in which the
transitive closure is performed over only the specified types of data dependences,
rather than over all data dependences. In this slicing approach, a slicing criterion

is a triple 〈s, V, T 〉, where s is a program point, V is a set of program variables
referenced at s, and T is a set of data-dependence types. A program slice contains
those statements that may affect, or be affected by, the values of the variables in
V at s through transitive control or specified types of data dependences. Slices can
be computed in this new approach using either the SDG-based approach [Horwitz
et al. 1990; Reps et al. 1994; Sinha et al. 1999] or the data-flow-based approach
[Harrold and Ci 1998; Weiser 1984].

To compute slices in the new approach, using the SDG-based approach, we ex-
tend both the SDG and the SDG-based slicing algorithm. We extend the SDG in
two ways: (1) we annotate each data-dependence edge with the type of the corre-

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

28 · Alessandro Orso et al.

sponding data dependence, and (2) we annotate each summary edge with the types
of data dependences that are followed while computing the summary edge.9 Refer-
ence [Orso et al. 2003] describes the extensions and illustrates them with examples.

4.2.1 Incremental slicing technique. Using this new slicing approach, we define
an incremental slicing technique. The incremental slicing technique computes a
slice in multiple steps by incorporating additional types of data dependences at
each step; the technique thus increases the extent of a slice in an incremental
manner.10 In a typical usage scenario, developers can use the technique to consider
stronger types of data dependences first and compute a slice based on those data
dependences. Then, they can use the technique to augment the slice by considering
additional, weaker data dependences and adding to the slice statements that affect
the criterion through the weaker data dependences. Alternatively, developers may
start by computing a slice based on weaker data dependences and later augment
the slice by considering stronger data dependences. For space constraints, we do
not discuss the incremental slicing algorithm; Reference [Orso et al. 2003] presents
the details of the algorithm.

4.2.2 Empirical results. To investigate the incremental slicing technique in prac-
tice, we performed an empirical evaluation using our C subjects. We implemented
the modified SDG-construction algorithm and the modified SDG-based slicing al-
gorithm using the Aristotle analysis system [Aristotle Research Group 2000].
Our implementation takes as input a slicing criterion consisting of the SDG node
to start the slicing and the set of data-dependence types to traverse while com-
puting the slice. Then, it computes the summary edges required for the specified
data-dependence types. Finally, it traverses the SDG, starting at the criterion and
following only the specified types of data dependences, and computes the set of
nodes reachable from the criterion.

Goals and method. The overall goal of the empirical evaluation was to inves-
tigate whether incremental slicing can be useful in assisting software-engineering
tasks. In particular, we wanted to evaluate the usefulness of incremental slicing for
debugging.

First, we investigated how incremental approximate dynamic slices can be used
to narrow the search space during fault detection and potentially reduce the cost
of debugging. We compute an approximate dynamic slice by intersecting the state-
ments in a static slice with the set of statements that are executed by a test input.
In some cases, such an approximate dynamic slice can be imprecise—that is, it can
contain unnecessary statements—but, in general, it provides a good approxima-
tion of the true dynamic slice and is much less expensive to compute [Agrawal and

9An SDG contains data-dependence edges to represent data dependences and summary edges to

represent transitive flow of dependences across call sites caused by data dependences, control

dependences, or both.
10The idea of incremental slicing is not new and other researchers have investigated it previously.

However, incremental slicing based on data-dependence types is novel. Slices can be computed

incrementally based on parameters other than data-dependence types; for example, slices can be
computed one procedure at a time or one level of dependence at a time as can be done in the

CANTO environment [Antoniol et al. 1997].

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 29

Horgan 1990]. Dynamic slices are more appropriate for applications such as debug-
ging. Unlike static slices, which include all dependences that could occur in any
execution of a program, dynamic slices include only those dependences that occur
during a particular execution of a program; for debugging, the relevant execution is
an execution that fails. Thus, for debugging, dynamic slices exclude all statements
that, although related to the slicing criterion through chains of data or control
dependences, are irrelevant during a fault-revealing execution of the program.

For the first study, we used the subject space, for which we have several versions
with known faults11 and several fault-revealing test inputs for each version. We se-
lected 15 versions of space, each with a known fault. For each version, we selected a
fault-revealing test input and a slicing criterion at an appropriate output statement
of the version. Next, we examined the distribution of data-dependence types for
space and, based on the occurrences of various types, selected nine combinations
of data-dependence types for computing the slices: {t1}, {t1–t2}, {t1–t3}, {t1–t5},
{t1–t19}, {t1–t23}, {t1–t25}, {t1–t26}, and {t1–t54}. We considered the data de-
pendences in the order shown in Table IX. If no or very few data dependences
occurred for a type, we did not compute a separate increment for that type. We
added data-dependence types for an increment as long as the cumulative additional
data dependences for the increment was less than 1% of the data dependences in
the program. When the cumulative additional data dependence for the increment
exceeded 1%, we went to the next increment. We use the names t1, t2, . . . , t54 to
refer succinctly to the 54 types of data dependences; Table IX maps these names
to the types to which they correspond. Using these types, for each version, we
computed incremental static slices and intersected them with the statement trace
of the fault-revealing test input to obtain incremental approximate dynamic slices
for the version. We then examined the increments for the occurrence of the fault.

Second, we evaluated whether the results of incremental slicing generalize to
additional subjects. To do this, we examined how the sizes of static slices increase as
additional types of data dependences are considered during the computation of the
slices. For this study, we used the 13 C subjects listed in Table III. For each subject,
we determined, based on the distribution of data-dependence types, the appropriate
incremental slices to compute. We considered the types in the order shown in
Table IX. To select the increments, we used the same procedure described above.
However, for ease of presenting the data, we limited the number of increments.
Therefore, instead of using 1% (of data dependences) as a threshold, we used 5%,
and obtained fewer increments. Table X shows the number of slice increments
that were computed for each subject; it also shows, for each slice increment, the
data-dependence types that were traversed while computing the slices. For example,
consider the entry for bison in Table X. We computed three sets of slices for bison:
S1, S2, and S3. The slices in the first increment were based only on data-dependence
type t1, whereas those in the second and the third increments were based on data-
dependence types t1 through t3 and t1 through t54, respectively. For each slice
increment, we selected five slicing criteria at random from each procedure in the
program and computed a slice for each of those criteria. Thus, the number of slices

11The faults are naturally occurring—they occurred during the course of development and main-

tenance of the subject.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

30 · Alessandro Orso et al.

Table IX. The 54 types of data dependences.

RD type (D,D) (D,SA) (D,MA) (SA,D) (SA,SA) (SA,MA) (MA,D) (MA,SA) (MA,MA)

G t1 t7 t13 t19 t25 t31 t37 t43 t49

GY t2 t8 t14 t20 t26 t32 t38 t44 t50

GR t3 t9 t15 t21 t27 t33 t39 t45 t51

GYR t4 t10 t16 t22 t28 t34 t40 t46 t52

Y t5 t11 t17 t23 t29 t35 t41 t47 t53

YR t6 t12 t18 t24 t30 t36 t42 t48 t54

Table X. Sets of slices computed for each subject. For each increment, we computed the slices

starting at five randomly selected nodes in the PDG of each procedure in the program.

Number of Types of data dependences
Subject incremental slices included in the incremental slices

armenu 3 S1{t1} S2{t1–t3} S3{t1–t54}

bison 3 S1{t1} S2{t1–t3} S3{t1–t54}

dejavu 3 S1{t1} S2{t1–t3} S3{t1–t54}

flex 3 S1{t1} S2{t1–t3} S3{t1–t54}

larn 5 S1{t1} S2{t1–t2} S3{t1–t5} S4{t1–t20} S5{t1–t54}

lharc 3 S1{t1} S2{t1–t3} S3{t1–t54}

mpegplay 4 S1{t1} S2{t1–t3} S3{t1–t26} S4{t1–t54}

mpegplayer 4 S1{t1} S2{t1–t3} S3{t1–t29} S4{t1–t54}

sed 4 S1{t1} S2{t1–t3} S3{t1–t26} S4{t1–t54}

space 4 S1{t1} S2{t1–t3} S3{t1–t5} S4{t1–t54}

T-W-MC 4 S1{t1} S2{t1–t3} S3{t1–t26} S4{t1–t54}

unzip 3 S1{t1} S2{t1–t3} S3{t1–t54}

xearth 4 S1{t1} S2{t1–t3} S3{t1–t26} S4{t1–t54}

computed for a subject was five times the number of procedures in the subject.
For example, for bison, we computed 655 slices (131 ∗ 5). We then examined the
differences in the sizes of the increments.

Results and analysis. Table XI presents the results of the first study. The table
shows, for each of the 15 versions of space that we used, the sizes of the nine
incremental slices. The table shows the cumulative size for each increment and the
increase in the slice size at each increment. For example, for version 1, the first
increment contained 38 statements, the second increment included no additional
statements; the third increment contained 126 statements in addition to the 38
from the previous increment.

For each version, increment 9 is the approximate dynamic slice that is computed
by including all data dependences. In the alternative debugging scenario, in which
testers do not compute incremental slices based on data-dependence types, they
would compute increment 9 in one step and then try to locate the fault among the
statements included in the slice. The number of statements in the last increment,
and thus the number of statements that testers would have to examine, varies from
284, for version 14, to 807, for version 7. However, using incremental slicing, the
tester would compute the approximate dynamic slice in increments and examine
only the additional statements included in each increment to identify the fault.
The increments shown in bold are the first ones that contain the fault for each

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 31

Table XI. Sizes of incremental approximate dynamic slices for 15 versio ns of space for fault

detection.

Inc. 1 Inc. 2 Inc. 3 Inc. 4 Inc. 5

Inc Cum Inc Cum Inc Cum Inc Cum Inc Cum
Version size size size size size size size size size size

1 38 38 0 38 126 164 2 166 64 230

2 181 181 0 181 163 163 7 351 222 573

3 172 172 0 0 161 161 7 340 130 470

4 179 179 0 179 159 338 7 345 137 482

5 195 195 0 195 162 357 7 364 164 164

6 187 187 0 187 163 350 7 357 170 527

7 205 205 0 205 187 392 7 399 204 603

8 187 187 0 187 163 350 7 357 164 521

9 188 188 0 188 157 345 7 352 182 534

10 189 189 0 189 161 350 7 357 170 527

11 56 56 0 56 128 184 2 186 76 262

12 173 173 0 173 152 325 6 331 131 462

13 94 94 0 94 127 221 4 225 95 320

14 38 38 0 38 126 164 2 166 61 227

15 185 185 0 185 150 335 7 342 149 491

Inc. 6 Inc. 7 Inc. 8 Inc. 9

Inc Cum Inc Cum Inc Cum Inc Cum

Version size size size size size size size size

1 50 280 12 292 12 304 1 305

2 73 646 82 728 22 750 1 751

3 89 559 85 644 26 26 1 671

4 95 577 78 655 26 681 1 682

5 127 655 114 769 28 797 1 798

6 128 655 74 729 29 758 1 759

7 81 684 98 782 24 806 1 807

8 123 644 78 722 26 748 1 749

9 86 620 110 730 23 753 1 754

10 64 591 93 684 27 711 1 712

11 96 358 47 405 40 445 1 446

12 62 524 82 606 24 630 1 631

13 58 378 82 460 19 479 1 480

14 32 259 12 271 12 283 1 284

15 87 578 98 676 28 704 1 705

version.12 For example, for version 13, the tester would examine 94 statements in
the first increment, none in the second, and then 127 in the third to locate the
fault; the tester need not examine the remaining 259 statements that appear in the
remaining slice increments and that may have to be examined in the alternative
debugging scenario.

Using incremental slicing can potentially help speed up the process of locating
a fault because it lets the testers examine, at a time, a set of potentially fault-
containing statements that is smaller than a complete slice. Intuitively, it is simpler

12Because each successive increment includes all statements from the previous increments, all

increments subsequent to the ones shown in bold also contain the faults.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

32 · Alessandro Orso et al.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16S
iz

es
 o

f i
nc

re
m

en
ta

l d
yn

am
ic

 s
lic

es
 a

s
pe

rc
en

ta
ge

s
of

 th
e

fin
al

 d
yn

am
ic

 s
lic

e

Version

Fig. 10. Size of the dynamic slice increment that contained the fault, for each of the 15 versions
of space.

to examine N increments of X statements each (as long as the statements are related
and not randomly selected) than to examine a single set of statements whose size
is N ∗ X. Moreover, if the fault occurs in an increment computed before the last
increment, testers can avoid examining the statements that would appear only in
the successive increments. Finally, testers can use their knowledge of the failure to
compute the slice increments, which would further increase the chances that the
fault would appear in an increment computed before the final increment.

The data in Table XI show that, for 11 of the 15 versions, the fault first appears
in either the fifth or the sixth increment. For two versions, the fault appears in the
third increment and, for another two, in the first increment. The fault never occurs
in the last increment, which indicates that for these versions, using incremental
slicing can reduce the number of statements that need to be examined for faults.

Figure 10 shows, for each version, the size of the dynamic slice increment that
contained the fault; it shows the size as a percentage of the size of the last incre-
mental slice. The horizontal axis lists the 15 versions of space. The length of each
line in the figure represents the percentage of additional statements—over previous
increments—that were included in the increment containing the fault. The top of
each line represents the total percentage of statements that would be examined,
including those that appear in the fault-containing increment; the bottom of each
line represents the percentage of statements that are examined prior to examining
the fault-containing increment. The percentage of statements in the complete in-
cremental slice that need not be examined is at least 15% in each version, and is
as high as 74% for two versions. The sizes of the increments that contain the fault
vary from 10% to 30% of the final dynamic slice.

Figure 11 presents the results of the second study, in which we computed the slices
listed in Table X. The vertical axis represents the sizes of the slices as percentages
of the number of statements in the program. Each segmented bar in Figure 11
illustrates the average increase in the slice sizes for an increment over the previous
increment. For example, consider the segmented bar for bison. The average size

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 33

S2

S4

S5

Slice set

S3

S1

se
d

ar
me
nu

bi
so
n

de
ja
vu

fl
ex

T−
W−
MC

0

20

60

40

100

80

0

20

60

40

80

100

mp
eg
pl
ay
er

xe
ar
th

mp
eg
pl
ay

un
zi
p

sp
ac
e

lh
ar
c

la
rn

Fig. 11. Increase in the sizes of the slices for the slice increments listed in Table X. For each

subject, the segmented bar illustrates the average increase in the slice size from one increment to
the next.

of the slices in set S1, which were computed for data-dependence type t1, is 7%
of the program size. The slices in set S2, computed for data-dependence types t1
through t3, are, on average, larger than the slices in S1 by 16% of the program
statements; therefore, the average size of the slices in S2 is 23% of the program
size. Similarly, the slices in set S3, which were computed using all types of data
dependences, include on average an additional 8% of the program statements; the
average size of the slices in S3 is thus 31% of the program size.

For some subjects, a subsequent increment caused a negligible increase in the
size of the slice from the previous increment; the segments corresponding to such
increments are not discernible in Figure 11. For example, the last increment for
mpegplay increased the sizes of the slices from the previous increment by less than
0.1% of the program size. Similarly, the last increment for sed also caused the
slices to grow marginally. In one of the slice increments—the last increment for
xearth—none of slices from the previous increment showed an increase in size.

The increase in the sizes of the slices varies across the subjects as additional
data-dependence types are considered. For example, on average, the slice sizes for
armenu increase by 4% of the program size when data-dependence types t2 and t3
are considered in addition to data-dependence type t1. However, for bison, the
inclusion of those types causes the slice sizes to increase by 16%.

Overall, the data show that few slice increments cause the slices to increase in size.
For some increments, the increase is marginal, whereas, for others, it is substantial.
However, limiting the types of data dependences that are traversed during slicing
can cause the slices to be smaller, and thus, more amenable for accomplishing the
task for which the slices are computed.

Discussion. Our empirical studies indicate that incremental slicing can be effec-
tive in computing a complete slice in multiple steps. Each step potentially augments

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

34 · Alessandro Orso et al.

the slice by traversing additional types of data dependences. The technique pro-
vides a systematic way of reducing the size of a slice, by considering only those
types of data dependences that are of interest. When applied to fault detection,
the technique lets the testers focus on smaller subsets of the fault space—the set of
statements that potentially contain the fault. Instead of having to search the entire
fault space, the technique lets the testers partition the fault space and examine the
partitions separately. Thus, as the results of our first study show, the testers need
not examine the entire fault space, which can reduce the fault-detection time. The
second study shows that the results of incremental slicing generalize to more of
our subjects than the one used in the first study, thus making the technique more
generally applicable.

5. RELATED WORK

Throughout this section, we use our color-based terminology to discuss the classifi-
cations provided by other authors, even though none of those authors actually use
colors in their work. We do this for ease of comparison with our classification.

Ostrand and Weyuker [1991] extend the traditional data-flow testing techniques
[Frankl and Weyuker 1988; Rapps and Weyuker 1985] to programs that contain
pointers and aliasing. To define testing criteria that adequately test the data-flow
relationships in programs with pointers, they consider the effects of pointers and
aliasing on definitions and uses. They classify data dependences based on types of
definitions, uses, and paths between definitions and uses. They identify two types
of definitions and uses: definite and possible—they do not distinguish single-alias
accesses and, instead, group single-alias accesses with definite accesses. They distin-
guish three types of paths, based on the occurrences of no yellow paths, some yellow
paths, and all yellow paths, between definitions and uses. Based on these types,
they define four types of data dependences. A strong data dependence involves a
definite definition, a definite use, and no yellow paths between the definition and
use. A firm data dependence involves a definite definition, a definite use, and at
least one green and one yellow path from the definition to the use. A weak data de-

pendence involves a definite definition, a definite use, and all yellow paths between
the definition and use. A very weak data dependence involves either a possible
definition or a possible use. Ostrand and Weyuker define new data-flow testing cri-
teria designed to cover the four types of data dependences. They also discuss how
their classification can be used to prioritize the coverage of certain types of data
dependences over others, to meet the constraints of limited time and resources.

Ostrand and Weyuker’s classification is much coarser grained than ours. In their
classification, a definite definition (or use) includes both direct and single-alias
definitions (or uses). They identify three types of paths—they do not distinguish
the occurrence of red paths, like we do. Their classification of paths is not directly
comparable with ours because certain yellow paths in our classification—those in
which the redefinition occurs through a single-alias access—are classified as red
paths in their classification.

Apart from testing, Ostrand and Weyuker do not investigate other applications
of data-dependence classification. Also, they do not consider classification based
on spans.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 35

Table XII. Comparison of our classification with those of Ostrand and Weyuker [1991] and Merlo

and Antoniol [1999; 2000].

Ostrand and Weyuker’s Merlo and Antoniol’s Our

Classification Classification Classification

Definition/Use type definite, possible definite, possible direct, single alias,

multiple alias

Rd type [G, GR], [GY, GYR], [Y, YR] [G, GY, GR, GYR] G, GY, GR, GYR, Y, YR
[G, GY, GR, GYR, Y, YR] [G, GY, GR, GYR, Y, YR]

Number of data- 4 2 54

dependence types

Merlo and Antoniol [1999; 2000] present techniques to identify implications be-
tween nodes and data dependences in the presence of pointers. They distinguish
definite and possible definitions and uses and, based on these, identify definite and
possible data dependences. A definite data dependence involves a definite defini-
tion, a definite use, and at least one green path between the definition and the use.
A possible data dependence involves either a possible definition or a possible use.
Merlo and Antoniol do not mention whether they consider a single-alias access to
be a definite access.

Table XII summarizes how our classification compares with Ostrand and Weyuker’s
and Merlo and Antoniol’s. In considering rd types for data dependences, both Os-
trand and Weyker and Merlo and Antoniol group several rd types from our classifi-
cation; such types are shown in square brackets in Table XII. For example, for one
of the data-dependence types in Ostrand and Weyuker’s classification, the rd type
is G or GR; for another type, it is GY or GYR.

The goal of Merlo and Antoniol’s work is to identify, through static analysis,
implications between nodes and data dependences. They define relations, based
on dominance, to compute, for each node, the set of data dependences whose cov-
erage is implied by the coverage of that node. The application of our classifica-
tion provides an alternative way to estimate the data-flow coverage achieved by a
statement-adequate test suite. Moreover, unlike their approach, our approach is
applicable to interprocedural data dependences. However, our approach is more
limited than theirs in two ways. First, the application of our classification provides
a lower bound on the number of data dependences whose coverage can be inferred
from statement coverage. Our approach considers only those data dependences in
which all paths between the definition and the use are green and, in addition, ei-
ther the definition dominates the use or the use postdominates the definition. In
general, it is possible to infer the coverage of a data dependence from the coverage
of a node, even if some paths between the definition and use contain kills or there is
no dominance/postdominance relation between the definition and the use. Second,
our approach is not applicable in cases in which 100% statement coverage cannot
be assumed for a program. However, our goal in this work is not to describe a
general, comprehensive approach for inferring coverage of data dependences from
coverage of statements; instead, inferring data-flow coverage, albeit conservatively,
is an application and benefit of our classification.

Other research is related to some aspects of our work. However, none of that
research has the same goal as ours—classifying data dependences and evaluating

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

36 · Alessandro Orso et al.

the usefulness of the classification. We discuss some of that research in the rest of
this section.

Some researchers have discussed how slices can be computed incrementally. For
example, CANTO [Antoniol et al. 1997], a program understanding and architecture
recovery tool, lets the user compute a slice one step at a time, in an incremental
manner. At each step, the tool augments the slice by considering one step of data
dependences, control dependences, or function calls. The user can inspect the newly
added statements before computing the next increment. Our approach provides an
alternative way of computing incremental slices—based on data-dependence types.

Marré and Bertolino [2003] define subsumption relations among data dependences
to determine the data dependences whose coverage can be inferred from the cov-
erage of other data dependences. Their approach identifies a spanning set of data
dependences, which is a minimal set of data dependences whose coverage ensures
the coverage of all data dependences in the program. Similar to our approach for
data-flow testing, Marré and Bertolino use properties of data dependences to reduce
the number of testing requirements that are considered for coverage. However, the
properties that we consider (types and spans of data dependences) are different
from the properties that they consider (implications among data dependences).

Other researchers (e.g. [Canfora et al. 1998; Harman and Danicic 1997]) have
investigated various ways to reduce the sizes of slices. However, they have not
considered classifying data dependences and computing slices based on different
types of data dependences as a means of achieving the reduction.

Finally, several researchers have considered the effects of pointers on program
slicing and have presented approaches for performing slicing more effectively in
the presence of pointers (e.g. [Agrawal et al. 1991; Atkinson and Griswold 1998;
Binkley 1993; Binkley and Lyle 1998; Liang and Harrold 1999b]). Some researchers
have also evaluated the effects of the precision of the pointer analysis on subsequent
analyses, such as the computation of data dependences (e.g., [Tonella 1999; Tonella
et al. 1999]) and program slicing (e.g., [Bent et al. 2000; Liang and Harrold 1999a;
Shapiro and Horwitz 1997]). However, none of that research distinguishes data
dependences based on types of the definition, the use, and the paths between the
definition and the use.

6. SUMMARY AND FUTURE WORK

In this paper, we presented two techniques for classifying data dependences in
programs that use pointers. The first technique classifies a data dependence based
on the type of definition, the type of use, and the types of paths between the
definition and the use. The technique classifies definitions and uses into three
types based on the occurrences of pointer dereferences; it classifies paths between
definitions and uses into six types based on the occurrences of definite, possible, or
no redefinitions of the relevant variables along the paths. Using this classification
technique, data dependences can be classified into 54 types. The second technique
classifies data dependences based on their spans—it measures the extent or the
reach of a data dependence in a program and can be computed at the procedure
level and at the statement level. Although our techniques are intended to classify
data dependences in the presence of pointer dereferences, they are also applicable
to programs that do not contain pointer dereferences.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 37

We presented two applications of the classification techniques: data-flow testing
and program slicing. In the first application, we explored different ways in which
the classification can be used to facilitate data-flow testing. We used the classifi-
cation to determine the data-flow coverage achieved through less-expensive testing
such as statement or branch testing. We also used the classification to order data
dependences for coverage and to aid in generating test inputs for covering them. Fi-
nally, we used the classification to determine the appropriate verification technique
for different data dependences—some data dependences may be suitable for verifi-
cation through testing, whereas, for others, because of their complexity, alternative
verification techniques, such as inspections, may be more appropriate.

In the second application, we presented a new slicing approach in which slices
are computed by traversing data dependences selectively, based on their types.
The new slicing approach can be used to compute a slice incrementally. The incre-
mental slicing technique computes a complete slice in multiple steps by traversing
additional types of data dependences during each successive step.

We presented the results of three empirical studies that we performed using a
set of C subjects. The overall goal of these studies was to evaluate the usefulness
of the classification scheme. In the first study, we investigated the occurrences of
data-dependence types in practice and whether such occurrences can be used to
characterize programs. The results of the study indicated that, although a number
of different data-dependence types can occur, the five most-frequently-occurring
data-dependence types can account for as many as 90% of the data dependences
in the programs (Figure 5). Data about the most-frequently-occurring types in a
program (Table V) can be used to characterize programs based on the complexity
of their data dependences, as confirmed through manual inspection of the pro-
grams. Information about data-dependence spans can also be used to characterize
programs.

Because our first study indicated that many data-dependence types can occur
in practice, we conducted two more studies to evaluate the two applications of the
classification. In the second empirical study, we showed how our approach can be
applied to data-flow testing. The results of the study suggest that the approach
can be practical and effective; for each subject, we were able to identify the subset
of data dependences covered by statement coverage and to suggest a verification
technique for the remaining data dependences, based on the expected complexity
of covering them.

In the third empirical study, we investigated how incremental approximate dy-
namic slices can be used to reduce fault-detection effort. Using incremental slicing,
testers can examine a much smaller fault space at a time, which can speed up the
process of locating a fault. Moreover, our results indicated that testers need not
examine the entire fault space (Table XI, Figure 10). We further evaluated whether
the results of incremental slicing generalize to more subjects. We investigated the
increase in the sizes of static slices as additional types of data dependences are con-
sidered. The outcome of the study shows that incremental slicing can be effective
in reducing the slice size across the subjects considered (Figure 11), thus making
the technique more generally applicable for tasks such as program comprehension
and debugging.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

38 · Alessandro Orso et al.

In our work, we have not examined the dynamic occurrences of different types
of data dependences. A potential area of future work is to use dynamic analysis to
investigate whether the type of a data dependence can be used to predict the fea-
sibility of that data dependence. Another potential area of future work is to apply
the classification to other languages, notably Java. The classification techniques
may need to be extended or modified to accommodate unique features of Java.
The patterns in the occurrences of data dependences that we have observed for C
programs would likely differ for Java programs. An additional direction for future
work is to design and implement human studies to assess and refine our approach
for data-flow testing. Yet another possible future direction is to investigate the use
of our classification techniques to study the coupling between different modules in a
program. We expect that computing coupling measures based on the types of data
dependences between two modules can provide a better understanding of the ac-
tual coupling between such modules. Future research could also investigate whether
any relations exist between occurrences of data-dependence types and presence of
errors in industrial systems. Finally, we are interested in exploring visualization
techniques for presenting, in an intuitive way, information about the data depen-
dences within a program and their types (e.g., by letting the user visualize only a
subset of data dependences and navigate between definitions, uses, and parts of the
program in the spans).

ACKNOWLEDGMENTS

Gregg Rothermel provided useful suggestions and comments that helped improve
the paper. Donglin Liang provided an implementation of his parametric alias anal-
ysis and helped with its installation.

REFERENCES

Agrawal, H., DeMillo, R. A., and Spafford, E. H. 1991. Dynamic slicing in the presence of
unconstrained pointers. In Proceedings of the Symposium on Testing, Analysis, and Verification
(TAV 91), Victoria, British Columbia, Canada. ACM Press, New York, NY, USA, 60–73.

Agrawal, H. and Horgan, J. R. 1990. Dynamic program slicing. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 90),
White Plains, New York. ACM Press, New York, NY, USA, 246–256.

Aho, A. V., Sethi, R., and Ullman, J. D. 1986. Compilers, Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, Reading, MA.

Andersen, L. O. 1994. Program analysis and specialization for the C programming language.

Tech. Rep. 94-19, University of Copenhagen. May.

Antoniol, G., Fiutem, R., Lutteri, G., Tonella, P., Zanfei, S., and Merlo, E. 1997. Pro-

gram understanding and maintenance with the CANTO environment. In Proceedings of the

International Conference on Software Maintenance (ICSM 97), Bari, Italy. IEEE Computer

Society, Los Alamitos, CA, USA, 72–83.

Aristotle Research Group. 2000. Aristotle: Software engineering tools. http://www.cc.

gatech.edu/aristotle/.

Atkinson, D. C. and Griswold, W. G. 1998. Effective whole-program analysis in the presence of

pointers. In Proceedings of ACM SIGSOFT 6th International Symposium on the Foundations

of Software Engineering (FSE 98), Lake Buena Vista, Florida. IEEE Computer Society, Los

Alamitos, CA, USA, 46–55.

Beizer, B. 1990. Software Testing Techniques. Van Nostrand Reinhold, New York, NY.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

Classifying Data Dependences for Program Comprehension, Testing, and Debugging · 39

Bent, L., Atkinson, D. C., and Griswold, W. G. 2000. A comparative study of two whole-

program slicers for C. Tech. Rep. UCSD TR CS2000-0643, University of California at San

Diego. May.

Binkley, D. W. 1993. Slicing in the presence of parameter aliasing. In Software Engineering

Research Forum, Orlando, Florida. 261–268.

Binkley, D. W. and Lyle, J. R. 1998. Application of the pointer state subgraph to static

program slicing. The Journal of Systems and Software 40, 1 (Jan.), 17–27.

Canfora, G., Cimitile, A., and De Lucia, A. 1998. Conditioned program slicing. Information

and Software Technology 40, 11-12 (Nov.), 595–608.

Clarke, L. A., Podgurski, A., Richardson, D. J., and Zeil, S. J. 1989. A formal evaluation

of data flow path selection criteria. IEEE Trans. Softw. Eng. 15, 11 (Nov.), 1318–1332.

Frankl, P. G. and Weiss, S. N. 1993. An experimental comparison of the effectiveness of branch

testing and data flow testing. IEEE Trans. Softw. Eng. 19, 8 (Aug.), 774–787.

Frankl, P. G. and Weyuker, E. J. 1988. An applicable family of data flow testing criteria.

IEEE Trans. Softw. Eng. 14, 10 (Oct.), 1483–1498.

Frankl, P. G. and Weyuker, E. J. 1993. Provable improvements on branch testing. IEEE
Trans. Softw. Eng. 19, 10 (Oct.), 962–975.

Harman, M. and Danicic, S. 1997. Amorphous program slicing. In Proceedings of the 5th

International Workshop on Program Comprehension (IWPC 97), Dearborn, Michigan. IEEE
Computer Society, Los Alamitos, CA, USA, 70–79.

Harrold, M. J. and Ci, N. 1998. Reuse-driven interprocedural slicing. In Proceedings of the 20th

International Conference on Software Engineering (ICSE 98), Kyoto, Japan. IEEE Computer
Society, Los Alamitos, CA, USA, 74–83.

Harrold, M. J. and Rothermel, G. 1997. Aristotle: A system for research on and development of

program-analysis-based tools. Tech. Rep. OSU-CISRC-3/97-TR17, The Ohio State University.
Mar.

Harrold, M. J. and Soffa, M. L. 1991. Selecting and using data for integration testing. IEEE
Software 8, 2 (Mar.), 58–65.

Harrold, M. J. and Soffa, M. L. 1994. Efficient computation of interprocedural definition-use
chains. ACM Trans. Program. Lang. Syst. 16, 2 (Mar.), 175–204.

Horwitz, S. 1997. Precise flow-insensitive may-alias analysis is NP-hard. ACM Trans. Program.
Lang. Syst. 19, 1 (Jan.), 1–6.

Horwitz, S., Reps, T., and Binkley, D. 1990. Interprocedural slicing using dependence graphs.

ACM Trans. Program. Lang. Syst. 12, 1 (Jan.), 26–60.

Korel, B. and Laski, J. 1988. Dynamic program slicing. Inf. Process. Lett. 29, 3 (Oct.), 155–163.

Landi, W. and Ryder, B. G. 1992. A safe approximate algorithm for interprocedural pointer

aliasing. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 92), San Francisco, California. ACM SIGPLAN Notices, vol. 27.

ACM Press, New York, NY, USA, 235–248.

Laski, J. W. and Korel, B. 1983. A data flow oriented program testing strategy. IEEE Trans.

Softw. Eng. 9, 3 (May), 347–354.

Liang, D. and Harrold, M. J. 1999a. Efficient points-to analysis for whole-program analysis. In

Proceedings of the 7th European engineering conference held jointly with the th ACM SIGSOFT

international symposium on Foundations of software engineering (ESEC/FSE 99), Toulouse,
France. LNCS, vol. 1687. Springer-Verlag, London, UK, 199–215.

Liang, D. and Harrold, M. J. 1999b. Reuse-driven interprocedural slicing in the presence of
pointers and recursion. In Proceedings IEEE International Conference on Software Mainte-

nance (ICSM 99), Oxford, England. IEEE Computer Society, Los Alamitos, CA, USA, 421–432.

Liang, D. and Harrold, M. J. 2001. Efficient computation of parameterized pointer information

for interprocedural analyses. In Proceedings of the 8th Static Analysis Symposium (SAS 01),
Paris, France. LNCS, vol. 2126. Springer-Verlag, London, UK, 279–298.

Marré, M. and Bertolino, A. 2003. Using spanning sets for coverage testing. IEEE Trans.

Softw. Eng. 29, 11 (Nov.), 974–984.

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

40 · Alessandro Orso et al.

Merlo, E. and Antoniol, G. 1999. A static measure of a subset of intra-procedural data flow

testing coverage based on node coverage. In Proceedings of CASCON 99, Mississauga, Ontario,

Canada. 173–186.

Merlo, E. and Antoniol, G. 2000. Pointer sensitive def-use pre-dominance, post-dominance

and synchronous dominance relations for unconstrained def-use intraprocedural computation.

Tech. Rep. EPM/RT-00/01, Ecole Polytechnique of Montreal. Mar.

Ntafos, S. 1984. On required elements testing. IEEE Trans. Softw. Eng. 10, 6 (Nov.), 795–803.

Ntafos, S. 1988. A comparison of some structural testing strategies. IEEE Trans. Softw.

Eng. 14, 6 (June), 868–874.

Orso, A., Liang, D., Sinha, S., and Harrold, M. J. 2002. A framework for understanding data

dependences. Tech. Rep. GIT-CC-02-13, College of Computing, Georgia Institute of Technology.

Mar.

Orso, A., Sinha, S., and Harrold, M. J. 2003. Understanding data dependences in the pres-

ence of pointers. Tech. Rep. GIT-CERCS-03-10, College of Computing, Georgia Institute of

Technology. May.

Ostrand, T. J. and Weyuker, E. J. 1991. Data flow-based test adequacy analysis for languages
with pointers. In Proceedings of the symposium on Testing, analysis, and verification (TAV
91), Victoria, British Columbia, Canada. ACM Press, New York, NY, USA, 74–86.

Pande, H., Landi, W., and Ryder, B. G. 1994. Interprocedural def-use associations for C systems
with single level pointers. IEEE Trans. Softw. Eng. 20, 5 (May), 385–403.

Programming Language Research Group. 1998. PROLANGS Analysis Framework. http:

//www.prolangs.rutgers.edu/, Rutgers University.

Rapps, S. and Weyuker, E. J. 1985. Selecting software test data using data flow information.
IEEE Trans. Softw. Eng. 11, 4 (Apr.), 367–375.

Reps, T., Horwitz, S., Sagiv, M., and Rosay, G. 1994. Speeding up slicing. In Proceedings of

the 2nd ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE 94), New
Orleans, Louisiana. ACM Press, New York, NY, USA, 11–20.

Shapiro, M. and Horwitz, S. 1997. The effects of the precision of pointer analysis. In 4th

International Static Analysis Symposium (SAS 97), Paris, France. LNCS, vol. 1302. Springer-

Verlag, London, UK, 16–34.

Sinha, S., Harrold, M. J., and Rothermel, G. 1999. System-dependence-graph-based slicing of
programs with arbitrary interprocedural control flow. In Proceedings of the 21st International

Conference on Software Engineering (ICSE 99), Los Angeles, California. IEEE Computer
Society Press, Los Alamitos, CA, USA, 432–441.

Steensgaard, B. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 96),
St. Petersburg Beach, Florida. ACM Press, New York, NY, USA, 32–41.

Tonella, P. 1999. Effects of different flow insensitive points-to analyses on DEF/USE sets.
In Proceedings of the 3rd European Conference on Software Maintenance and Reengineering

(CSMR 99), Amsterdam, The Netherlands. IEEE Computer Society Press, Los Alamitos, CA,
USA, 62–69.

Tonella, P., Antoniol, G., Fiutem, R., and Merlo, E. 1999. Variable precision reaching

definitions analysis. Journal of Software Maintenance: Research and Practice 11, 2 (March–

April), 117–142.

Weiser, M. 1984. Program slicing. IEEE Trans. Softw. Eng. 10, 4 (July), 352–357.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Software Engineering and Methodologies, Vol. W, No. X, Z 20Y.

