

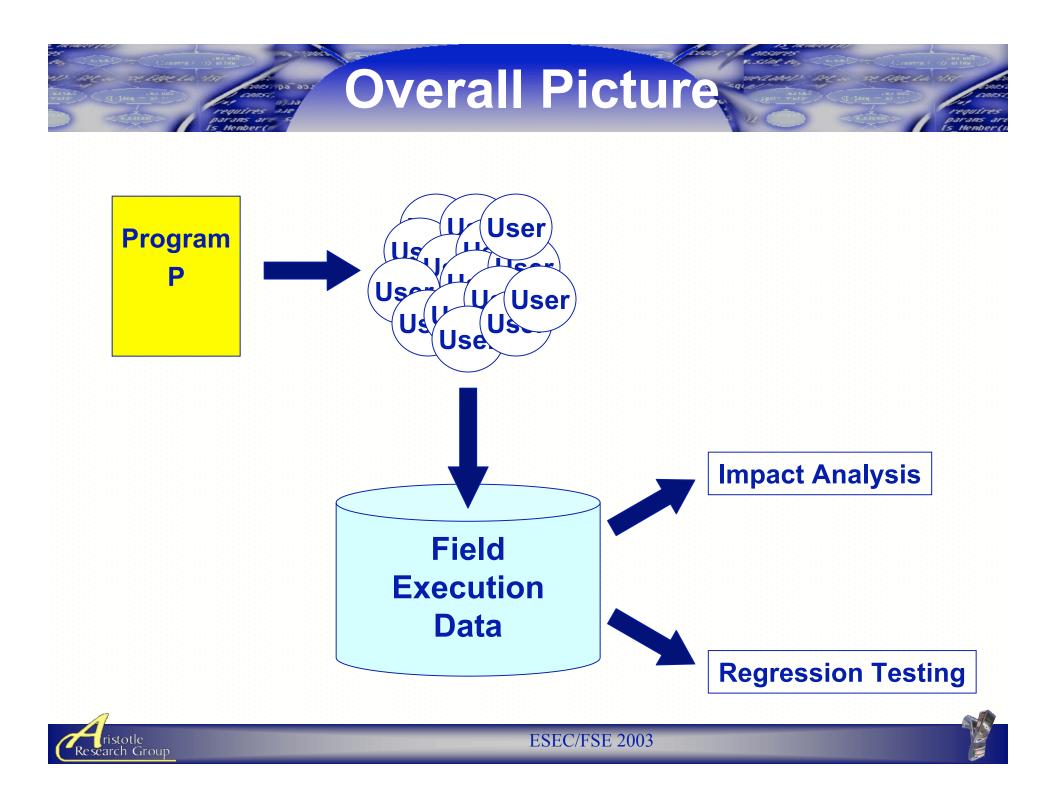
Leveraging Field Data for Impact Analysis and Regression Testing

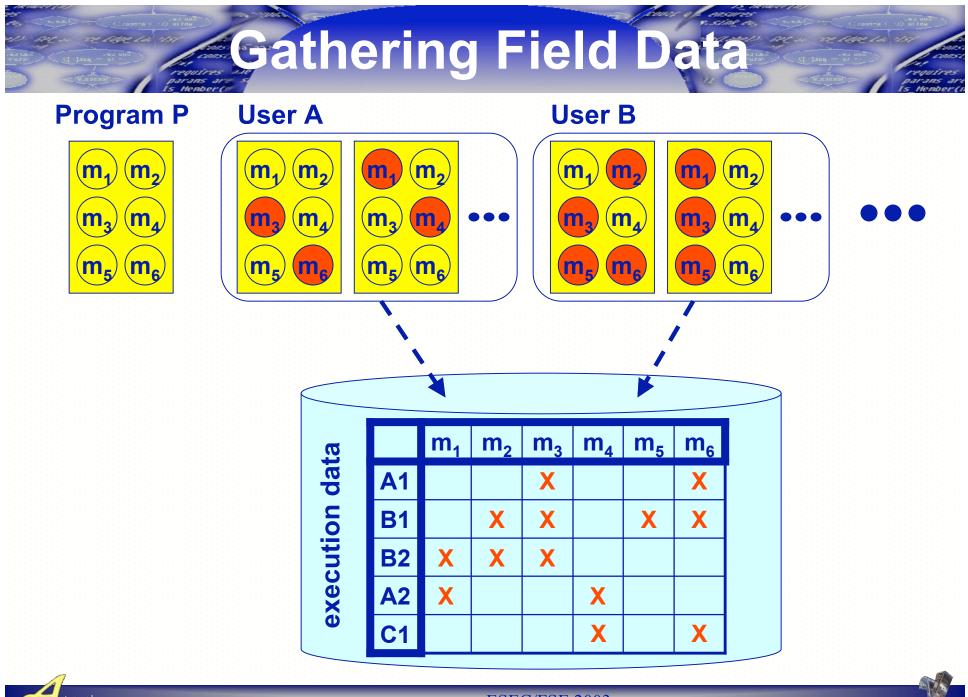
Alessandro Orso

joint work with Taweesup Apiwattanapong Mary Jean Harrold {orso|term|harrold}@cc.gatech.edu

This work was supported in part by National Science Foundation awards CCR-9988294, CCR-0096321, CCR-0205422, SBE-0123532, and EIA-0196145 to Georgia Tech, and by the State of Georgia to Georgia Tech under the Yamacraw Mission

Motivation


Fundamental shift in SW development


- Software virtually everywhere
- Most computers interconnected
- Large amount of user resources

Opportunity to use field data and resources in SE

- Testing and analysis limited by the use of in-house inputs and configurations
- Limits can be overcome by augment these tasks with field data

Impact Analysis

Assesses the effects of changes on a software system

Predictive: help decide which changes to perform and how to implement changes

- Our approach
 - Program-sensitive impact analysis
 - User-sensitive impact analysis

Program Sensitive Impact Analysis

Input:

1. Field execution data

	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆
A1			X			Χ
B1		X	X		X	X
B2	X	X	X			
A2	X			X		
C1				X		X

2. Change C={m2, m5} Output:

Impact set = {m2,m5,m6}

Step 1

- Identify user executions through methods in C
- Identify methods covered by such executions

covered methods = {m1,m2,m3,m5,m6}

Step 2

Static forward slice from C

forward slice = {m2,m4,m5,m6}

Step 3

 Intersect covered methods and forward slice

User-sensitive Impact Analysis

Input:

1. Field execution data

	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆
A1			Χ			X
B1		X	X		X	X
B2	X	X	X			
A2	X			X		
C1				X		X

2. Change C={m5, m6}

Output:

- 1. Collective impact = **60%**
- 2. Affected users = 100%

Collective impact

 Percentage of executions through at least one changed method
3/5 = 60%

Affected users

 Percentage of users that executed at least once one changed method

3/3 = 100%

Regression Testing

Performed after P is changed to P' to provide confidence that

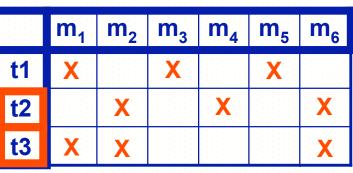
- Changed parts behave as intended
- Unchanged parts are not adversely affected by modifications

Three important issues

- Tests in T to rerun on P' (selection)
- New tests for P' (augmentation)
- Order of execution of tests (prioritization)

Regression Testing Using Field Data

Input:


1. Field execution data

	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆
A1			X			X
B1		X	X		X	X
B2	X	X	X			
A2	X			X		

2. Change

3. In-house tests for P

Output:

1. Tests T' to be rerun on P' = {t2, t3}

2. Critical methods = CM[m2] = {m3,m5} CM[m4] = {m1}

For each changed method *m* in *C*

- Add all tests through *m* to T'
- Compute the impact set for m impact set = {m1,m2,m3,m5,m6}
- For each t in T' mark methods in impact set exercised by t
- Remove marked methods from impact set

Regression Testing Using Field Data

Input:

1. Field execution data

	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆
A1			X			X
B1		X	X		X	X
B2	X	X	X			
A2	X			X		

2. Change

3. In-house tests for P

	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆
t1	X		X		X	
t2		X		X		X
t3	X	X				X

Output:

1. Tests T' to be rerun on P' = {t2, t3}

2. Critical methods = CM[m2] = {m3,m5} CM[m4] = {m1}

For each changed method m in C

- Add all tests through *m* to T'
- Compute the impact set for m impact set = {m1,m2,m4,m6}
- For each t in T' mark methods in impact set exercised by t
- Remove marked methods from impact set

Empirical Studies

Subject

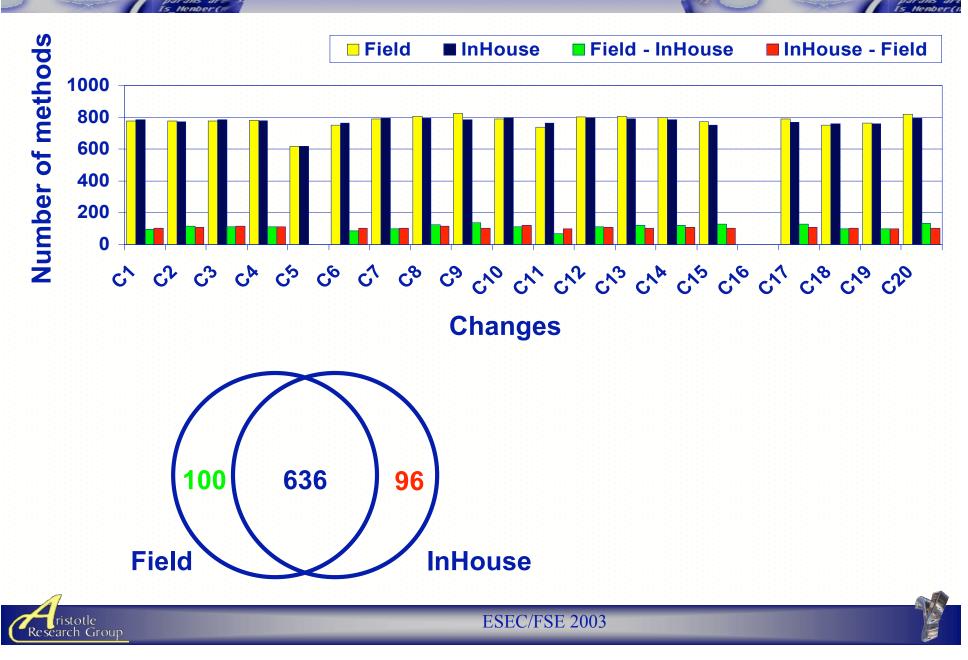
- JABA: Java Architecture for Bytecode Analysis
- 60 KLOC, 550 classes, 2,800 Methods

Data

- Field data: 1,100 executions (14 users, 12 weeks)
- In-house data: 195 test cases, 63% method coverage
- Changes: 20 real changes extracted from JABA's CVS repository

Study 1: Impact Analysis

Research question


Does field data yield different results than in-house data in terms of impact sets?

Experimental setup

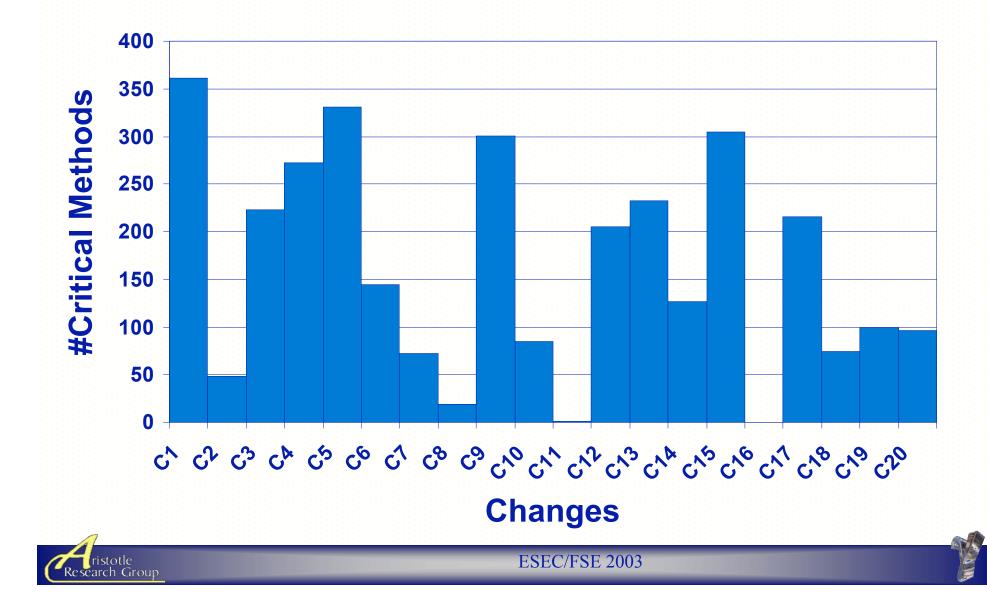
- Computed impact sets for the 20 changes
 - Using field data
 - Using in-house data
- Compared impact sets for the two datasets

Study 1: Impact Analysis

Study 2: Regression Testing

Research question

Does the use of field data actually result in additional testing requirements?


Experimental setup

Computation of the set of critical methods for the 20 real changes

Study 2: Regression Testing

Related Work

- Perpetual/Residual testing (Clarke, Osterweil, Richardson, and Young)
- Expectation-Driven Event Monitoring (EDEM) (Hilbert, Redmiles, and Taylor)
- Echelon
 - (Srivastava and Thiagarajan)
- Impact analysis based on whole-path profiling (Law and Rothermel)

Final Remarks

Conclusion

- Two new techniques for impact analysis and regression testing based on field data
- Empirical evaluation on a real subject with real users
- Results showing that using field data considerably affect these tasks

Open Issues and future work

- Study on the stability of user behaviors
- Collection of additional data
- Clustering of field data
- Capture and replay of users' executions

For more information:

http://gamma.cc.gatech.edu

Questions?

