
ISVis Adaptation Project
Fall 2008 Term Paper (Updated)

http://www.cc.gatech.edu/morale/tools/isvis/2009/

Andrew Bernard
College of Computing, Georgia Tech

agbernard@gmail.com

March 9, 2009

Abstract

The objective of this study is to examine some of the challenges that come with
refactoring a 10+ year old legacy system. The research was conducted over the course
of 15 weeks after which we were able to compare our experience to that of others that
have documented similar endeavors. The lessons described in this paper can serve to
add to the documentation of the task of refactoring a legacy system.

1 Introduction

There are a variety of reasons people have encountered prompting them to re-examine
the structure of a software application. This re-structuring is often referred to as either
“refactoring” or “reengineering” - but mistakenly, they are sometimes used interchange-
ably. According to Fowler in [8] “refactoring is the process of changing a software system
in such a way that it does not alter the external behavior of the code yet improves its
internal structure.” Reengineering has a much broader scope according to Chikofsky and
Cross - in [6] they define reengineering as “the examination and alteration of a system
to reconstitute it in a new form.” While a main goal of refactoring is to maintain the be-
havior of the code being changed, it is very often the case that new functionality is added
(or old functionality changed) during a reengineering project. Reengineering very often
necessitates some sort of refactoring, but refactoring very rarely has the impact that a
reengineering process would.

The main characteristic that is common to both processes is that the practitioner is trying
to change the target application (or system) in some way. Generalizing the motives for
each of these processes might lead us to the notion that we refactor to improve maintain-
ability and we reengineer to add functionality. Taking these motives into consideration,
we quickly come to realize that when dealing with a legacy application, both processes

1



become very necessary and both bring with them unique challenges. We will explore some
of those challenges in Section 2 and try to see if we can use the experience of others to
help us in our endeavor to adapt a ten year old program used to support the browsing
and analysis of program execution scenarios. The program is called Interaction Scenario
Visualizer (ISVis) and further explanation of its adaptation project is given in Section 3.
Reflections on ISVis and the research conducted is given in Section 4 and we end with
some ideas for future work.

2 Related Work

There is a plethora of work on how to handle legacy systems. [16] summarizes the efforts
of an XP team from ThoughtWorks Technologies to introduce new features to a legacy
system. It provides a great informal guide to working with a legacy system using an
agile development process (although not all the pointers necessitate an agile development
process). Since agile methods are relatively new and most legacy systems were developed
under a non-agile development process, it is interesting to see those techniques applied
to an older system to try and make it more maintainable.

In [17], Thomas argues that the older the code base and the more mission critical the
application, the more difficult it is to maintain or enhance it. One primary difficulty is
just understanding the code base which may not be well-designed or well-written. For
this reason, the author promotes the idea that when working with legacy software, Dis-
covery and Transformation should be the focus before considering Design and Develop-
ment. Discovery combines the stories obtained from experienced developers and cus-
tomers with knowledge gained by analyzing the code, associated documentation, and test
cases. Transformations of the code should be done systematically in small pieces, testing
each change before moving to the next. These two concepts are important parts of the
plan for refactoring ISVis (which will be elaborated on below).

The discovery process is also a primary concern of the research described in [9], where the
authors address the problems associated with identifying hidden concerns in legacy code.
A hidden concern (HC) is any issue that has been grafted into existing code to extend it’s
functionality in some way that is different from the piece of code it is being added to. This
decreases the code quality (by reducing it’s coherence) because the code is now handling
more than one specific issue. More often than not, an HC suffers from two problems
that make them hard to track down: they are usually scattered throughout the project
and tangled with other code. Consequently the primary focus as it relates to HC’s is how
to identify and extract the code related to a hidden concern - a task which the authors
recognize as being non-trivial.

A possible approach to identifying hidden concerns could be feature-oriented refactoring,
as described in [11]. This is the process of decomposing a program into features, thus
recovering a feature based design and giving it an important form of extensibility. A
characteristic of feature-oriented refactoring (FOR) that makes it challenging is that a

2



feature cannot always be implemented by a single module. To try and deal with this
problem Batory et al. describe a methodology for expressing programs and features as
mathematical equations. Engaging in this practice gives the practitioner a reliable way of
predicting the effects of adding or removing features from the base program because the
derived equations communicate properties that decompositions and their underlying base
modules and derivatives must have. These properties are automatically checked by the
tools the authors developed to aid in the FOR process. The authors developed an Eclipse
plugin to be used with legacy Java applications. The plugin guides the user through a
five-step process which defines the base modules of the program, optional modules, and
then reconstitutes the program for the user.

Pertaining to ISVis, FOR would seem like a useful technique, but since the tool the authors
developed only works for Java programs, the work involved in implementing their ideas
by hand would probably not be worth the effort. Additionally, this method requires a
substantial knowledge of the program being examined and that would make using it on
ISVis difficult since ISVis suffers from the “embedded knowledge” symptom of an aged
system.

Aging symptoms of legacy systems are described in [18] where Visaggio et al. try to advise
developers on how to measure and handle the inevitable aging of a system. In addition
to “embedded knowledge” — defined as knowledge about the system that can no longer
be derived from existing documentation — the authors describe four other symptoms to
watch for:

• Pollution - components that are no longer used by the users

• Poor Lexicon - variables and components that have names with no meaning

• Coupling - the flow of control/data between components is very tightly linked

• Layered Architectures - occurs when there are several different solutions spread out
across a system’s architecture.

ISVis exhibits all of the above symptoms to varying degrees, suffering most severely from
embedded knowledge.

Because of these symptoms, we know ISVis definitely has to be refactored and we know
from our definition above that after a refactoring, a program must be syntactically cor-
rect. There are ways to preserve a program’s behavior which rely on the compiler catching
mistakes, but there are some errors which could change the behavior of a program that
a compiler would not be able to catch. A particular set of program properties have been
found to be easily violated if explicit checks are not made before a program is refactored.
Those properties are described in [15]. While ISVis is not quite at the stage of implement-
ing a refactor (for reasons described in Section 4), the properties described by Opdyke
should be considered when it is time to start changing the code.

When that time comes, there are a variety of ideas to draw upon for guidance on how

3



to proceed - or even on how not to proceed. In [7], Doblar and Newcombe argue for an
increased focus on automating transformation processes based on the statistic that, on
average, a well trained programmer can only transform about 160 LOC per day. To trans-
form an entire system at that rate would be too costly. The innovative part of the process
described by Doblar et al. is that they propose using a suite of artificial intelligence tech-
nology tools to automate an unexaggerated 99 percent of the transformation work. Most
of what is left for manual transformation should just be what truly requires a human de-
cision maker. They make the point that while high levels of automation are achievable for
transformation tasks there will always be tasks that are manually intensive. Nevertheless,
they argue that anything that can be automated should be.

Unfortunately, the paper did not go into how the AI performs it’s tasks, but that is most
likely because the research comes from a private company dealing with defense software.
Also, the techniques described were applied to languages to convert them to C++ - it
is unclear whether they would work if trying to perform a transformation to the same
language. Regardless, these techniques would probably be overkill for reengineering ISVis.

Another idea could be to use a goal model - a graph structure representing stakeholder
goals and their inter-dependencies. [21] describes a methodology for obtaining a goal
model from legacy code, but it is a process that is currently unnecessary for the ISVis
project since the main focus of the reengineering process has already been identified.
However, the methods described by Yu et al. could potentially be useful in future refactor-
ing efforts on ISVis as they would allow for the categorization of the code to help identify
candidates for refactoring.

In [12], Heineman and Mehta describe a 3-step methodology for evolving a system into
components based on the features the system implements. They applied their proposed
process to a 14 year old product and they describe the lessons they learned from their
work. Two of those lessons are applicable to the ISVis adaptation project: the authors
conclude that features are good candidates for evolution into components if they “change
often, are concentrated in fewer functions, or depend on or share global variables as
a means of communication.” While the “display feature” of ISVis might not necessar-
ily change often, it was chosen as the primary candidate for refactoring because it is
currently nonfunctional on modern machines and this holds it back from being used or
updated. Secondly, the authors comment that “the true measure of a successful evolution
methodology is in reduced future maintenance costs.” From that perspective, the adap-
tion of ISVis to have a plugin-style interface for its display code will certainly be a success
since that accomplishment will drastically reduce the cost of maintaining that portion of
the code.

[10] describes the use of a formula to calculate the cost effectiveness of a planned refactor.
While it still remains the job of the developer to decide what to refactor, the proposed
formula aims to help determine when that refactor should happen by calculating the
return on investment (ROI) for the planned activity. If the ROI is greater than or equal
to one, then the planned refactoring is deemed to be cost effective. It would be hard
to determine the ROI for the planned refactoring of ISVis since there are currently no
regression tests available, a key component to calculating the formula. It would be a rather

4



meaningless effort anyway since the planned refactor is a necessity to get the application
running on modern machines — so we wouldn’t not refactor it if our ROI was below one.
Nevertheless, this could prove to be useful in the future, after ISVis is working properly,
to determine how to maximize the effort spent on further modifications.

[3] describes a process for incrementally re-engineering a legacy application whose archi-
tecture has degraded over time. Specifically, the authors’ goal was to develop a target
architecture for a system and then re-engineer the system to the desired architecture us-
ing a defined series of steps. Reengineering ISVis will most likely produce the architecture
erosion Coelho et al. talk about since there is no clearly defined documentation on the
design of the system. The lack of architectural documentation will basically ensure that
any changes made to the code will not be in line with the original author’s thinking, thus
producing the erosion.

[4] describes a process model for re-engineering a legacy system - particularly a system
that is in use and cannot be shut down for an extended period of time. One of the main
issues the paper aims to address is the traditional approach of reengineering a system all
at once and consequently prohibiting the use of the system while it is being changed. To
combat this, the authors propose a method which share features with the Chicken-Little
Strategy [5] and the Butterfly Methodology [20] while alleviating some of their weaknesses.
[4] was used as inspiration for the Refactoring Plan that was developed for the ISVis display
(found in Section 3.3). While [4] was targeted for data-centric systems, the more general
idea of iterating over a reengineering process will definitely be applied to the process for
adapting ISVis.

3 ISVis Adaptation Project

The purpose of ISVis is to support the browsing and analysis of execution scenarios, de-
rived from actual program executions - more details about the application can be found
at [2]. It is useful during software engineering tasks requiring a behavioral understanding
of programs, such as design recovery, architecture localization, design/implementation
validation, and reengineering. The key features of ISVis are its use of visualization tech-
niques to depict the large amounts of information available to a user, and the notion of
recurring scenarios, or “interaction patterns”, as abstractions which help bridge the gap
between low-level event traces and high-level design models.

ISVis was originally developed over ten years ago in an older (pre-standard) version of
C/C++ - the persistence portion was written using Rogue Wave, the user interface portion
was written using the Motif toolkit and the platform for it to run on was Solaris. Since
then, the program has become dated with the standardization of C++, upgrades to Motif
and Rogue Wave, and the need for portability to different platforms. In Fall of 2006 a team
of Georgia Tech students picked up ISVis as a semester project and started the task of
adapting it to modern operating systems.

5



After some analysis, they decided to tackle the adaptation project in two stages. The first
stage was to upgrade ISVis and get the program to run on the same platform it was origi-
nally written for. Upon that accomplishment, the second stage was to make ISVis portable
to multiple platforms, including Windows. The team almost completed stage one before
having to leave the project behind - documentation of their work can be found at [1]. They
left it in a state where the code was up-to-date with respect to programming language
standards, yet it would not run. Dependencies on external libraries, in particular Rogue
Wave, had been completely eliminated and replaced by the more stable Standard Template
Library (STL) classes (where appropriate). Because persistence of data was highly depen-
dent on libraries not further available, persistence related capabilities were disabled. The
system also had a known colormap issue.

It was later picked up in Spring 2008 by Angela Navarro who started off by solving the
colormap problem. After fixing some bugs that were introduced during the upgrade to
STL, she was able to get the program to run and accept input from the user. When she
left the project, the program was also able to read a trace file and process the information
in it, but she reports that the system did not produce correct results due to a custom
iterator behaving unexpectedly.

This is where I picked up the project, but unfortunately I had to start a step behind Angela.
Much of my time this semester has been spent trying to get ISVis to build and execute.
I got it to build on Fedora 9 (the distribution on my laptop at the time) and Red Hat
Enterprise Linux 4 (tampere.cc.gatech.edu) but in both cases the program would crash
when trying to open the GUI. This is most likely because the code handling the display is
not compatible with modern monitors or drivers.

My next attempt to get the GUI to show was to run it on an older OS with an older
monitor. After updating the Makefile to allow for a smoother build process, I built it on
gaia.cc.gatech.edu which runs SunOS 5.8. We did this primarily so we could use an old
Sun monitor that we think should be able to display the ISVis interface. I was able to get
it to execute successfully on gaia so the default screen displays. This was accomplished
by setting the display class to a hard-coded X library constant which I discovered could be
handled by the Sun monitor. A more desirable solution would be to have this be detected
dynamically depending on the display being used. As it stands right now, some of the
menu items are causing segmentation faults so that needs to be debugged. I did change
the code, however, to handle trapping signals to the program should not crash when
these faults occur. Along with dealing with these build issues, I was also able to start on
a preliminary plan for refactoring the display code in ISVis. This work is described in the
following sections.

3.1 Discovery

During my examination of the code, I produced the class diagram shown in Figure 1 show-
ing the code related to the GUI display. ViewManager is the entry point to the system -
when ISVis starts, it is the main function in ViewManager that gets called. X Application

6



Figure 1: Class Diagram of display-related code

kind of acts like a utility class giving access to many of the X library calls that ISVis uses
although it is unclear if there is a specific set of functionality it is meant to encapsulate.
It is unclear because many of the other classes make calls to the X library directly so fur-
ther analysis is needed to determine X Application’s true purpose. IOShell is another
utility class with methods provided for I/O functions. MainView seems to be responsible
for instantiating, positioning, and drawing all the sub view classes. View is used as an
abstract class, although it is not defined as one - meaning its type is used as a reference,
while only it’s children are ever instantiated. The rest of the classes shown relate directly
to the GUI components they are named for.

This diagram, along with the statistics shown in A.1, was developed using a combination
of the techniques described in [9] and [15]. In order to “flush out” a hidden concern [9]
describes a process that combines text-based and type-based mining. The paper illus-
trates why doing them separately doesn’t prove to be as effective as doing them together
and then introduces the Aspect Mining Tool, developed by the authors. The techniques
described in this paper would have proven to be very useful in refactoring ISVis since
the display-related code is scattered in various places throughout the application and a
quick way of finding it would have helped in determining what needed to be changed.
Unfortunately that specific tool is only available for Java at the time of this writing.

Nevertheless, while it might not be as a ideal, text-based mining was done manually to
search for references to the X library, pointing us to the classes that were related to

7



the display. Type-based mining was done using the compiler strategy described in [15].
The compiler strategy just involved commenting out include statements that referenced
X libraries and building the code to find what data type references broke. The compiler
strategy was needed to catch references to classes in the X library that did not have the
typical X* naming convention.

3.2 Transformation Approach

One of the main purposes behind identifying which classes are related to the display is to
facilitate its abstraction. Our eventual goal is to create an interface around the current
code associated with the display. All the code interacting with the display would do so
through interfaces thereby decoupling the display implementation from the program’s
functionality. Once this layer of abstraction is in place we will be able to “plug out” the
current code used for the display and plugin something else - like code for displaying on
Windows or Linux. This will make ISVis much more portable and much less brittle to
future changes.

3.3 Refactoring Plan

To accomplish this transformation, the refactoring plan shown in Figure 2 was developed.
At the start there are two parallel processes occurring. The left arc starts with an Ana-
lyze phase in which aging symptoms in ISVis are identified. From that identification we
then choose a candidate to focus our refactoring efforts on. After making that choice we
redesign the component in question and then implement the new design by refactoring.

While all of this is happening, the right arc shows two other steps that should also be
taking place: building the code and capturing data of the current build to be used in
regression tests after the code has changed. Once both arcs have been completed we can
proceed with building the newly refactored code. The last box labeled Regression Test
includes executing the code and gathering data that can be reliably compared to the data
gathered from the pre-refactor execution. This begs the question: what is reliable? That
cannot really be determined ahead of time as it is dependent on how fine or coarse the
scope of the refactoring is - the candidate for refactoring can be anything from one method
to an entire set of classes. However, as we mentioned above, we will most likely bite off
very small chunks of code and iterate over this process many times to achieve our desired
end result.

There are some potential issues with this plan. Firstly, the process of selecting a candidate
for refactoring is going to be mostly subjective. Do we pick a candidate based on a part
of the code we want to change, a part of the interface to test, or both? I imagine it will
be a combination of those two options with a fair amount of trial and error taking place.
Another issue will arise when it comes time to capture execution data for regression testing
- we will discuss this more in Sections 4.1 and 5.

8



Figure 2: Refactoring Plan for ISVis

9



4 Reflections

4.1 Regression Testing a GUI

In section 2 we discussed a methodology for evolving a system into components - two
key assumptions made in [12] are that (1) the system is coded in a language for which a
code-profiling tool is available and (2) that the legacy system has regression test suites.
ISVis satisfies (1) but not (2) and thus could not use the methodology described without
first developing a reliable set of test cases. This raises an important issue: how do we
reliably test a GUI based application? There is a technique described by Lee White in [19]
where automated regression tests can be generated to test both static and dynamic event
interactions in a GUI. Static interactions are those that are contained within one GUI
screen. Dynamic interactions involve decisions happening on multiple screens. White
describes three different solutions that could be used for generating the interaction test
cases: (1) brute force method of enumerating the elements of each possible path, (2)
randomly generating test cases, and (3) using Mutually Orthogonal Latin Squares. Of
the three, Latin Squares could possibly be applied to ISVis, however an entirely different
approach could be to use the techniques described by Memon et. al in [13].

This paper describes the use of planning, an AI technique, to automatically generate test
cases for a GUI. The paper argues that instead of trying to design test cases for every
possible state of a GUI, it is more effective and simpler to specify the goals a user might
want to accomplish and have a tool that can automate the sequence of events that would
need to occur to meet those goals. The test case generation system developed by the
authors takes these goals as input in the form of initial and end states. Their system then
generates sequences of actions to get between the two states, which serve as the test cases
for the GUI.

While Memon and White propose two different techniques to test case generation, they
both agree that automation of test cases for GUI’s is a necessity to accommodate the
changes that can occur during its development and maintenance. Which technique to use
for ISVis still remains to be seen. There are even decisions that must be made after the
test cases are in place concerning how to maintain them. Memon & Soffa write about a
possible solution to that dilemma in [14] describing a technique to repair unusable test
cases after the components of a GUI have changed.

When a GUI changes it is inevitable that some tests will become unusable because the
chain of events that occur for interactions with the GUI will change. Normally, these
unusable tests would have to be regenerated, but GUI test case generation is expensive.
Memon & Soffa’s solution is based on modeling the GUI’s events and components and then
comparing the original and modified versions of these models. From that comparison they
are able to automatically detect unusable test cases and repair the ones that can be. ISVis
isn’t quite ready for these techniques since there are no test cases related to the GUI yet
and the GUI is not in a rapid state of change, but it may be wise to consider such things
when choosing a method to generate the test cases that will be needed. Further reading

10



on this topic is required to help develop a more reliable process in refactoring ISVis.

4.2 Aging

Knowing that ISVis exhibits the symptoms described in [18], steps should be taken to
improve the general understandability of the code. After defining the symptoms to watch
for, the paper went on to describe the lessons learned from reengineering a legacy system.
The following lessons directly apply to our eventual refactoring of ISVis and should be
kept in mind as we move forward with the reengineering process:

• Lesson 1 - “Before renewing an old software system, it is wise to clean it thoroughly
of the pollution that has accumulated over the years.” ISVis is polluted with dead
code and ambiguous comments.

• Lesson 3 - “Extracting the knowledge incorporated in the programs is a long and
costly activity.” At some point, this is a process that will have to be undertaken with
ISVis. The lack of code documentation is a major hurdle that anyone picking up the
code has to overcome before they can make meaningful progress.

• Lesson 4 - “It is best to check the lexical quality of the programs frequently.” I doubt
if the class or variable names have ever been examined and refactored to improve
code readability.

4.3 The Code

These lessons give ample reason why the build process and the general understandability
of the code is lacking in clarity. The code is polluted with sections of dead code — this
dead code is documented by the comments of previous viewers, yet the code is left there,
I assume to provide clues to what the original author may have intended. Most of the
comments present in the code are either commented out code or warnings of potential
pitfalls. Extracting the meaning and purpose of each component of the system into well
thought out comments and documentation would be a great undertaking, but also a great
help to future viewers of the code.

4.4 ISVis Prerequisites

In its current state, ISVis has some pretty stiff requirements for working with it. C++ goes
without saying since that is the language it is written in. Familiarity with Linux is a must,
particularly

• the link-editor (ld) for dealing with build issues

11



• a command line debugger (gdb)

• make files

I spent a great deal of time learning how to use these tools for the first time and I’m sure it
slowed me down from making more meaningful progress. The ReadMe that accompanied
the code assumed all of this knowledge and was rather vague when it came to what needed
to happen for the code to build.

5 Next Semester

The build process has been cleaned up and the GUI is displaying on solaris. The next step
is to debug the faults that are occurring for certain menu items and try to get it work on
Linux by configuring the display class to be detected dynamically (instead of being hard-
coded as described in Section 3). After that is out of the way we can start implementing the
plan described in Section 3.3. As mentioned above, an issue that needs further analysis
is how to reliably test and regression test GUI’s. This will be an important part of our
refactoring process, but we will need more than just GUI tests. Ideally we would have
a suite of tests that verified the functionality of the code separate from the GUI. If we
do a good job with pulling out the display code, testing the GUI will just be a matter of
making sure the data our functions calculate is being displayed properly. Checking the
calculations themselves will happen in a different set of test cases.

12



A Appendix

A.1 ISVis Statistics

13



14



15



A.2 Outstanding Issues

1. Segmentation faults not being caught
2. No reliable Makefile

A.3 Time Log

Note: the numbers of the summaries refer to the links on the website at the home of this
document.

16



17



18



References

[1] Isvis adaptation project - 2006. http://www.cc.gatech.edu/morale/tools/
isvis/2006/isvis.html.

[2] Isvis original home page. http://www.cc.gatech.edu/morale/tools/
isvis/original/isvis.html.

[3] Marwan Abi-Antoun and Wesley Coelho. A case study in incremental architecture-
based re-engineering of a legacy application. In WICSA ’05: Proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture, pages 159–168, Washington,
DC, USA, 2005. IEEE Computer Society.

[4] Alessandro Bianchi, Danilo Caivano, Vittorio Marengo, and Giuseppe Visaggio. It-
erative reengineering of legacy systems. IEEE Transactions on Software Engineering,
29(3):225–241, 2003.

[5] Michael L. Brodie and Michael Stonebraker. Migrating legacy systems: gateways,
interfaces & the incremental approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1995.

[6] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery:
A taxonomy. IEEE Softw., 7(1):13–17, 1990.

[7] R. A. Doblar and P. Newcombe. Automated transformation of legacy systems.
CrossTalk, December 2001.

[8] Marting Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[9] Jan Hannemann and Gregor Kiczales. Overcoming the prevalent decomposition in
legacy code. ICSE 2001 Workshop on Advanced Separation of Concerns, May 2001.

[10] Rob Leitch and Eleni Stroulia. Understanding the economics of refactoring. In 5th
International Workshop on Economics-Driven Software Engineering Research (EDSER-
5): The Search for Value in Engineering Decisions, pages 44–49, May 2003.

[11] Jia Liu, Don Batory, and Christian Lengauer. Feature oriented refactoring of legacy
applications. In ICSE ’06: Proceedings of the 28th international conference on Software
engineering, pages 112–121, New York, NY, USA, 2006. ACM.

[12] Alok Mehta and George T. Heineman. Evolving legacy system features into fine-
grained components. In ICSE ’02: Proceedings of the 24th International Conference on
Software Engineering, pages 417–427, New York, NY, USA, 2002. ACM.

[13] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Using a goal-driven approach
to generate test cases for guis. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 257–266, New York, NY, USA, 1999. ACM.

[14] Atif M. Memon and Mary Lou Soffa. Regression testing of guis. In ESEC/FSE-11:
Proceedings of the 9th European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of software engineering, pages
118–127, New York, NY, USA, 2003. ACM.

19



[15] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, 1992.

[16] Andy Pols and Chris Stevenson. An agile approach to a legacy system. In 5th Interna-
tional Conference on Extreme Programming and Agile Processes in Software Engineer-
ing (XP 2004), pages 123–129, 2004.

[17] Dave Thomas. Agile evolution towards the continuous improvement of legacy soft-
ware. Journal of Object Technology.

[18] Giuseppe Visaggio. Ageing of a data-intensive legacy system: symptoms and reme-
dies. Journal of Software Maintenance, 13(5):281–308, 2001.

[19] L.J. White. Regression testing of gui event interactions. Software Maintenance 1996,
Proceedings., International Conference on, pages 350–358, Nov 1996.

[20] Bing Wu, Deirdre Lawless, Jesus Bisbal, Ray Richardson, Jane Grimson, Vincent
Wade, and Donie O’Sullivan. The butterfly methodology: A gateway-free approach for
migrating legacy information systems. In ICECCS ’97: Proceedings of the Third IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS ’97),
page 200, Washington, DC, USA, 1997. IEEE Computer Society.

[21] Yijun Yu, Yiqiao Wang, John Mylopoulos, Sotirios Liaskos, Alexei Lapouchnian, and
Julio. Reverse engineering goal models from legacy code. In RE ’05: Proceedings of
the 13th IEEE International Conference on Requirements Engineering (RE’05), pages
363–372, Washington, DC, USA, 2005. IEEE Computer Society.

20


