
1

A Case Study in Software Adaptation
August 1st, 2009

http://www.cc.gatech.edu/morale/tools/isvis/2009

Andrew Bernard
College of Computing, Georgia Tech

abernard@gatech.edu

Abstract—The objective of this study is to examine the chal-
lenges that come with adapting legacy software. We will discuss
the software adaptation of a 13 year old system called ISVis.
ISVis supports the browsing and analysis of program execution
scenarios. It is written in C++ and comprises 48 source and
header files defining 57 classes totaling around 18 KLOC. Our
adaptation process involved analysis of operating system calls,
C++ language standards, third-party library dependence, and
build environments. The project yielded results and experiences
that are applicable to a variety of topics including software
migration difficulties, upgrading and debugging legacy code, and
regression testing GUI’s.

Index Terms—software migration, software adaptation, legacy
systems, refactoring

I. INTRODUCTION

SOFTWARE products are constantly evolving in order
to adapt to emerging technologies. Unfortunately, many

legacy systems were not designed with this in mind. Software
engineering researchers, in an effort to create long lasting and
maintainable software, have explored a variety of system con-
figurations and architectures to ease the process of upgrading.
The purpose of this study is to explore some of the issues
relevant to modifying a legacy system in order to adapt it to a
changed environment as well as to get a general understanding
of the optimal characteristics of software designed to live
through changes in technologies.

The legacy program that was the target of our adaptation
study is the Interaction Scenario Visualizer, or ISVis for short.
ISVis was originally released in 1996 [1] and has not been
updated since that time. It is an application created to support
the browsing and analysis of program executions. Through
a set of visualization techniques, ISVis provides users with
a depiction of large amounts of information to understand
a program’s behavior through the discovery of interaction
patterns and recurring scenarios. Section II describes the
program’s functionality in further detail.

ISVis was originally developed in an older (pre-standard)
version of C/C++ using third-party libraries. The user interface
portion was written using the Motif toolkit and its operating
system was Solaris [2]. Since then, the program has become
dated with the standardization of C++, upgrades to the third
party libraries it depends on, and the need for portability to
different platforms. The process of updating ISVis was started
in Fall of 2006. This paper discusses the progress that has
been made since that time. We will go into detail about the
difficulties we faced in Section III and then describe our
approach to solving each issue in Section IV. The following
is a brief overview of the main issues that were encountered
during the adaptation process:

1) OS Dependence: As was mentioned above, ISVis was
originally developed to run solely on a Solaris machine (SUN
Solaris 2.5). Our short term goal was to get it to run on a
more recent version of Solaris. A long term goal is to enable
it to run on a variety of platforms (Linux, Mac, Windows).

2) Language: We needed to update the pre-ANSI standard
version of C++ to use the current standard version of the
language.

3) Third Party Dependence: ISVis originally used a third
party library called RogueWave [3] to handle persistence and
collection classes. This dependence needed to be replaced
since the version of the library being used was no longer
supported.

4) Build Environment: The Makefile used to build the
program had to be adapted to coincide with the other modifi-
cations being made.

5) GUI: ISVis was dependent on out of date versions of
Motif (1.2) and X Windows (X11R4) for its GUI. Adaptations
were made to bring these up to date.

II. ISVIS

[Section II is copied from [4] with minor rewording and
organization]

A. Purpose

ISVis aids in understanding the architecture of a software
system. It does this by helping the analyst cope with the
abundance of detail inherent in large systems. In particular,
it provides two key features for managing detail: graphical
visualization techniques and support for analyst-defined ab-
stractions.

ISVis provides an analyst with a process and a tool within
which a program’s behavior can be visualized, filtered, and
abstracted and with which the analyst can build and save
views of the behavior appropriate for the particular program
understanding task. Using these visualizations analysts can
detect recurring patterns of component interactions, manifested
as repeated sequences of program events such as function
calls, object creation, and task initiation. Instances of these
interaction patterns occur at various levels of abstraction.
Using these abstractions, the analyst can help bridge the gap
between low-level execution events and architectural models
of program behavior.

B. Overview

1) Process Flow: The overall process of performing ar-
chitectural localization using ISVis is depicted in Figure 1.



2

It comprises a static analysis of the subject system, instru-
mentation of that system to track interesting events, execution
of the instrumented system in particular usage scenarios to
generate event traces, and visualization and abstraction of
the event traces using the ISVis tool. The visualization and
abstraction steps are repeated until the analyst is satisfied that
a high-level understanding of the relevant parts of the system
have been obtained. In particular, the analyst defines high
level components in terms of constituent actors and designates
interaction patterns denoting recurring scenarios. The goal is to
provide support for the process whereby the analyst formulates
a high-level understanding of a system from its voluminous
details.

Fig. 1. ISVis Process Flow

2) Architecture: Figure 2 provides an architectural descrip-
tion of ISVis, including its components, connectors, and input-
output files. The Static Analyzer reads the Source Browser
database files produced by Solaris C and C++ compilers and
generates a static information file. The Instrumentor takes
the source code, the static-information file, and information
supplied by the analyst about what actors to instrument (spec-
ified in the trace information file), and generates instrumented
source code. This source must be compiled externally to
the ISVis tool, and then, when the instrumented system is
executed using relevant test data, event traces are generated.
The Trace Analyzer in ISVis uses the trace information files
and the Event Stream to read event traces and convert them
into scenarios, stored in the Program Model. As scenarios are
created, the actors involved are also added to the Program
Model. The user then interacts with the Views of the Program
Model to do the analysis. A Program Model can be stored
for later use in a session file. For the version of ISVis being
adapted, actors consist of C/C++ functions, methods, classes
and files; events comprise calls and returns between functions
and methods. However, the algorithms that ISVis employs are
independent of the specific nature of the actors and events.

3) GUI: ISVis provides the analyst two views, the Main
View shown in Figure 3 and the Scenario View shown in
Figure 4. The top portion of the Main View lists the actors in
the Program Model, including user-defined components, files,
classes, and functions. The middle portion includes lists of the
scenarios and interactions in the Program Model, as well as

an area for displaying information about the currently selected
item. The key area allows users to assign colors to actors or
interactions. The bottom portion of the view is a text window
for user interaction.

The Scenario View provides several features to help an
analyst build abstract models of the subject system and to
localize behavior. An option menu allows the actors in the
scenario to be grouped by containing file, class, or component.
Another option allows the user to select a class of interactions
or just a single instance of an interaction. Once a sequence of
interactions are selected, they can be defined as a scenario, and
then all occurrences of that scenario in the original event trace
are replaced with a reference to the newly defined scenario.
While a simple interaction is shown as a line connecting the
source and destination actors, an analyst-defined scenario that
occurs within the Scenario View appears graphically as a thin,
horizontal rectangle containing all of the actors involved in the
scenario.

C. Usage

The focus of this paper is the adaptation of ISVis, but the
reader should refer to [4] for a more detailed discussion on
ISVis’s capabilities, including a case study depicting its usage.

D. Code

ISVis is written in C++ and comprises 48 source and header
files defining 57 classes. The code totaled 17,829 LOC at the
start of this study and 18,177 in its present form.

[Insert a “class” diagram (use source files as classes)]

III. ADAPTATIONS

This section will go into the details about the main areas
that were targeted during the adaptation process.

A. OS Dependence

ISVis was originally developed to run on SUN Solaris 2.5.
Initially, a review of newer versions of Solaris was performed
to identify differences. Although having the system running
on Solaris computers was always a priority, it was important
to take into consideration the fact that Linux and Windows
based machines are now more popular, and therefore it was
of value to transform ISVis to run on a variety of operating
systems.

Additionally ISVis has some functionality that is platform
dependent. For ISVis to perform a static analysis of a subject
program, that program must have been compiled using either
the Solaris CC or cc compiler, with the -xsb flag set to
generate source browser information (static information used
by Sun’s Source Browser, a tool suite no longer available).
The result of a static analysis of the subject program is a static
information file describing the files, classes, and functions in
the source code. ISVis relies on this file to extract the necessary
static information about the subject program which is then
visualized through the GUI. To completely break our depen-
dence on Solaris we must find a replacement tool/script that
will produce the same static information. Currently the static



3

Fig. 2. ISVis Architecture

analysis, instrumentation, and trace generation are inoperable
due to this deficiency and all ISVis execution is performed
using legacy data.

B. Language

The original ISVis program was written in an older version
of C/C++ and since then C++ has been standardized, creat-
ing differences between the older non-standard version and
the new standardized version of C++ (see [5]). Because of
these differences, ISVis would not compile using the current
compilers that are ANSI C++ compliant, requiring the code to
be upgraded. Table VIII (in Appendix F) shows a list of the
errors that were encountered when the code was first compiled
(using a modern compiler, gcc 4.3.2). This is not a complete
list because the compilation stopped on some files due to the
high number of errors found. The most prominent errors were:

• initialization errors that were minor corrections, like
leaving off the “int” when using an integer (40 cases)

• warnings about string literals converted to char in initial-
ization (55 cases)

• errors because of the use of “const” (9 cases)
Additionally, we also needed to examine the function calls

ISVis was making to ensure their compatibility with the C++
standard. These calls are listed in Table I along with how many
times they are used in ISVis.

C. Third Party Dependence

1) Persistence: ISVis provides its user the ability to store an
analysis session for later use. RogueWave, a third party library,
was used to provide this ability. The version of RogueWave
that was used when ISVis was first created was no longer

TABLE I
FUNCTION CALLS

Function Call Count
abs 2

assert 1

atoi 6

fabs 2

floor 1

gettimeofday 4

longjmp 4

printf 8

signal 6

sprintf 16

strcpy 5

strlen 27

strncpy 6

available so that left us with the choice to either update it
or replace it with something else. RogueWave is now an
expensive enterprise-level tool so we decided it would be
easier to try and replace it with calls to the C++ Standard
Template Library (STL) [6] wherever possible. Also, it is
generally better to use a standard library than an external one,
making STL the most natural alternative to RogueWave. We
conducted an analysis of RogueWave’s use in the application
and produced the results shown in Table II. A major issue was
that there was no STL alternative to much of the persistence
functionality that is available in RogueWave.

2) Containers: In addition to persistence, ISVis also relied
on RogueWave for some other data types. The RWCString is
used extensively throughout the whole ISVis program most



4

Fig. 3. ISVis Main View

likely because std::string was not available when the
program was originally written and using RWCString was
a better alternative to using char arrays. The functionality
of RWCString is very similar to that of std::string, but
there is some extra functionality that is not available in
std::string. However, this additional functionality is not
used within ISVis, so it was not a concern.

The other major dependency on the RogueWave li-
brary came in the use of container classes, notably the
RWTPtrHashTable class. The notion of a hash table is not a
built-in data type within C++ without using the STL. Whilst
the std::map provides similar functionality to a hash table
it is not clear what the performance implications would be of
using std::map instead of a hash table. A possible alternative
is to use hash_map, which is a common STL extension
although, at the time of this writing, it is not officially included
as part of the STL. While hash_map is included in most
compiler libraries as an extension, the location seems to be
different for each. For example in gcc you need to include
<ext/hash_map.h>, and hash_map is in the __gnu_cxx

namespace, whereas for Microsoft Visual Studio you have

to include <hash_map.h> and hash_map is in the stdext

namespace. This could be overcome with some convoluted use
of #ifdef and typedef statements.

D. Build Environment

The biggest change that needed to be made to the build
environment had to do with the Makefile since the one that
came with the original version of ISVis was overly complex.
[We should inspect the original Makefile to see if there was
also any platform dependence - write about it here if there is]
We also needed to update it as it referenced libraries and file
paths that were changing as a result of the adaptation process.

E. GUI

In this section we will discuss the adaptations that needed
to occur for the GUI to function properly.

1) Motif: Being a visualization tool, ISVis heavily relies on
its user interface. The interface was originally developed using
Motif 1.2 [7]. In order to have a fully up-to-date system, it
was necessary to update the Motif libraries to the latest stable



5

Fig. 4. ISVis Scenario View

TABLE II
ROGUEWAVE ANALYSIS

RogueWave Element Count
RWDEFINE_COLLECTABLE: Macro for assign-
ing a classID to a class

16

RWCString: String manipulation class 587

RWBoolean: Boolean wrapper 139

RWCollectable: Abstract class for collectable
objects

85

RWClassID: ClassID wrapper 4

RWspace: return type for function that defines the
number of bytes needed to store an object in a binary
file

49

RWvostream: Virtual output stream 46

RWvistream: Virtual input stream 45

TPtrHashMap: Bespoke wrapper class that uses
Rogue Wave hash tables

40

RWTPtrSlist: RogueWave singly linked list
container

180

RWTPtrHashSet: HashTable where only one
item of a given value will be accepted

8

RWTPtrHashTable: RogueWave hash table
container

38

RWTPtrHashDictionary: container for stor-
ing pairs of hash keys and values

209

RWTPtrDlist: RogueWave doubly linked list
container

43

RWFile: file encapsulation 13

RWCTokenizer: splits a string into tokens 18

RWTPtrOrderedVector: vector container
class

20

RWBitVec: resizable bitfield 27

version 2.1. Starting in Motif 2.0, The Open Group cleaned up
much of the Motif API. The public API (intended for applica-
tion development) was left as is, but the private API (needed by
widget writers, i.e. ISVis code) was heavily modified. Prior to
the 2.0 release, there were 2 types of symbols: public (prefixed
by Xm) and private (prefixed by _Xm). In the 2.0 release, a
new symbol type Xme was introduced and most _Xm symbols
were renamed to Xme. The ones left as _Xm are internal to
the library. Several symbols (ex: EditDone, EditError, etc.)
have been moved to the public header file Xm/Xm.h from their
original location in the private header file Xm/TestStrsoP.h.
These changes can cause problems in applications and libraries
that use these symbols themselves that results in a namespace
conflict at compile time. Table III is a list of the Motif function
calls made in the ISVis application. These calls indicated a
dependence on Motif forcing us to analyze each of the listed
files when performing our adaptation.

[Elaborate on Table III giving a summary of impact on the
source code]

2) X Windows: A deeper analysis of ISVis proved its
interface to be incompatible with modern graphics hardware.
Therefore it was necessary to update the interface code ac-
cordingly to begin ISVis’s transformation into a fully cross-
platform piece of software. This required some research into
the X Windows library to better understand how and where it
was being used in ISVis. Appendix E shows a list of all the X
Windows dependencies that were found during the analysis.

Because of this device evolution, one of the biggest ob-
stacles encountered when upgrading ISVis had to do with
how colors were managed in X Windows and how they
were used by ISVis. There was a part of the code that
required an analyst to have knowledge about how to work with



6

TABLE III
MOTIF DEPENDENCIES

File Motif Function/Macro/Class
actor list.c xmFormWidgetClass

io shell.c xmDrawingAreaWidgetClass

main view.c xmTextWidgetClass

mural.c XmTextInsert

scenario view.c XmTextGetLastPosition

xapp.c XmTextSetEditable, XmTextGetString,
XmTextSetString, XmTextSetCursorPosition,
xmPushButtonWidgetClass, xmSeparatorWidget-
Class, xmCascadeButtonWidgetClass, xmSepara-
torWidgetClass, XmDrawingAreaCallbackStruct,
xmToggleButtonWidgetClass,XmStringFree, Xm-
String, XmStringCreateSimple, XmStringGetLtoR,
XmProcessTraversal, XmMenuPosition, XmCre-
ateSimplePopupMenu, XmCreatePulldownMenu,
XmCreatePopupMenu, XmCreateOptionMenu,
XmCreateMenuBar

different display devices so that the manipulation of color was
performed correctly. We had to gain that knowledge in order
to successfully upgrade ISVis’s code.

After ISVis was operational and we could see the main GUI
screen we encountered a bug that was preventing the scenario
view mural from drawing. The Mural is the portion of the GUI
that displays a visualization of the actors being shown. It is a
key feature to ISVis’s use and so we deemed ISVis to still be
“broken” until this bug was fixed.

IV. APPROACH

A. OS Dependence

ISVis only used one system call - the exit() method -
which required no code change. Addressing the static analysis
tool, we have looked at a number of alternatives ([8], [9],
[10], [11]) to replace the outdated Solaris command, but we
have not yet decided on or tested any of them. Whichever
tool we decide on, the biggest factor to consider is whether
or not it produces output that can easily be translated into the
information file that ISVis relies on.

B. Language Versions

A significant amount of time and effort was invested in
updating ISVis’s source code to make it ANSI C++ compliant.
During this upgrading process, several errors were introduced
into the source code, which led to lengthy debugging sessions.
For example, ANSI standards forbid the initialization of class
variables in header files. This style rule was not common
practice when ISVis was first developed; therefore there were
numerous instances of variable initialization which needed to
be moved from the header files into the source files. Other
common discrepancies that needed to be fixed were related
to the explicit use of namespaces required by the ANSI
standard, as well as with the use of Strings and character
arrays interchangeably. The process of fixing compiler errors
of this type was tedious, which is likely the reason why
the programmers involved overlooked a few occurrences and
introduced faults into the system by removing initializations

from a header file and not replacing them in the corresponding
source file.

At the end of the language migration, all compilation errors
regarding the differences between the original and the ANSI
versions of C++ were fixed yielding a fully upgraded code
base compliant with the ANSI C++ standards. There are still
some compilation warnings regarding char strings. Table IV
shows a summary of the number of changes that had to
be made to reach a clean compile (i.e. compilation with no
warnings or errors). The totals are grouped by the categories
the changes applied to. For each category, needed changes
where also classified as critical and non-critical, depending on
their importance. This upgrade will prevent ISVis from facing
issues regarding incompatibility with C++ compilers similar
to those resolved during this study, as it is likely compilers
for standard versions of the C++ programming languages
will be available. ISVis is currently operational with ISO/IEC
14882:2003 C++ [12] compiled under gcc 4.3.2.

C. Third Party Dependence

1) Persistence: Interaction visualizations are built from
large trace files which take some time loading. After trace files
are loaded the user can manipulate the interaction information
through the GUI to create different scenarios and identify
patterns. It is important for the user not only to be able to
rapidly reload the information contained in a previously read
trace file, but also to have later access to the various scenarios
created during a particular program run.

Originally, ISVis used RogueWave serialization libraries to
load and save system state in binary format. When looking into
replacing RogueWave, two main options were considered: the
development of a custom serialization system and the use of
an existing library. There was some skepticism about using a
third party serialization system, because it could potentially
become unavailable and cause the same problems RogueWave
was causing. A custom serialization system, on the other hand,
would be lengthy and complex to develop.

After some research on the available options, a decision was
made to use the Boost serialization libraries [13]. Boost pro-
vides free portable C++ libraries; several of them standardized
by the C++ Standards Committee. The set of libraries provided
by Boost were appealing for two main reasons. First, Boost
is amongst the most popular C++ libraries, largely supported
by both its developers and the C++ community. It is also
reviewed and freely distributed, characteristics that reduce the
possibility of facing similar issues as those resulting from the
unavailability of RogueWave. Second, Boost’s Serialization

TABLE IV
SUMMARY OF CHANGES TO REACH CLEAN COMPILATION

Category Critical Non-Critical Totals
Makefile 6 0 6

Motif 4 6 10

C++ 78 92 170

RogueWave 188 102 290

Totals 276 200 476



7

libraries have a similar architecture to that of RogueWave’s
serialization. This proved to be an important characteristic,
because it facilitated the migration from RogueWave to Boost,
while leaving unchanged the original architecture of ISVis.

Not only was it important to select the optimal serialization
mechanism, but it was also crucial to select the correct data
file format for saved sessions. Originally, saved runs were
stored using binary data files. Although this was effective and
efficient, saving binary data posed an obstacle in making ISVis
platform independent. Several alternatives where considered
when selecting the optimal file format for the new ISVis
serialization; binary, plain text, XML and binary XML where
the main options considered. After careful consideration it was
decided that XML and binary XML were the best data file
options. Binary XML had to be ruled out because it is still in
the process of standardization, which in the future could lead
to issues similar to the ones that were caused by the difference
between ISVis’s version of C++ and the C++ standard. This
left XML as the best option for saving the program’s data.

XML is standard, therefore reading files even years after
they have been created should not be a problem. It is sufficient
to have enough information about the schema to be able to
interpret the data in the files (although we have yet to define
a formal schema for ISVis’s output). Furthermore, platform
differences become irrelevant as all machines can write XML
documents as well as interpret them correctly. XML doc-
uments, however, can be quite large and thereby decrease
performance. Although a potential downside for using XML,
performance was shown not to be an issue for ISVis; files of
approximately 2MB can be loaded and saved on average of 3
seconds.

2) Containers: Changing from the RWCString RogueWave
class to using std::string was trivial (although tedious)
— it just involved find and replace, with the occasional fix
for replacing operations on strings. The more widely used
RogueWave constructs were collection classes such as vectors,
lists and maps. After in-depth investigation it was decided to
replace the use of RogueWave with that of the STL. The set
of libraries provided by STL are not likely to present the
same problems as RogueWave did, given that they are not
commercial, yet they are standardized and heavily supported
and used by the C++ community.

Although there is no doubt about the appropriateness of the
decision made about STL, this effort introduced a significant
amount of bugs into the system. Most of the problems arose
due to a misunderstanding on the programmer side with
respect to differences on the basic functionality of collection
classes such as adding, removing and traversing through
elements. Because the program could not be executed during
this process, it was not possible to identify such problems as
they were introduced, and instead they had to be traced once
the program was running during lengthy debugging sessions.
It took over 50 hours of debugging time to get the program
into a runnable state. Table V lists the replacements we used
to replace the RogueWave elements ISVis relied on.

TABLE V
ROGUEWAVE SOLUTIONS

RogueWave Element Replacement
RWDEFINE_COLLECTABLE Custom

RWCString std::string

RWBoolean bool

RWCollectable Custom

RWClassID Custom

RWspace Custom

RWvostream std::ostream

RWvistream std::istream

TPtrHashMap ??

RWTPtrSlist std::list<T>

RWTPtrHashSet ??

RWTPtrHashTable ??

RWTPtrHashDictionary ??

RWTPtrDlist std::list<T>

RWFile std::fstream

RWCTokenizer ??

RWTPtrOrderedVector std::vector

RWBitVec std::vector<bool> or
std::bitset

D. Build Environment
After spending many hours trying to modify the existing

Makefile to meet our changing needs, we eventually decided
to just scrap the old version and start a new one from scratch.
As we were creating this new file we also took the opportunity
to clean up the variables that were no longer being used and
to make the variable names more descriptive of their function.
Additionally, to ease the use of the Makefile on different
machines, we created OS specific files which define the library
and include paths needed for each machine we are working
on. The name of the file is passed to the make command as a
parameter (ex. make linux) allowing those specific paths to
be used for the build.

E. GUI
To get the GUI up and running took significant effort. We

had to upgrade Motif and gain an understanding about how X
Windows was being used to control the display. We also had
to understand what the code was trying to accomplish with
the GUI in terms of displaying colors and drawing the mural
visualization.

1) Motif: Upgrading to Motif 2.1 turned out to be the
easiest of the GUI related migration activities. We first started
out by analyzing the changes between versions 1.2 and 2.1
- these can be seen in Appendix A. Our initial review of
the ISVis Motif code did not indicate any apparent issues
with migrating to 2.1. ISVis did not make use of any of
the changed symbols nor did the Motif classes, functions and
macros used appear in the list of changes made by The Open
Group for Motif 2.1. Ultimately, we predicted that if there
were any errors resulting from this upgrade, they would be
relatively minor. Our predictions held true - all of the issues
we encountered related to this change were syntax related and
easy to fix.



8

2) X Windows: ISVis is a visualization application so
it relies a great deal on using color to accurately display
information to the user. According to chapter 7 from [14],
we need the following information to manipulate a color on a
display device in the X Windows environment:

• Pixel position value - designates the color of the pixels
on the display

• RGB value - the red/green/blue value of the color
• Visual class - defines the color capability of the display;

there are a variety of ways of handling and managing
the different visual aspects of a computer screen - these
management systems are commonly referred to as visuals.

• Colormap - indexes each pixel in the screen; used for
lookup when the pixel needs to be manipulated

The X Windowing system provides three major visual
modes, each with two classes defining whether colormaps are
read/write or read-only. They are (listed as read-write/read-
only):

• GrayScale/StaticGray - A pixel value indexes a single
colormap that contains monochrome intensities. Each
pixel value is represented by up to 8 bits.

• PseudoColor/StaticColor - A pixel value indexes a single
colormap that contains color intensities. Each pixel value
is represented by up to 8 bits.

• DirectColor/TrueColor - A pixel value is decomposed
into separate red, green, and blue subfields. Each subfield
indexes a separate colormap and is represented by 8 bits
per field, giving each pixel 24 bits total to describe a
color.

Differences between these types of visuals consist primarily
in the manner color values can be manipulated in hardware.
The visual class being used determines the exact structure of
the colormap for any given window in a particular application
(each window having a single associated colormap).

There are three strategies described in the chapter on how
to interact with colormaps:

• Shared color cells - like its name suggests, this is sim-
ply the strategy of sharing the same color cells across
multiple applications.

• Standard color maps - an application can query X Win-
dows for a standard colormap which contains preloaded
red/green/blue values for all their color cells.

• Private color cells - allows for the dynamic update of any
primary color value stored in the the colormap

ISVis uses the third strategy so it can guarantee access to
the colors the user will be manipulating. For this reason it
must always be used with a read/write visual class - either
PseudoColor or DirectColor. Consequently it can only be run
on displays with those classes available.1 The original version
of ISVis was built under the assumption that the program
would run on machines with hardware supporting PseudoColor
visuals. Modern hardware, however, rarely supports Pseudo-
Color displays and instead DirectColor has become the most
popular visual type, followed by TrueColor. The discrepancy

1the xdpyinfo command can be used from the command line to query
the display device to see the visual modes that are available

between the supported visual types from former and newer
hardware caused a myriad of unexpected runtime errors that
needed to be fixed in order to have a usable system.

The process of identifying and resolving these issues was a
particularly lengthy one, and several decisions had to be made
along the way. Because our main goal was first to get the
program to run (on any computer) we took the easy route and
hard-coded the visual class that should be used (DirectColor)
knowing that our monitors would support it. Obviously this
is not optimal since the code would eventually get out-dated
(again) as display technologies advance. One solution to this
could be the X Windows function XDefaultVisual which
can be used to query the display from the code and retrieve
a structure, Visual, containing the display device’s default
visual class. We could make use of this class to check if
ISVis can run on the display device it is using. If it can’t,
we would be able to exit gracefully explaining why ISVis
could not execute. Alternatively, several modern UI toolkits
support various visual types without any extra effort from the
programmer. It would be ideal to refactor ISVis to incorporate
a user interface toolkit that is independent from graphics
hardware to prevent similar issues from arising in the future.

3) Mural: In order to figure out why the Mural was
not being drawn properly we did an analysis of the code
responsible for its construction and display. This allowed us
to formulate a solution which resulted in us making some
minor updates to the code. The entire process is described in
Appendix B.

V. RESULTS

[For each class of changes, can we figure out how much
code was changed and how long it took? I could not find
this level of detail in any of the written documents from the
students that did this work, but maybe we could get an estimate
by examining the CVS logs]

The status of ISVis after the above adaptations is described
in this section.

A. Current Status

1) OS: All that remains to completely break the depen-
dence on Solaris is to find an alternative for the scripts ISVis
relies on.

2) Language: The code was updated to comply with the
latest ANSI standards. All compile errors have been fixed.
Compilation still produces warning messages generated from
Mural.C.

3) Third Party Dependence: The dependency on the Rogue-
Wave library was fully removed. Uses of RogueWave were
replaced by the equivalent STL classes or custom implemen-
tations. Some persistence functionality has been turned off.
[Elaborate on what has been turned off if more information
can be found - this was handled by Angela]

4) Build Environment: A new Makefile was created and
updated accordingly throughout the course of this study. There
are variables in the Makefile that need to be modified manually
by the user so it has the right paths to the X Windows libraries.



9

5) GUI:
• Compiler errors and warnings concerning Motif were

fixed
• Motif was upgraded to version 2.1
• All colors are being displayed normally
• The mural works for both the main and scenario view

B. Time Spent

The total time spent in all the categories of work we have
been discussing — including research, debugging, analysis,
and adaptations — was 648.26 hours broken down as follows:

1) OS: 55 hours on the OS-specific portion of the code
2) Language: 101.6 hours to bring the code up to ANSI

standard
3) Third Party Dependence: 200.26 hours on RogueWave

related adaptations
4) Build Environment: 78 hours on the Makefile
5) GUI: 88.4 hours on Motif upgrades, 52 hours on the

code related to X Windows and the color display, 73 hours
spent on the mural

VI. DISCUSSION

One of the major issues we ran into was the learning curve
associated with nearly every adaptation we had to undertake.
To adapt the OS we had to learn about Solaris. To adapt
the language we had to learn about the differences that were
created from standardizing C++. To adapt the overall code
base we had to learn about a third party library we had never
used before. To adapt the GUI we had to learn about some
of the intricacies of X Windows. This is all aside from the
learning curve associated with our design discovery. Because
the ISVis code base is not documented very well, we spent
a great deal of time trying to understand the reasons for the
author’s original design decisions. In essence, this is one of the
challenges that come with legacy systems — when the original
authors are no longer available design discovery becomes part
of the adaptation process.

To aid us in our discovery process we relied on each other
to become experts in specific areas of interest related to our
adaptation tasks. We would not have been able to make the
progress we did if we did not divide the work in this manner.
The use of an IDE (Eclipse [15]) was also a great help to
speed the process of adapting the code and detecting compile
errors.

One thing we wish was part of ISVis’s original code was
better log messages. It was surprising to us how long it took to
find the right data to report and to display information at the
right time in the code execution. It was an unexpected time
sink. A logging framework of some kind would have been a
huge help in tracking down some of the bugs we encountered.
This “epiphany” came to us much later in our process, after we
had already littered the code with printf statements. Those
should definitely be replaced with the use of a framework like
Log4cxx [16] where log levels can be set. Logging became
so important because we were dealing with a GUI application
in which figuring out the series of events/calls/callbacks that
triggered a certain condition was not trivial.

Another major concern about continuing to refactor the
ISVis code has to do with testing. We currently have no
automated process to test the GUI-related portions of the
code. That was not too much of a problem during our initial
adaptation effort because the set of tests we had to conduct to
verify our changes were minimal (see Appendix D). However,
as more refactoring is conducted the list of cases to test will
grow and we predict it will quickly reach the point where
executing each test case manually will become impossible.
For this reason, we have done some research into this specific
topic which we will discuss later in Section VII-D. Ideally we
would be able to set up an environment in which we could
make a change and then run all of our test cases without any
human involvement other than to figure out the cause of failed
tests.

In the rest of this section we will discuss our experience as
it relates specifically to refactoring and software adaptation.

A. Refactoring

During our examination of the code, we produced the class
diagram shown in Figure 5 showing the code related to the
GUI display. ViewManager is the entry point to the system
- when ISVis starts, it is the main function in ViewManager

that gets called. X_Application acts like a utility class giving
access to many of the X library calls that ISVis uses although
it is unclear if there is a specific set of functionality it is
meant to encapsulate. It is unclear because many of the other
classes make calls to the X library without going through
X_Application. IOShell is another utility class with meth-
ods provided for I/O functions. MainView is responsible for
instantiating, positioning, and drawing all the subview classes.
View is used as an abstract class, although it is not defined as
one - meaning its type is used as a reference, while only it’s
children are ever instantiated. The rest of the classes shown
relate directly to the GUI components they are named for.

This diagram, along with the statistics shown in Ap-
pendix E, was developed using a combination of the tech-
niques described in [17] and [18]. In order to “flush out” a
hidden concern, [17] describes a process that combines text-
based and type-based mining. The paper illustrates why doing
them separately doesn’t prove to be as effective as doing
them together and then introduces the Aspect Mining Tool,
developed by the authors. The techniques described in this
paper would have proven to be very useful in refactoring
ISVis since the display-related code is scattered in various
places throughout the application, and a quick way of finding it
would have helped in determining what needed to be changed.
Unfortunately that specific tool is only available for Java at the
time of this writing.

Nevertheless, while it might not be as a ideal, text-based
mining was done manually to search for references to the
X library, pointing us to the classes that were related to
the display. Type-based mining was done using the compiler
strategy described in [18]. The compiler strategy involved
commenting out include statements that referenced X libraries
and building the code to find what data type references broke.
The compiler strategy was needed to catch references to



10

Fig. 5. Class Diagram of display-related code

classes in the X library that did not have the typical X* naming
convention.

1) Transformation Approach: One of the main purposes
behind identifying which classes are related to the display is
to facilitate its encapsulation. Our eventual goal is to create an
interface around the current code associated with the display.
All the code interacting with the display would do so through
interfaces thereby decoupling the display implementation from
the program’s functionality. Once this layer of abstraction is
in place we will be able to “plug out” the current code used
for the display and plug in something else - like code for
displaying on Windows or Linux. This will make ISVis much
more portable and much less brittle to future changes.

2) Refactoring Plan: To accomplish this transformation,
the refactoring plan shown in Figure 6 was developed. At the
start there are two parallel processes occurring. The left arc
starts with an Analyze phase in which aging symptoms in
ISVis are identified. From that identification we then choose
a candidate to focus our refactoring efforts on. After making
that choice we redesign the component in question and then
implement the new design by refactoring.

While all of this is happening, the right arc shows two other
steps that should also be taking place: building the code and
capturing data of the current build to be used in regression
tests after the code has changed. Once both arcs have been
completed we can proceed with building the newly refactored
code. The last box labeled Regression Test includes executing
the code and gathering data that can be reliably compared to
the data gathered from the pre-refactor execution. This begs the

question: what is reliable? That cannot really be determined
ahead of time as it is dependent on how fine or coarse the
scope of the refactoring is - the candidate for refactoring can be
anything from one method to an entire package. An example
of the use of this approach is described in Appendix C.

This refactoring will serve as a model for our future design
goals of creating an abstract layer for the display code to live
under. We will progressively migrate all of the X Windows
specific calls out of the main classes and into “X” classes.
Once we reach the point where all the main classes are only
calling their corresponding “X” classes for X Window related
functions, then we will be able to add a layer of abstrac-
tion between those calls. Taking our color button method
as an example, once we have our abstract layer we would
replace our call to XMainView::CreateColorButton with
Abstract_View::CreateColorButton. Once all of our
main classes call our abstract layer we will be free to vary
the implementation beneath that layer as needed.

B. Software Adaptation

At the beginning of this project, the system was clearly
outdated as well as incompatible with newer technologies.
Upgrading ISVis made evident the importance of constantly
maintaining software in order to keep it up to date with
platform changes. Upgrading ISVis frequently could prevent
the program from requiring a massive refactoring session like
the ongoing one. Because there are several aspects of the
program dependent on third party software, maintenance of
the system can be extremely complex and lengthy if all of



11

Fig. 6. Refactoring Plan for ISVis

these technologies are critically outdated, therefore it is ideal
to constantly maintain ISVis and upgrade it whenever it is
necessary.

Many of the issues found when attempting to run ISVis for
the first time during this study were introduced into the system
during the upgrade of the code base. Uninitialized variables,
invalid access to data and incorrect use of collection classes
were amongst the most common faults preventing the program
from running correctly. Tracking down these faults was a very
costly process in terms of time and effort. When systems
require large numbers of changes, it is of primary importance
to be able to test the system as it undergoes such changes.
Unfortunately, because of the nature of the initial upgrades, it
was not possible to test ISVis as its code base was modified.
Had this not been the case, valuable time could have been
spent resolving other important issues. On the other hand, a
more careful look into the differences between the original

code base and the ANSI standards could have prevented such
faults from being introduced into the system. It is important
to mention, however, that the number of faults introduced was
relatively small considering the large number of changes and
source files which were modified. Furthermore, it would have
been ideal to have the developer responsible for such changes
debugging the system, rather than to have a new developer
come in and learn about these changes while attempting to
correct any errors.

As shown during this study, it is of primary importance to
carefully evaluate various alternatives when considering the
usage of third party software and libraries. It is clear that in
many cases it is not necessary to spend resources developing
custom functionality that can be provided by other existing
systems. It is crucial nonetheless to select the appropriate
system to reduce any overhead and prevent future issues as in
the case of ISVis. RogueWave becoming unavailable was very



12

expensive to mitigate. When selecting third party software it
is important to look into the future and select systems that are
widely used by the software community, seem stable, and are
well documented and supported by either developers or user
groups.

ISVis’s user interface was the piece of the system with the
most problems. Even if at the time ISVis was developed there
were very few user interface toolkits, some valuable lessons
can be learned from the use of Motif. Many of the issues with
Motif arose from the usage of procedures tightly related to
computer hardware. Hardware changes rapidly, and developing
software too closely linked to hardware shortens the potential
life of the system. Similarly, a system too strongly connected
to hardware is hard to port. Fortunately, nowadays most user
interface toolkits take care of the platform dependent issues
and provide developers with more abstract functionality that
can be easily ported.

In general, it is recommended (whenever possible) to avoid
the usage of any library or system that is highly dependent on
a specific hardware environment. Similarly, the usage of non-
standard versions of protocols, programming languages or any
other software artifact should be avoided in order to prevent
issues costly to resolve like the ones found throughout this
study. It is also of primary importance to constantly update
software products to prevent them from becoming completely
obsolete.

Although the work on ISVis can be considered successful,
slight differences in the approach taken could have made the
study more successful. As shown before, the fact that ISVis
could not be run while the source code was going through
major changes introduced many problems into the system.
Even if it is expected to encounter difficulties when refactoring
a system, the amount of time and effort spent on finding and
fixing the introduced bugs was much larger than expected.
Similarly, having one individual making source code changes
and another one finding the faults and fixing them was not
particularly efficient. It is highly likely that, had the same
developer been in charge of both tasks, the debugging time
would have been shorter and more improvements would have
been introduced into ISVis in the same period of time.

C. Future Work

One quick task that we will perform to improve the code’s
understandability is to separate all classes into individual
source/header files. The code base presently contains many
classes that are grouped together in the same source and header
file. This was somewhat confusing when trying to read the
code and why an IDE was so important because it allowed us
to quickly find where a class was defined since we could not
rely on the file names. It would be helpful to remedy this and
put each class in its own file.

After that is completed ISVis needs to be thoroughly tested.
Before we proceed with any additional refactoring, we need to
generate a comprehensive list of tests for every feature of the
program and fix any bugs that turn up from that process (see
Appendix D). Preferably this would turn into some automated
process that would execute our tests for us whenever needed.

As we have described above, not being able to execute the
code and see the results of our changes until much later was
an error-prone process (although unavoidable in our case). We
need to have these test cases to give us a more solid foundation
which we can use to reliably perform our refactoring effort.

VII. RELATED WORK

The background work that was needed to perform the
adaptation to ISVis covers four main areas: legacy systems,
refactoring, software adaptation, and GUI testing.

A. Legacy Systems

Legacy systems are, by definition, old systems whose health
has often deteriorated over time. Aging symptoms of legacy
systems are described in [19] where Visaggio et al. advise
developers on how to measure and handle design deterioration.
The authors describe five symptoms to watch for:

• Embedded Knowledge - knowledge about the system that
can no longer be derived from existing documentation

• Pollution - components that are no longer used by the
users

• Poor Lexicon - variables and components that have names
with no meaning

• Coupling - the flow of control/data between components
is tightly linked

• Layered Architectures - several different solutions spread
out across a system’s architecture.

ISVis exhibits all of the above symptoms to varying degrees,
suffering most severely from embedded knowledge.

Because of these symptoms, we know ISVis has to be
refactored, and we know from our definition above that after
a refactoring, a program must be syntactically correct. There
are ways to preserve a program’s behavior which rely on
the compiler catching mistakes, but there are some errors
which could change the behavior of a program that a compiler
would not be able to catch. A particular set of program
properties have been found to be easily violated if explicit
checks are not made before a program is refactored. Those
safety conditions are described in Opdyke’s dissertation [18].
As ISVis is refactored more and more, the properties described
by Opdyke should be kept in mind.

When that time comes, there are a variety of ideas to
draw upon for guidance on how to proceed. In [20], Doblar
and Newcombe argue for an increased focus on automating
transformation processes based on the statistic that, on average,
a well trained programmer can only transform about 160
lines of code per day. To transform an entire system at that
rate would be too costly. The innovative part of the process
described by Doblar et al. is that they propose using a suite of
artificial intelligence technology tools to automate 99 percent
of the transformation work. What is left for manual transfor-
mation should be what truly requires a human decision maker.
They make the point that while high levels of automation
are achievable for transformation tasks there will always be
tasks that are manually intensive. Nevertheless, they argue that
anything that can be automated should be.



13

Unfortunately, the paper did not go into how the AI per-
forms its tasks, but that is most likely because the research
comes from a private company dealing with defense software.
Also, the techniques described were applied to languages to
convert them to C++ - it is unclear whether they would work
if trying to perform a transformation to the same language.
Regardless, these techniques would probably be overkill for
reengineering ISVis.

[21] summarizes the efforts of an XP team from Thought-
Works Technologies to introduce new features to a legacy
system. It provides an informal guide to working with a
legacy system using an agile development process. Since
agile methods are relatively new and most legacy systems
were developed under a non-agile development process, it is
interesting to see those techniques applied to an older system
to try and make it more maintainable. We have tried to adopt
the same mentality as we have begun to refactor ISVis - the
refactoring plan in Section VI-A2 is an example of this. As
the adaptation of ISVis continues, we expect agile methods to
be a part of the process we use.

In [22], Thomas argues that the older the code base and
the more mission critical the application, the more difficult
it is to maintain or enhance it. One primary difficulty is just
understanding the code base which may not be well-designed
or well-written. For this reason, the author promotes the
idea that when working with legacy software, Discovery and
Transformation should be the focus before considering Design
and Development. Discovery combines the stories obtained
from experienced developers and customers with knowledge
gained by analyzing the code, associated documentation, and
test cases. Transformations of the code should be done sys-
tematically in small pieces, testing each change before moving
to the next. These two concepts are important parts of the plan
for refactoring ISVis.

The Discovery process is also a primary concern of the
research described in [17], where the authors address the prob-
lems associated with identifying hidden concerns in legacy
code. A hidden concern (HC) is any issue that has been grafted
into existing code to extend it’s functionality in some way
that is different from the piece of code it is being added to.
This decreases the code quality by reducing it’s coherence.
More often than not, an HC suffers from two problems that
make it hard to track down: It is usually scattered throughout
the project and entangled with other code. Consequently the
primary focus as it relates to HC’s is how to identify and
extract the code related to a hidden concern - a task which
the authors recognize as being non-trivial. In order to create
the abstract display layer that we want for ISVis’s code, that
identification process will have to be conducted on a more
extensive scale to find all the HC’s related to the display of
the interface.

A possible approach to identifying hidden concerns could be
feature-oriented refactoring (FOR) [23]. This is the process of
decomposing a program into features, thus recovering a feature
based design and giving it an important form of extensibility. A
characteristic of FOR that makes it challenging is that a feature
cannot always be implemented by a single module. To try and
deal with this problem Batory et al. describe a methodology for

expressing programs and features as mathematical equations.
Engaging in this practice gives the practitioner a reliable
way of predicting the effects of adding or removing features
from the base program because the derived equations com-
municate properties that decompositions and their underlying
base modules and derivatives must have. These properties are
automatically checked by the tools the authors developed to
aid in the FOR process. The authors developed an Eclipse
plugin to be used with legacy Java applications. The plugin
guides the user through a five-step process which defines the
base modules of the program, optional modules, and then
reconstitutes the program for the user.

Pertaining to ISVis, the tool the authors developed would
be useful to have because it would give us an automated
way of discovering the classes directly involved with any
of the features we might be interested in. Unfortunately, the
plugin only works for Java programs and the work involved
in implementing our own feature discovery tool by hand
would probably not be worth the effort. Additionally, this
method requires a substantial knowledge of the program being
examined and that would make using it on ISVis difficult since
ISVis suffers from the “embedded knowledge” symptom of an
aged system.

Another idea could be to use a goal model - a graph structure
representing stakeholder goals and their inter-dependencies.
[24] describes a methodology for obtaining a goal model from
legacy code, but it is a process that is currently unnecessary
for the ISVis project since the main focus of the reengineering
process has already been identified. However, the methods
described by Yu et al. could potentially be useful in future
refactoring efforts on ISVis as they would allow for the
categorization of the code to help identify candidates for
refactoring.

In [25], Heineman and Mehta describe a 3-step methodology
for evolving a system into components based on the features
the system implements. They applied their proposed process
to a 14-year old product, and they describe the lessons they
learned from their work. Two of those lessons are applicable
to the ISVis adaptation project: The authors conclude that fea-
tures are good candidates for evolution into components if they
“change often, are concentrated in fewer functions, or depend
on or share global variables as a means of communication.”
While the “display feature” of ISVis might not necessarily
change often, it was chosen as the primary candidate for
refactoring because it is currently nonfunctional on modern
machines and this holds it back from being used or updated.

Secondly, the authors comment that “the true measure
of a successful evolution methodology is in reduced future
maintenance costs.” From that perspective, the adaption of
ISVis to have a plugin-style interface for its display code
will certainly be a success since that accomplishment will
drastically reduce the cost of maintaining that portion of the
code.

[26] describes a process for incrementally re-engineering
a legacy application whose architecture has degraded over
time. Specifically, the authors’ goal was to develop a target
architecture for a system and then re-engineer the system
to the desired architecture using a defined series of steps.



14

Reengineering ISVis will most likely produce the architecture
erosion Coelho et al. talk about since there is no clearly
defined documentation on the design of the system. The lack
of architectural documentation will ensure that any changes
made to the code will not be in line with the original author’s
thinking, thus producing the erosion.

[27] describes a process model for re-engineering a legacy
system - particularly a system that is in use and cannot be shut
down for an extended period of time. One of the main issues
the paper addresses is the traditional approach of reengineering
a system all at once and consequently prohibiting the use
of the system while it is being changed. To combat this,
the authors propose a method which share features with the
Chicken-Little Strategy [28] and the Butterfly Methodology
[29] while alleviating some of their weaknesses. [27] was used
as inspiration for the refactoring plan that was developed for
the ISVis display (found in Section VI-A2). While [27] was
targeted for data-centric systems, the more general idea of
iterating over a reengineering process will definitely be applied
to adapting ISVis.

We can see from the limited set of work we have looked at
regarding legacy systems that dealing with them is not trivial.
It involves recognizing what ails the system, deciding on how
to fix it, and then implementing the solution. Each of those
tasks take significant effort as our experience with ISVis has
shown us.

B. Refactoring

There are a variety of reasons people have encountered
prompting them to re-examine the structure of a software
application. This re-structuring is often referred to as either
“refactoring” or “reengineering” - but mistakenly, they are
sometimes used interchangeably. According to Fowler in [30]
“refactoring is the process of changing a software system
in such a way that it does not alter the external behavior
of the code yet improves its internal structure.” Reengineer-
ing has a much broader scope. Chikofsky and Cross define
reengineering as “the examination and alteration of a system
to reconstitute it in a new form.” [31] While a main goal
of refactoring is to maintain the behavior of the code being
changed, it is often the case that new functionality is added
(or old functionality changed) during a reengineering project.
Reengineering often necessitates some sort of refactoring, but
refactoring rarely has the impact that a reengineering process
would.

The main characteristic that is common to both processes is
that the practitioner is trying to change the target application
(or system) in some way. Generalizing the motives for each
of these processes might lead us to the notion that we refactor
to improve maintainability, and we reengineer to add func-
tionality. Taking these motives into consideration, we quickly
come to realize that when dealing with a legacy application,
both processes become necessary and both bring with them
challenges (as we have seen from our discussion above).

To help handle these challenges, Mens and Tourwe define
five activities in [32] that should be performed during each
individual refactoring:

1) Identify where to refactor the software
2) Determine which refactoring to apply
3) Guarantee the applied refactoring preserves behavior
4) Apply the refactoring
5) Evaluate the success of the refactoring
One reason to take on these challenges is because of the

benefit we gain from modularity. Sullivan et. al. talk about this
in [33] where they describe a study to find quantitative means
of measuring the value of a module in a software design. To
do this, the authors make use of design structure matrices
(DSM), one of the components of Baldwin and Clark’s options
model [34]. The other component is the Net Option Value
formula. The authors adapt both parts of this model to the
subject of software modularity and show how they applied it
to Parnas’s famous KWIC example [35]. Their results did yield
the same conclusions that Parnas came to, predicting that the
modularized design of KWIC was better than the strawman.

The authors claim that their results serve as evidence for the
potential to quantify the value of a design and thus support a
discipline of “design for added value.” This was written eight
years ago so we are curious to find out if time has lead to
more concrete results in this matter since it would have very
practical effects on a developer’s effort to estimate the cost of
a refactoring. It would certainly be beneficial to our adaptation
process to be able to measure the potential benefits of different
modularization options before deciding on one to implement.

[36] describes the use of a formula to calculate the cost
effectiveness of a planned refactoring. While it still remains the
job of the developer to decide what to refactor, the proposed
formula aims to help determine when that refactoring should
happen by calculating the return on investment (ROI) for the
planned activity. If the ROI is greater than or equal to one, then
the planned refactoring is deemed to be cost effective. It would
be hard to determine the ROI for the planned refactoring of
ISVis since there are currently no regression tests available, a
key component to calculating the formula. It would be a rather
meaningless effort anyway since the planned refactoring is
necessary to get the application running on modern machines
— so we would not refactor it if our ROI was below one.
Nevertheless, this could prove to be useful in the future, after
ISVis is working properly, to determine how to maximize the
effort spent on further modifications.

Without the ability to reliably and consistently quantify
refactorings, an easier alternative is to refactor continuously
and liberally. Roock and Lippert [37] claim that such behavior
will lead to an emergent design. They describe this concept as
a design that is constructed incrementally as more is learned
about the software behavior and requirements. They prefer
this to the traditional method of a big upfront design because
constant refactoring keeps the code from ageing. Refactorings
should be conducted to support changing requirements and to
eliminate weaknesses in the code. “Weaknesses are present
when the existing system structure hampers or even prevents
modifications.” These bad smells should not be ignored since
they degrade the quality of the code over time.

In conducting these refactorings, small refactorings are
always better since they reduce the risk associated with the
changes by allowing the code to remain in a usable state.



15

Sometimes it is necessary to make the code more complex
in order to guarantee it stays in a usable state until the
refactor is completed. This is essentially what we have done by
creating the XMainView class (described in Section VI-A2).
The authors refer to this as a “detour” with the appropriate
analogy: “build a detour first and then tear up the road.”

A real world example of this can be found in [38] where
the authors describe a case study in which they refactored a
portion of a commercial platform comprised of 1.5 MLOC.
To carry out the refactoring the authors first developed a con-
ceptual architecture model of the system based on discussion
with developers. They then used architecture analysis tools to
help target dependencies in need of refactoring. After coming
up with a new architecture for the modules in question, the
authors discussed it with the developers to get their feedback
and to help discover any patterns that would be worthy of
abstraction. After their consultation with the developers, they
ended up changing their original refactoring plan to better
accommodate the developers’ concerns. This resulted in a “less
clean” version of the new architecture, but it was a necessary
detour to make all parties comfortable with the proposed
changes.

Looking at ISVis with all of this knowledge is a primary
motivation for refactoring the code. We could say a new
requirement for ISVis is that it be platform-independent so
refactoring the display-related code is intended to achieve
that end. Additionally, ISVis is plagued with bad smells as
we have discussed earlier so there will undoubtedly be more
refactorings than what we have initially planned.

C. Software Adaptation
In [39], Heineman and Ohlenbusch make a distinction be-

tween evolution and adaptation stating that “evolution occurs
when a software component is modified by the original com-
ponent design team or by programmers hired to maintain and
extend the component ... In contrast, adaptation occurs when
an application builder acquires a third-party component and
creates a new component to use within the target application.”
ISVis has both of these scenarios - the instrumentation tools
being the third-party components that have been used in
the program. Our current focus is on the evolution of the
application to bring it up to date with today’s standards.

The paper lists several “requirements” that are needed for
the adaptation of a component - they are really more like
guidelines and are not all necessary (or possible) depending
on the adaptation being performed. The paper then discusses
five techniques that can be used in the adaptation of software:

• Active interfaces - a component that allows for the
execution of user-defined callback methods; in contrast
to the other techniques discussed this one relies on the
component being adapted to have this functionality

• Binary Component Adaptation (BCA) - a technique that
applies adaptations to component binaries (no source
code access)

• Inheritance - built into OO languages
• Wrapping - this technique wraps the component being

adapted providing an interface that hides the component’s
usage

• In-place - occurs when changes are made directly to the
source code of a component

Obviously our adaptation of ISVis falls into the last category.
Our plans for refactoring the display code might employ some
use of wrapping, but it is too early to tell. One thing we
anticipate being necessary is some sort of dynamic way of
detecting the display capabilities of the platform being used
to run ISVis and then adapting the execution accordingly.

In [40], Camara et. al summarize a strategy that can be
used to design a dynamic adaptation management framework
— i.e. a system that can automatically integrate components
that enter the context of its execution at runtime. The authors
provide an illustration of the proposed framework showing
three modules — the Interface, Adaptor and Coordination
managers — that interact with each other. The Interface
Manager inspects components as they enter the context of
the system and keeps references to them in a repository. The
Adaptor Manager keeps track of mappings between classes -
these mappings are produced dynamically the first time there
is any communication between a particular set of classes.
The Coordination Manager manages the sessions that are
created for each “conversation” between classes. The authors
propose using aspects to achieve this functionality since such
an approach would allow for the necessary functionality to be
weaved in and out of the code execution as needed. This is an
interesting approach to dynamic component evolution, but we
will need to do more research into other options for achieving
the behavior we are after for ISVis’s future.

D. GUI Regression Testing

In Section VII-A we discussed a methodology for evolving
a system into components - two key assumptions made in
[25] are that (1) the system is coded in a language for
which a code-profiling tool is available and (2) that the
legacy system has regression test suites. ISVis satisfies (1)
but not (2) and thus could not use the methodology described
without first developing a reliable set of test cases. This
raises an important issue: How do we reliably test a GUI
based application? There is a technique described by White
in [41] where automated regression tests can be generated
to test both static and dynamic event interactions in a GUI.
Static interactions are those that are contained within one GUI
screen. Dynamic interactions involve decisions happening on
multiple screens. White describes three solutions that could
be used for generating the interaction test cases: (1) brute
force enumeration of the elements of each possible path, (2)
random generation of test cases, and (3) Mutually Orthogonal
Latin Squares. White concludes that while using Latin Squares
would generate the minimum number of tests, it is a more
complex procedure to apply to larger systems. In such a case
he suggests using the random generation technique since it is
still more efficient than brute force. Relating this to ISVis and
taking White’s suggestion, we would probably want to apply
the Latin Squares approach to generating test cases since ISVis
is not a very large application.

However an entirely different approach could be to use
the techniques described by Memon et. al in [42]. This



16

paper describes the use of planning, an AI technique, to
automatically generate test cases for a GUI. The paper argues
that instead of trying to design test cases for every possible
state of a GUI, it is more effective and simpler to specify
the goals a user might want to accomplish and have a tool
that can automate the sequence of events that would need to
occur to meet those goals. The test case generation system
developed by the authors takes these goals as input in the form
of initial and end states. Their system then generates sequences
of actions to transition between the two states, which serve as
the test cases for the GUI.

While Memon and White propose two different techniques
to test case generation, they both agree that automation of test
cases for GUI’s is a necessary to accommodate the changes
that can occur during its development and maintenance. Which
technique to use for ISVis still remains to be seen. There are
even decisions that must be made after the test cases are in
place concerning how to maintain them. Memon & Soffa write
about a possible solution to that dilemma in [43] describing a
technique to repair unusable test cases after the components
of a GUI have changed.

When a GUI changes it is inevitable that some tests will
become unusable because the chain of events that occur
for interactions with the GUI will change. Normally, these
unusable tests would have to be regenerated, but GUI test
case generation is expensive. Memon & Soffa’s solution is
based on modeling the GUI’s events and components and then
comparing the original and modified versions of the models.
From that comparison they are able to automatically detect
unusable test cases and repair the ones that can be repaired.
ISVis isn’t quite ready for these techniques since there are no
test cases related to the GUI yet, and the GUI is not in a rapid
state of change, but it may be wise to consider such things
when choosing a method to generate the test cases that will
be needed.

In [44], Memon et al. describe the use of an automated
oracle to help test the expected behavior of a GUI. The
automation occurs both in the derivation of what the expected
states of the GUI are and in the comparison of those expected
states to the actual state of the GUI as it is executed. The
authors achieve this by first creating a model of the GUI’s
objects, properties, and actions. They then use this model
to determine what the expected states of the GUI will be
given any particular set of actions. The paper describes three
different levels of testing that can be used to compare the
expected states to the actual states of the GUI - determining
what to use is left up to the test designer.

After the authors lay out how to achieve the automated
oracles, they give some performance results showing that the
extra time needed to generate the automated test cases is not
substantial. Consequently, they argue that even though there is
a reasonable amount of human effort involved in creating the
oracle, there is definitely an amortized benefit for the work
that is done. I am not totally convinced of that argument
since it was based on metrics gathered by testing a custom
Notepad editor. It would take substantial effort to produce this
oracle for ISVis especially considering that it is directly tied
to an automated test case generator produced previously by

the authors. All of that would have to be done from scratch if
ISVis was to take advantage of this method. That being said,
if it were in place, it would certainly be beneficial to future
development and refactoring.

Another work built on Memon’s is that of Qing Xie in [45]
where he gives an overview of a strategy he developed to
study GUI faults, GUI event interactions, and the development
of GUI fault detection techniques. The rationale behind this
is that when testing a GUI an unexpected screen could be
generated from an incorrect state of the GUI - in such a case,
the tester would want to detect this fault so the test case can
be terminated. Xie proposes a framework to help automate the
testing process all built on an automatically generated model
of the GUI. He then proposes a series of steps that would
be needed for the framework to accomplish its purpose. One
module of the framework that would prove useful for ISVis is
the Regression Tester. The author does not go into details about
how each of the modules are implemented, but just the idea of
having a separate entity whose sole purpose is to regression
test is a sound one. ISVis could definitely benefit from such
a module to verify the refactoring changes are done correctly.

It seems that the art of testing a GUI is still somewhat
specialized based on the needs of a particular application.
While the above examples show the strides being made to
generalize the art, we would argue that they would be too
elaborate to implement at the present stage of ISVis’s life
cycle. We are not quite sure what type of testing would best
be suited to ISVis so for the moment we are just logging tests
in a spreadsheet until we settle on a more formal approach.
Further research into this topic would certainly be beneficial
in order to help develop a more reliable process in refactoring
ISVis.

VIII. CONCLUSION

To adapt ISVis we had to handle moving to a new operating
system, upgrading the language to a new version, dealing with
third-party libraries, understanding GUI library functions, and
discovering the design and usage of an undocumented code
base. The research needed to conduct our adaptations was
extensive and wide-ranging yielding results and experiences
that are applicable to a variety of topics.

So why is this study important? From a business perspective,
consider that ISVis took 648 hours to be adapted to a working
state. If we translate that into a typical 40-hour work week, it
would have taken one person working full-time approximately
16 weeks to complete this task. If managers are tasked with
estimating the time it would take to adapt a system this study
can help them get a sense of the issues that may be encountered
along the way.

From an academic perspective, case studies are valuable
since they help to bring real numbers and considerations to
the ideas important to the research community. This study
has touched on a number of those ideas including software
migration difficulties, upgrading and debugging legacy code,
and GUI regression testing. Adapting ISVis has shown us
that there is a lot to cover under the umbrella of “software
adaptation.”



17

ACKNOWLEDGMENT

This study was conducted under the guidance of Spencer
Rugaber. Contributions were made by Michele Biddy, Peter
Calvert, Phil Norton, Chung-Yen Huang, and Angela Navarro.
The research they contributed that was not referenced directly
include: [46], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66],
[67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77],
[78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88],
[89], [90], [91], [92], [93], [94], [95], [96].

REFERENCES

[1] “Isvis original home page.” [Online]. Available:
http://www.cc.gatech.edu/morale/tools/isvis/original/isvis.html

[2] “Solaris home page.” [Online]. Available:
http://www.sun.com/software/solaris

[3] “Roguewave.” [Online]. Available: http://www.roguewave.com
[4] S. Rugaber and D. Jerding, “Using visualization for architectural

localization and extraction,” 1997.
[5] D. R. Tribble, “Incompatibilities between iso c and iso c++,” August

2001. [Online]. Available: http://david.tribble.com/text/cdiffs.htm#C99-
vs-CPP98

[6] “Standard template library.” [Online]. Available:
http://www.sgi.com/tech/stl

[7] “Motif.” [Online]. Available: http://www.opengroup.org/motif
[8] “Project bauhaus.” [Online]. Available: http://www.bauhaus-

stuttgart.de/bauhaus/index-english.html
[9] “Semantic designs.” [Online]. Available:

http://www.semanticdesigns.com
[10] “Understand.” [Online]. Available:

http://www.scitools.com/products/understand/features.php
[11] “Lattix.” [Online]. Available: http://www.lattix.com
[12] “C++ standards committee.” [Online]. Available: http://www.open-

std.org/jtc1/sc22/wg21
[13] “Boost.” [Online]. Available: http://www.boost.org
[14] O. Jones, Introduction to the X Window System. Prentice Hall, 1989.
[15] “Eclipse.” [Online]. Available: http://eclipse.org
[16] “Log4cxx.” [Online]. Available:

http://logging.apache.org/log4cxx/index.html
[17] J. Hannemann and G. Kiczales, “Overcoming the prevalent decompo-

sition in legacy code,” ICSE 2001 Workshop on Advanced Separation
of Concerns, May 2001.

[18] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. dis-
sertation, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, 1992.

[19] G. Visaggio, “Ageing of a data-intensive legacy system: symptoms and
remedies,” Journal of Software Maintenance, vol. 13, no. 5, pp. 281–
308, 2001.

[20] R. A. Doblar and P. Newcombe, “Automated transformation of
legacy systems,” CrossTalk, December 2001. [Online]. Available:
http://www.stsc.hill.af.mil/crosstalk/2001/12/newcomb.html

[21] A. Pols and C. Stevenson, “An agile approach to a legacy system,”
in 5th International Conference on Extreme Programming and Agile
Processes in Software Engineering (XP 2004), 2004, pp. 123–129.

[22] D. Thomas, “Agile evolution towards the continuous improvement
of legacy software,” Journal of Object Technology, 2006. [Online].
Available: http://www.jot.fm/issues/issue 2006 09/column2

[23] J. L. Don Batory and C. Lengauer, “Feature oriented refactoring of
legacy applications,” in ICSE ’06: Proceedings of the 28th international
conference on Software engineering. New York, NY, USA: ACM,
2006, pp. 112–121.

[24] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, and A. Lapouchnian,
“Reverse engineering goal models from legacy code,” in RE ’05: Pro-
ceedings of the 13th IEEE International Conference on Requirements
Engineering (RE’05). Washington, DC, USA: IEEE Computer Society,
2005, pp. 363–372.

[25] A. Mehta and G. T. Heineman, “Evolving legacy system features
into fine-grained components,” in ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering. New York, NY,
USA: ACM, 2002, pp. 417–427.

[26] M. Abi-Antoun and W. Coelho, “A case study in incremental
architecture-based re-engineering of a legacy application,” in WICSA
’05: Proceedings of the 5th Working IEEE/IFIP Conference on Soft-
ware Architecture. Washington, DC, USA: IEEE Computer Society,
2005, pp. 159–168.

[27] A. Bianchi, D. Caivano, V. Marengo, and G. Visaggio, “Iterative
reengineering of legacy functions,” in ICSM, 2001, pp. 632–641.

[28] M. L. Brodie and M. Stonebraker, Migrating legacy systems:
gateways, interfaces & the incremental approach. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1995. [Online].
Available: http://portal.acm.org/citation.cfm?id=208444

[29] B. Wu, D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade, and
D. O’Sullivan, “The butterfly methodology: A gateway-free approach
for migrating legacy information systems,” in ICECCS ’97: Proceed-
ings of the Third IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS ’97). Washington, DC, USA:
IEEE Computer Society, 1997, p. 200.

[30] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[31] E. J. Chikofsky and J. H. C. II, “Reverse engineering and design
recovery: A taxonomy,” IEEE Softw., vol. 7, no. 1, pp. 13–17, 1990.

[32] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Trans. Softw. Eng., vol. 30, no. 2, pp. 126–139, 2004.

[33] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The structure
and value of modularity in software design,” in ESEC/FSE-9: Proceed-
ings of the 8th European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on Foundations of
software engineering. New York, NY, USA: ACM, 2001, pp. 99–108.

[34] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modularity.
MIT Press, 2000.

[35] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[36] R. Leitch and E. Stroulia, “Understanding the economics of refactor-
ing,” in 5th International Workshop on Economics-Driven Software
Engineering Research (EDSER-5): The Search for Value in Engineering
Decisions, May 2003, pp. 44–49.

[37] S. Roock and M. Lippert, Refactoring in Large Software Projects. John
Wiley and Sons, Ltd., 2003.

[38] K. Stirewalt, S. Rugaber, H.-Y. Hsu, and D. Zook, “Experience report:
Using tools and domain expertise to remediate architectural violations
in the logicblox software base,” in Proceedings of the International
Conference on Software Engineering, (ICSE 2009), 2009.

[39] G. T. Heineman and H. M. Ohlenbusch, “An evaluation of component
adaptation techniques,” in In 2nd ICSE Workshop on Component-Based
Software Engineering, 1999.

[40] J. C. Javier Camara, Carlos Canal and J. M. Murillo, “J.m.m.: An
aspect-oriented adaptation framework for dynamic component evolu-
tion,” in RAM-SE, Fakultt fr Informatik, Universitt Magdeburg (2006)
5970, 2006, pp. 59–71.

[41] L. White, “Regression testing of gui event interactions,” Software
Maintenance 1996, Proceedings., International Conference on, pp.
350–358, Nov 1996.

[42] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Using a goal-driven
approach to generate test cases for guis,” in ICSE ’99: Proceedings
of the 21st international conference on Software engineering. New
York, NY, USA: ACM, 1999, pp. 257–266.

[43] A. M. Memon and M. L. Soffa, “Regression testing of guis,” in
ESEC/FSE-11: Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international sympo-
sium on Foundations of software engineering. New York, NY, USA:
ACM, 2003, pp. 118–127.

[44] M. E. P. Atif M. Memon and M. L. Soffa, “Automated test oracles for
guis,” SIGSOFT Softw. Eng. Notes, vol. 25, no. 6, pp. 30–39, 2000.

[45] Q. Xie, “Developing cost-effective model-based techniques for gui
testing,” in ICSE ’06: Proceedings of the 28th international conference
on Software engineering. New York, NY, USA: ACM, 2006, pp. 997–
1000.

[46] A. Holub, “Roll your own persistence implementations to go beyond
the mfc frontier,” Microsoft Systems Journal, June 1996.

[47] W. F. Tichy and J. Heilig, “A generative and generic approach to
persistence.”

[48] F. Cao, B. R. Bryant, W. Zhao, C. C. Burt, R. R. Raje, A. M. Olson,
and M. Auguston, “Marshaling and unmarshaling models using the
entity-relationship model,” in SAC ’05: Proceedings of the 2005 ACM
symposium on Applied computing. New York, NY, USA: ACM, 2005,
pp. 1553–1557.



18

[49] S. Wang, S. R. Schach, and G. Z. Heller, “A case study in repeated
maintenance,” Journal of Software Maintenance, vol. 13, no. 2, pp.
127–141, 2001.

[50] J. Soukup, Taming C++: Pattern classes and persistence for large
projects. Addison-Wesley, June 1994.

[51] D. Dig and R. Johnson, “How do api’s evolve,” Journal of Software
Maintenance and Evolution: Research and Practice.

[52] G. Bastide, “A refactoring-based tool for software component adapta-
tion,” in Proceedings of the Conference on Software Maintenance and
Reengineering.

[53] P. A. T. B. A. A. P. C. Pazel D, Varma P, “A framework and tool for
porting assessment and remediation,” in Proceedings of the 20th IEEE
International Conference on Software Maintenance(ICSM’04).

[54] R. M. and O. F., “An effective strategy for legacy systems evolution,”
Journal of Software Maintenance and Evolution: Research and Prac-
tice.

[55] T. M. Jim, J. Buckley, M. Zenger, and A. Rashid, “Towards a taxonomy
of software evolution,” 2003.

[56] Y. Yang, M. Munro, and Y. Kwon, “An improved method of selecting
regression tests for c++ programs,” Journal of Software Maintenance
and Evolution: Research and Practice.

[57] T. Mens and M. Wermelinger, “Separation of concerns for software
evolution,” Journal of Software Maintenance, vol. 14, no. 5, pp. 311–
315, 2002.

[58] R. K. S. J. Carriere, S. G. Woods, “Software architecture transforma-
tion,” in Proceedings of WCRE 99, (Atlanta, GA), October 1999, pp.
13–23.

[59] J. D. Ahrens and N. S. Prywes, “Transition to a legacy and reuse-based
software life cycle,” Computer, vol. 28, no. 10, pp. 27–36, 1995.

[60] H. Z. Hongji Yang, Xiaodong Liu, “Abstraction: a key notion for
reverse engineering in a system reengineering approach,” Journal of
Software Maintenance and Evolution: Research and Practice, vol. 12,
no. 4, pp. 197–228, 2000.

[61] G. W. Matthew Harrison, “Identifying high maintenance legacy soft-
ware,” Journal of Software Maintenance and Evolution: Research and
Practice, vol. 14, no. 6, pp. 429–446, 2003.

[62] L. X. B. X. Jianjun Zhao, Hongji Yang, “Change impact analysis to
support architectural evolution,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 14, no. 5.

[63] W. R., “Improving the maintainability of software,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 8, no. 8, pp.
345–356, 1996.

[64] D. Advani, Y. Hassoun, and S. Counsell, “Understanding the com-
plexity of refactoring in software systems: a tool-based approach,”
International Journal of General Systems, vol. 35, no. 3, pp. 329–346,
2006.

[65] H. M. Sneed, “Measuring reusability of legacy software systems,”
Software Process: Improvement and Practice, vol. 4, no. 1, pp. 43–
48, 1998.

[66] W. Scacchi, “Understanding software process redesign using modeling,
analysis and simulation,” Software Process: Improvement and Practice,
vol. 5, no. 2-3, pp. 183–195, 2000.

[67] M. Olsem, “An incremental approach to software systems re-
engineering,” Journal of Software Maintenance and Evolution: Re-
search and Practice, vol. 10, no. 3, pp. 181–202.

[68] S. Ramanujan, R. W. Scamell, and J. R. Shah, “An experimental
investigation of the impact of individual, program, and organizational
charactersitics on software,” The Journal of Systems and Software,
vol. 54, no. 2, p. 137, 2001.

[69] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types
of software evolution and software maintenance,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 13, no. 1, pp.
3–30, 2001.

[70] K. P. B. Webster, K. M. de Oliveira, and N. Anquetil, “A risk taxonomy
proposal for software maintenance,” in ICSM, 2005, pp. 453–461.

[71] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts, “Co-evolving code and
design with intensional views: A case study,” Computer Languages,
Systems & Structures, vol. 32, no. 2-3, pp. 140–156, 2006.

[72] I. N. O. M. Tanaka T., Hakuta M., “Approaches to making software
porting more productive,” in Proceedings of the 12th TRON Project
International Symposium, December 1995, pp. 73–85.

[73] J. Lee and C. Stricker, “Function-based process analysis: A method
for analyzing and re-engineering processes,” Knowledge and Process
Management, vol. 4, no. 2, pp. 126–138, 1997.

[74] M. E. L. Ackers, Baxter, “Automated restructuring of component-based
software,” CrossTalk-The Journal of Defense Software Engineering,
2005.

[75] H. Suenobu, K. Tsuruta, and U. Masuda, “Stepwise approach for
introducing object-oriented technique at software maintenance stages,”
in Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Conference
Proceedings, October 1999.

[76] C. Verhoef, “Towards automated modification of legacy assets,” Ann.
Software Eng., vol. 9, pp. 315–336, 2000.

[77] D. Wilkening and K. Littlejohn, “Legacy software reengineering tech-
nology,” in Digital Avionics Systems Conference, October 1996, pp.
25–30.

[78] W. Bergey, Smith, “Dod legacy system migration guidelines,” carnegie
Mellon Software Engineering Institute - Technical Report CMU/SEI-
99-TN-013.

[79] T. Mens, T. Tourwé, and F. Muñoz, “Beyond the refactoring browser:
Advanced tool support for software refactoring,” in IWPSE, 2003, pp.
39–44.

[80] H. M. Sneed, “Encapsulation of legacy software: A technique for
reusing legacy software components,” Ann. Software Eng., vol. 9, pp.
293–313, 2000.

[81] W. W. Song, “Integration issues in information system reengineering,”
in COMPSAC, 1996, pp. 328–335.

[82] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos, “Requirements-
driven software re-engineering framework,” in WCRE, 2001, pp. 71–
80.

[83] R. Morrison, D. Balasubramaniam, R. M. Greenwood, G. N. C. Kirby,
K. Mayes, D. S. Munro, and B. Warboys, “A compliant persistent
architecture,” Softw., Pract. Exper., vol. 30, no. 4, pp. 363–386, 2000.

[84] D. Eichman, “Factors in reuse and reengineering of legacy software,”
repository Based Software Engineering Program Research Institute for
Computing and Information Systems University of Houston Clear
Lake.

[85] W. C. Chu, C.-W. Lu, C.-P. Shiu, and X. He, “Pattern-based software
reengineering: a case study,” Journal of Software Maintenance, vol. 12,
no. 2, pp. 121–141, 2000.

[86] A. Dearle and D. Hulse, “Operating system support for persistent
systems: past, present and future,” Softw., Pract. Exper., vol. 30, no. 4,
pp. 295–324, 2000.

[87] R. Fanta and V. Rajlich, “Reengineering object-oriented code,” in
ICSM, 1998, pp. 238–246.

[88] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in SIGDOC, 2005,
pp. 68–75.

[89] A. A. Terekhov, “Automating language conversion: A case study,” in
ICSM, 2001, pp. 654–658.

[90] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Soft-
ware Maintenance, vol. 15, no. 2, pp. 87–109, 2003.

[91] E. B. Buss and J. Henshaw, “A software reverse engineering experi-
ence,” in CASCON, 1991, pp. 55–73.

[92] D. Gregor, J. Järvi, J. G. Siek, B. Stroustrup, G. D. Reis, and
A. Lumsdaine, “Concepts: linguistic support for generic programming
in c++,” in OOPSLA, 2006, pp. 291–310.

[93] E. Fricke and A. P. Schulz, “Design for changeability (dfc): Principles
to enable changes in systems throughout their entire lifecycle,” Systems
Engineering, vol. 8, no. 4, 2005.

[94] P. P. Tommi Mikkonen, “Practical perspectives on software architec-
tures, high-level design, and evolution,” in International Conference
on Software Engineering archive, Proceedings of the 4th International
Workshop on Principles of Software Evolution, 2001, pp. 122–125.

[95] K. H. Bennett and V. Rajlich, “Software maintenance and evolution: a
roadmap,” in ICSE - Future of SE Track, 2000, pp. 73–87.

[96] C. D. Rosso, “Continuous evolution through software architecture
evaluation: a case study,” Journal of Software Maintenance, vol. 18,
no. 5, pp. 351–383, 2006.

[97] “Xmdrawingarea documentation.” [Online]. Available:
http://www.vaxination.ca/motif/XmDrawingAr 3X.html

[98] “Xtaddcallback documentation.” [Online]. Available:
http://linux.die.net/man/3/xtaddcallback

[99] “Xmnexposecallback documentation.” [Online]. Available:
http://www.vaxination.ca/motif/XmDrawingAr 3X.html

[100] “Expose events documentation.” [Online]. Available:
http://tronche.com/gui/x/xlib/events/exposure/expose.html

[101] “X event structures.” [Online]. Available:
http://tronche.com/gui/x/xlib/events/structures.html

[102] “Callback setup example.” [Online]. Available: http://www-
h.eng.cam.ac.uk/help/tpl/graphics/Motif/mt4

[103] “Xtappaddworkproc documentation.” [Online]. Available:
http://www.xfree86.org/4.4.0/XtAppAddWorkProc.3.html



19

[104] “Xtappaddworkproc example.” [Online]. Available:
http://www.ist.co.uk/motif/books/vol6A/ch-26.fm.html

APPENDIX A
MOTIF RESEARCH

A. Toolkit and Widget Changes

Listed below are the specific Toolkit and Widget class
deprecations from Motif 1.2 to 2.1.

Renditions and RenderTables
The XmFontList data type and associated functions are now
deprecated, replaced by a new entity called the XmRendition.

VendorShell
The VendorShell has the new resources XmNbuttonRen-
derTable, XmNlabelRenderTable, and XmNtextRenderTable
that replace the deprecated XmNbuttonFontList,
XmNlabelFontList, XmNtextFontList resources.

Label
The XmFontList resource is deprecated and is superseded
by the XmNrenderTable resource. The same is true for
LabelGadget.

MainWindow
The routine XmMainWindowSetAreas() is eprecated.
The XmNcommandWindow, XmNmenuBar, XmNmes-
sageWindow, XmNworkWindow, XmNhorizontalScrollBar,
XmNverticalScrollBar resources should be set directly using
the standard Xt mechanisms.

MenuShell
The XmNbuttonFontList and XmNlabelFontList resources are
deprecated, and are replaced by the XmNbuttonRenderTable
and XmNlabelRenderTable resources. Also deprecated is the
XmNdefaultFontList resource, but there is no replacement
XmNdefaultRenderTable resource.

Scale
The XmNfontList resource is deprecated, and replaced with
the newer XmNrenderTable resource

Text and TextField
The XmNfontList resource is obsolete and is replaced by the
XmNrenderTable resource.

B. Obsolete Symbols

Table VI gives a list of the symbols that were updated from
Motif 1.2 to 2.1.

APPENDIX B
MURAL BUG ANALYSIS

The Mural constructor calls Mural::Init(). The init

method initializes a XmDrawingArea variable (draw_area)
which serves as the container for the mural drawing area (see
[97]). Then a callback reference is set up on the draw_area

widget via a call to XtAddCallback [98]. The callback event

is set to XmNexposeCallback [99] which is triggered when
the widget is exposed (i.e. when the widget is displayed,
see [100]). The callback method is set to Mural::ExposeCB

which is called when the event is triggered.
The ExposeCB method extracts the XEvent object [101]

from the callback object that is passed to it. From that it has
access to the XExposeEvent object which has the information
it needs to perform its function. First, it checks the number
of additional expose events that are queued to call itself -
since it is going to tell the Mural to draw it only wants to
do this on the last call to itself, ignoring all events until the
last one. When the number of queued events is equal to zero,
the method will then grab the x/y coordinates of the top left
corner of the mural window along with its width and height
and call Mural::Draw.

After some checks to make sure the drawing area window
is set up properly, the Draw method checks if the mural is set
to “dirty” - meaning the mural has received new values or a
new layout and needs to be redrawn. The method then calls
Mural_Client::MuralRedrawNeededCB (we will address
this method later as it is at the center of the problem).
The Draw method assumes that calling this method will set
the appropriate values in a 2D array called mural_array.
The two dimensions represent the x/y position of each pixel
in the mural window. Each cell in the array contains a
mural_array_entry_t struct defined as:

typedef struct
{

float value;
short r, o, y, g, c, b, p;

} mural_array_entry_t;

The value field stores a percentage value used for rendering
in anti-aliasing mode (beyond the scope of this analysis). The
letter fields stand for the colors red, orange, yellow, green,
cyan, blue, purple (respectively). These are the colors available
to the ISVis user via the color palette displayed on the main
view. When another part of the application sets the color of
a mural_array_entry_t struct for a particular index it is
telling the Mural class to draw that color for that pixel. As
mentioned above, the Draw method assumes these values are
set after calling Mural_Client::MuralRedrawNeededCB.
After calling that callback method2, the Draw method then
calls Mural::DrawMural which draws the mural based on
the values in mural_array.

Diagnosis
The symptom of the problem is that all the colors for the mural
array entries are still in their initial state after the callback
method is called. Mural_Client::MuralRedrawNeededCB
is a virtual method implemented by any extenders
of Mural_Client - our extender of interest is
the Scenario_View class. The Scenario_View’s
implementation is as follows:

1) Initialize the mural, clearing out any previous values that

2Any method in the ISVis code ending in CB is usually named as such to
denote it is used as a callback for some event.



20

TABLE VI
MOTIF OBSOLETE SYMBOLS

1.2 Symbol 2.1 Symbol
_XmOSPutenv() -

_XmGetDefaultTime() XmeGetDefaultTime()

_XmGetColors() XmGetColors()

_XmDrawShadows() XmeDrawShadows()

_XmEraseShadow() XmeClearBorder()

_XmGetArrowDrawRects() XmeDrawArrow()

_XmOffsetArrow() XmeDrawArrow()

_XmDrawSquareButton() -

_XmDrawDiamondButton() XmeDrawDiamond()

_XmDrawShadowType() XmDrawShadows()

_XmDrawBorder() XmeDrawHighlight()

_XmMoveObject() XmeConfigureObject()

_XmResizeObject() XmeConfigureObject()

_XmVirtualToActualKeysym() XmeVirtualToActualKeysyms()

may be stored in the mural array
2) Register a worker method as a background procedure

to be run by X windows. This is done via a call to
XtAppAddWorkProc (see [102], [103], [104])

The worker method registered to be run in the background
is ScenarioView::redrawMuralWorkProc. This method
increments an iterator to get the next interaction that needs to
be drawn to the mural. If the iterator points to an interaction
then the mural is updated with the appropriate values for the
interaction being examined and the method returns False (0)
indicating there are still interactions that need to be drawn.
If there are no more interactions to iterate over, the method
returns True (1). The iterator is held as a class level variable
so after the method returns it can be called again and pick up
at the next interaction. This looping is necessary in order to
iterate over all the interactions and have them all be drawn in
the mural.

The problem lies in the fact that this process never gets
executed, so the mural array never gets populated with the
values corresponding to the interactions being displayed by
the scenario view. For some reason the background process is
not calling this worker method. This explains why the mural
is blank.

Solution
Our first test was to check if the drawing capabilities
of the Mural were functioning properly. We tested
the Mural::MuralDrawHorizontalLine method and
successfully drew several different color lines in the mural
window from the scenario view callback method. This was
done by using hard coded values for the pixel range and the
line color.

Once the drawing functionality was verified further
analysis was conducted that led to the realization that
redrawMuralWorkProc (the method that would update the
mural) was not being called. Since the reason for using
the background process to call the worker method is not

entirely clear3, it was decided to comment it out and just
call the method directly. The following loop was set up in
MuralRedrawNeededCB:

int done = redrawMuralWorkProc();
while(done == False)
{

done = redrawMuralWorkProc();
}

This executed the method we needed but it also created
an infinite loop because after it was done iterating over
all the interactions it called Mural::RequestDraw() which
eventually ended up calling MuralRedrawNeededCB again.
To cater for this we introduced a class level boolean variable
called redrawInProgress, initialized to false. The body
of MuralRedrawNeededCB (including the above loop) was
wrapped in the following IF clause:

if(!redrawInProgress)
{

redrawInProgress = true;
//code to iterate over the interactions
...
Mural::RequestDraw();
redrawInProgress = false;

}

So the first time MuralRedrawNeededCB is called, the
body will get executed and the mural array will get updated
allowing the mural to be drawn properly. When the interaction
iteration is completed and the call is made to draw the mural,
the body of MuralRedrawNeededCB will not get executed
since redrawInProgress would be set to true at that point.
Once the mural draw method returns, redrawInProgress is
set back to false so the method will be executed on the next
valid redraw request. This solution draws the mural correctly.

3We speculate it has to do with older machines not being able to handle
the drawing function as it might have been an expensive process 10+ years
ago.



21

Fig. 7. Mural display for dfs.xml

Validation

Validating that the mural was being drawn correctly was
somewhat of an interpretive exercise since we did not have
access to the original developer of the program, nor any other
user that could reliably say what it should look like for a
given set of data. Consequently our judgment of correctness
is based solely on our understanding of how the mural should
work. The mural window should show a visualization of all
of the actors being presented to the user in either the main or
scenario view — from here on when we refer to the mural,
we mean the mural shown in the scenario view.

After correcting the mural code and opening the scenario
view for our test data set, we could see the mural as shown
in Figure 7. The mural depicts a visualization of 14,608
interactions. What looks like blocks in the visualization are
actually lines stacked on top of each other in succession to
represent the interactions shown between the functions in the
view. After assigning some colors to different interactions we
can see in Figure 8 that the mural successfully recolors itself.4

Figure 9 shows the result of resizing the mural. We can see
that some of the lines are now more precise as to what region
of the view they represent. Since the mural has a fixed space

4You must click the ’Update Mural’ button or the ’Always’ checkbox after
picking a color for an actor

to draw in, it makes sense that some of the calculations to turn
the position of an actor in its container to its corresponding
Y-axis pixel position would overlap given a large data set.

To make one last confirmation we decided to reduce the
data set. We cut down the number of interactions read into
the scenario view to 20. To do this we had to modify the
scenario file we were using. We copied dfs.xml and created
dfs-short.xml. The XML structure was as follows:

<boost_serialization ... >
<this class_id=‘‘0’’ ... >
<programModel class_id=‘‘2’’ ... >

...
<scenarios class_id=‘‘15’’ ... >
...
<item class_id=‘‘16’’>
<second class_id=‘‘17’’>
...
<impl class_id=‘‘19’’>
<trace class_id=‘‘23’’>
<messageTrace>

14,608 item (interaction) nodes
</messageTrace>

We deleted all the 14K item nodes except for 20. We then
updated the two places where the count was hard-coded — the
count and numEvents nodes — to reflect the new number of
interactions. Note that the dfs.trace and dfscopy scenarios



22

Fig. 8. Mural with colored interactions

are both contained in dfs.xml — we only made this change to
dfs.trace. Consequently, you can use dfs-short.xml to
test the shorter list of interactions via dfs.trace alongside
the full list via dfscopy.

The resulting mural is shown in Figure 10 — the figure
shows a shot with the same interactions coloring as in Figure 8.
From this we were able to see a clearer representation of the
interactions being shown. Since none of the lines overlap, we
were able to verify that the colors were working on the lines
we expected them to be on and that the correct number of
lines were being drawn.

APPENDIX C
REFACTORING EXAMPLE

This section describes a simple example of a refactoring
we implemented in ISVis to enhance it’s readability. To start
off with, we looked for a portion of the code that we knew
executed properly and that could be easily tested. Another
criteria was that it would be as close to “stand-alone” as
possible - meaning the candidate would have minimal (if any)
references to global variables or methods external to its class.
The code pertaining to the color buttons on the main view fit
these conditions perfectly. Additionally this code originally
caught my attention for a refactoring upon recognizing the
Duplicated Code bad smell [30]. We applied the Extract

Method refactoring in the following steps:

Step 1:

XrmValue bg = X_Application::ColorRmValue(‘‘white’’);
Widget defaultButton =
XtVaCreateManagedWidget(
‘‘default’’,
xmPushButtonWidgetClass,
canvas,
XmNshadowThickness,
2,
XmNbackground,
X_Application::ColorValue(‘‘white’’),
XmNforeground,
X_Application::ColorValue(‘‘black’’),
NULL);

XtAddCallback(
defaultButton,
XmNactivateCallback,
(XtCallbackProc)(&MainView::setSelectedDefaultCB),
(XtPointer)this);

We identified the block of code that was being repeated
for each color button. The text highlighted red is the only
code that varies per block. This code was originally in
MainView() lines 241-322, repeated 6 times for each color
button shown in the main view color palette.



23

Fig. 9. Mural resized

Step 2:

Widget XMainView::CreateColorButton(
const char * color,
const char * buttonName,
XtCallbackProc callBackProc,
XtPointer callbackMatch)

{
XrmValue bg = X_Application::ColorRmValue(‘‘white’’);
Widget button =

XtVaCreateManagedWidget(
buttonName,
xmPushButtonWidgetClass,
canvas,
XmNshadowThickness,
2,
XmNbackground,

(Pixel) *((Pixel *)bg.addr),
XmNforeground,
X_Application::ColorValue(‘‘white’’),
NULL);

XtAddCallback(
button,
XmNactivateCallback,
callBackProc,
callbackMatch);

return button;
}

We extracted the common block of code into a method
called CreateColorButton and parameterized anything that
needed to vary per method call (i.e. the red text from Step 1).



24

Fig. 10. Mural showing 20 interactions

Step 3:

Widget defaultButton =
XMainView::CreateColorButton(
‘‘white’’,
‘‘default’’,
&canvas,
&MainView::setSelectedDefaultCB,
this);

We replaced the 6 blocks of code from Step 1 with 6 method
calls to the new method (only one is shown, but all the others
are the same calls with different colors assigned to their
corresponding buttons).

Step 4:

Widget XMainView::CreateColorButton(
const char * color,
const char * buttonName,
Widget *parent,
XtCallbackProc callBackProc,
XtPointer callbackMatch)

{
XrmValue bg =
X_Application::ColorRmValue(‘‘white’’);

Widget button =
XtVaCreateManagedWidget(

buttonName,
xmPushButtonWidgetClass,
*parent,
XmNshadowThickness,
2,
XmNbackground,
(Pixel) *((Pixel *)bg.addr),
XmNforeground,
X_Application::ColorValue(‘‘white’’),
NULL);

XtAddCallback(
button,
XmNactivateCallback,
callBackProc,
callbackMatch);

return button;
}

We extracted the body of the new CreateColorButton

method to a method of the same name in a new class called
XMainView. To do this, we added one additional parameter
(shown in blue) to the method: the parent (owner) of the
button. Previously the parent was a global variable in the
Main_View class (the canvas variable).

Step 5:



25

Widget MainView::CreateColorButton(
const char * color,
const char * buttonName,
XtCallbackProc callBackProc,
XtPointer callbackMatch)

{
return XMainView::CreateColorButton(

color, buttonName, &canvas, callBackProc, this);
}

We replaced the body of MainView’s CreateColorButton

with a simple call to XMainView’s method of the same name.

APPENDIX D
TEST CASES

While fixing the display related issues, we kept track of
the test cases we used to verify the GUI functionality as we
made code changes. This was a completely manual process.
For each test we tracked the following information: test name,
test description, input to generate the condition being tested,
expected output, and test status (pass/fail). A subset of that
information is listed in Table VII. The full list can be found at
http://www.cc.gatech.edu/morale/tools/isvis/2009/ISVisTestPlan.xls.

TABLE VII
CURRENT STATUS OF TEST CASES

Test Status
Testing application startup Pass

Opening a saved session Pass

Open a scenario view Pass

Open a second session Fail

Yellow button Pass

Green button Pass

Cyan button Pass

Blue button Pass

Purple button Pass

White button Pass

APPENDIX E
X WINDOWS REFERENCES

Figures 11, 12, 13 and 14 list the frequencies of calls made
to X Windows specific classes.

APPENDIX F
COMPILE ERRORS

Table VIII shows the initial errors/warnings encountered
when trying to compile ISVis.



26

Fig. 11. X Windows References



27

Fig. 12. X Windows References - continued



28

Fig. 13. X Windows References - continued



29

Fig. 14. X Windows References - continued



30

TABLE VIII
INITIAL COMPILE ERRORS WITH ISVIS

Source File Occurrences Found
Actor.c line 51: Error: A typedef name cannot be used in an elaborated type specifier..“actor.H”

line 402: Error: Incorrect access of a member from const-qualified function. (2)

Actor list-view.c line 51: Error: A typedef name cannot be used in an elaborated type specifier..“view manager.H”
line 122: Error: Cannot return const DotActor* from a function that should return DotActor*.“program model.H”
line 447: Error: i is not defined.“actor list view.C”, (11)

Disk file.c Compilation aborted, too many RW Error messages

Event writer.c line 59: Error: Could not open include file “event writer.H”.
line 85: Error: The function “initTimestamp” must have a prototype

Main view.c “program model.H”, line 122: Error: Cannot return const DotActor* from a function that should return DotActor
“main view.C”, line 84: Warning: String literal converted to char* in initialization. (23)

Program model.c “program model.H”, line 122: Error: Cannot return const DotActor* from a function that should return DotActor*.
“program model.C”, line 1028: Error: Incorrect access of a member from const-qualified function. (12)
Compilation aborted, too many Error messages.

Scenario.c “program model.H”, line 122: Error: Cannot return const DotActor* from a function that should return DotActor*.
Error: Cannot use const Trace* to initialize Trace*.
Error: Cannot use const Scenario* to initialize Scenario*.
Error: Cannot use const TraceImpl* to initialize TraceImpl*.
Error: Cannot use const InteractionImpl* to initialize InteractionImpl*.

Scenario view.c “scenario view.C”, line 85: Warning: String literal converted to char* in initialization. (47)
“scenario view.C”, line 329: Error: i is not defined. (16)
Compilation aborted, too many Error messages

Static analyzer.c “static analyzer.C”, line 87: Error: Only a function may be called. (6)
“static analyzer.C”, line 171: Error: Incorrect access of a member from const-qualified function. (2)
Error: Only a function may be called. (3)
Compilation aborted, too many Error messages.

Trace.c “program model.H”, line 122: Error: Cannot return const DotActor* from a function that should return DotActor*.
Error: i is not defined. (15)
Error: Cannot use const Trace* to initialize Trace*.

Trace analyzer.c Error: Could not open include file <ctoken.h>.
“program model.H”, line 122: Error: Cannot return const DotActor* from a function that should return DotActor*.
Error: Cannot use RWCString to initialize int.
Error: Only a function may be called. (3)

View manager.c Error: Could not open include file <bstream.h>
Error: Cannot return const DotActor* from a function that should return DotActor*
Error: Cannot use std::basic ifstream<char, std::char traits<char>> to initialize int.
Error: The operation “int >> ViewManager” is illegal.
Error: Incorrect access of a member from const-qualified function.
Warning (Anachronism): Formal argument 2 of type extern “C” void(*)(int) in call to std::signal(int, extern “C”
void(*)(int)) is being passed void(*)(int).
Warning (Anachronism): Formal argument 2 of type extern “C” void(*)(int) in call to std::signal(int, extern “C”
void(*)(int)) is being passed void(*)(int).

Xapp.c Warning: String literal converted to char* in initialization. (32)
Error: best is not defined. (4)
Error: Cannot assign const char* to char*.


