
ISVis Adaptation Project
Spring 2009 Term Paper

http://www.cc.gatech.edu/morale/tools/isvis/2009/

Andrew Bernard
College of Computing, Georgia Tech

agbernard@gmail.com

April 30, 2009

Abstract

The objective of this study is to provide an update on the status of the ISVis adap-
tation. Research done on colormap usage in X Windows is described to elicit a better
understanding of the current issues being faced. Along with that we discuss the first
refactoring made to the display code and the future plans for continuing the refactoring
process.

1 Introduction

This paper describes the work that was continued from the Fall 2008 semester in which
we were able to successfully build and run ISVis on Solaris. While the GUI for ISVis could
now be displayed, the most outstanding issue was the mural display for the scenario view.
The mural for the six components of the main view is working as expected, but not so for
the scenario view. In an effort to understand this problem and the overall use of color
by the application, some research was done on colormaps and pixmaps in the X Window
System - this is discussed in Section 2.

While the colormap issue was being investigated, I also started looking at two other prob-
lem areas with the application. Firstly, the primary motivation for my work on this project
is to refactor the display code to allow for greater maintainability and flexibility, but up to
this point that had not been started. Section 3 talks about the first refactoring we made
and the rationale for how we chose it. The other issue was the fact that none of the analy-
sis portion of the application was functioning. Section 4 describes the research we did to
try and find alternatives to the original approach employed by ISVis. We will end with a
look at some research done on GUI testing and a summary of the project’s current status.

1



2 Debugging the Mural

In order to understand how the mural was being setup and drawn it was important to
get a firm grasp on how colors and pixmaps are used in X Windows. The following is a
synopsis of chapters 7 and 8 from [7] which discuss colormaps and pixmaps respectively.

2.1 Colormaps

In order to manipulate a color on a display device, we need the following information:

• Pixel value - to designate the color of the pixels on the display

• RGB value - the red/green/blue value of the color

• Visual class - defines the color capability of the display

• Colormap - used to translate between pixel values and colors

There are 3 major visual modes available, each with 2 classes defining whether colormaps
are read/write or read-only.

• GrayScale/StaticGray - A pixel value indexes a single colormap that contains monochrome
intensities. Each pixel value is represented by up to 8 bits.

• PseudoColor/StaticColor - A pixel value indexes a single colormap that contains color
intensities. Each pixel value is represented by up to 8 bits.

• DirectColor/TrueColor - A pixel value is decomposed into separate red, green, and
blue subfields. Each subfield indexes a separate colormap and is represented by 8
bits per field, giving each pixel 24 bits total to describe a color.

The visual class being used determines the exact structure of the colormap for any given
window in a particular application (each window having a single associated colormap).
A colormap is just an array of cells containing a combination of red/green/blue values
defining a color. The XColor structure is used by X Windows to define the contents of
each color cell.

There are three strategies described in this chapter on how to interact with colormaps:

• Shared color cells - like its name suggests, this is simply the strategy of sharing the
same color cells across multiple applications.

• Standard color maps - an application can query X Windows for a standard colormap
which contains preloaded red/green/blue values for all their color cells.

2



• Private color cells - allows for the dynamic update of any primary color value stored
in the the colormap

ISVis uses the third strategy, creating its own private color map. For this reason it must
always be used with a read/write visual class - either PseudoColor (what it was originally
coded in) or DirectColor. Consequently it can only be run on displays with those classes
available (you can use the ’xdpyinfo’ command from the command line to query the dis-
play device to see the visual modes that are available). There is an X Windows function,
XDefaultVisual which can be used to query the display from the code and retrieve a
structure, Visual, containing the display device’s default visual class. We need to make
use of this function to check if ISVis can run on the display device it is using. If it can’t,
we would be able to exit gracefully explaining why ISVis could not execute.

2.2 Pixmaps

A pixmap is a raster - a rectangular area of pixels - like a window, but it is never actually
visible. It is used like a buffer to draw the desired shapes into - it can then be copied
into a window (which is visible). There are other key differences between a pixmap and a
window:

• Background - use XFillRectangle instead of XClearArea to clear a pixmap

• Borders - pixmaps have no borders because they are never visible

• Colormap - pixmaps have no visual type and consequently no associated colormap.
Pixel values in pixmaps do not have colors assigned to them until they are copied to
a window

2.3 Mural Status

After studying the above sections I saw no reason why colormaps should not work with
a modern (DirectColor) display. So I started slowly adding back in the code I saw that
was commented out related to colormaps. The mural is still not displaying properly but I
am anticipating this bug will go away as I continue with the process of putting colormaps
back in.

3 Refactoring

While I was debugging the mural code, I also started on our first refactoring of the display
code. I looked for a portion of the code that I knew executed properly and that could

3



be easily tested. Another criteria was that it would be as close to “stand-alone” as pos-
sible - meaning the candidate would have minimal (if any) references to global variables
or methods external to its class. The code pertaining to the color buttons on the main
view fit these conditions perfectly. Additionally this code originally caught my attention
for a refactoring upon recognizing the Duplicated Code bad smell [6]. I applied the Extract
Method refactoring in the following steps:

Step 1: I identified the block of code that was being repeated for each color button. The
text highlighted red is the only code that varies per block. This code was originally in
MainView() lines 241-322.

Step 2: I extracted the common block of code into a method called CreateColorButton
and parameterized anything that needed to vary per method call (i.e. the red text from
Step 1).

4



Step 3: I replaced the 6 blocks of code from Step 1 with 6 method calls to the new method.
This reduced the original code from 81 lines to 30.

Step 4: I extracted the body of the new CreateColorButton method to a method of the
same name in a new class called XMainView. To do this, I added one additional parameter
(shown in blue) to the method: the parent (owner) of the button. Previously the parent
was a global variable in the Main View class (the canvas variable).

5



Step 5: I replaced the body of MainView::CreateColorButton with a simple call to
XMainView::CreateColorButton

This refactoring will serve as a model for our future design goals of creating an abstract
layer for the display code to live under. We will progressively migrate all of the X Windows
specific calls out of the main classes and into “X” classes. Once we reach the point where
all the main classes are only calling their corresponding “X” classes for X Window related
functions, then we will be able to add a layer of abstraction between those calls. Taking
our color button method as an example, once we have our abstract layer we would replace
our call to XMain View::CreateColorButton with Abstract View::CreateColorButton.
Once all of our main classes call our abstract layer we will be free to vary the implemen-
tation beneath that layer as needed.

6



4 Scripts

Currently the static analysis, instrumentation, and trace generation are inoperable due to
the lack of a compatible tool to produce the source code information needed for the static
analysis. The original method of obtaining this information was to use the Solaris 2.5 CC
or cc compiler with the -xsb flag turned on. This would produce files with extra symbol
table information for Sun’s source browser. ISVis is programmed to read these files and
extract the necessary information to produce a static file looking like:

FILE <full filename>
CLASS <class name> <full filename> <line number>
INHERITS <class name> <parent class name>
MEMBER FUNC <function name> <class name> <full filename> <line number>
GLOBAL FUNC <function name> <full filename> <line number>

We have looked at a number of alternatives ([2], [3], [4], [1]) to replace the outdated Solaris
command, but we have not yet decided on or tested any of them. Whichever tool we decide
on, the biggest factor to consider is whether or not it produces output that can easily be
fed into ISVis for analyzation.

5 GUI Testing Research

In [8], Memon et al. describe the use of an automated oracle to test the expected behavior
of a GUI. The automation occurs both in the derivation of what the expected states of the
GUI are and in the comparison of those expected states to the actual state of the GUI as it
is being executed. The authors achieve this by first creating a model of the GUI’s objects,
properties, and actions. They then use this model to determine what the expected states
of the GUI will be given any particular set of actions. The paper describes three different
levels of testing that can be used to compare the expected states to the actual states of
the GUI - determining what to use is left up to the test designer.

After the authors lay out how to achieve the automated oracles, they give some perfor-
mance results showing that the extra time needed to generate the automated test cases is
not substantial. Consequently, they argue that even though there is a reasonable amount
of human effort involved in creating the oracle, there is definitely an amortized benefit for
the work that is done. I am not totally convinced of that argument since it was based on
metrics gathered by testing a custom Notepad editor. It would take substantial effort to
produce this oracle for ISVis especially considering that it is directly tied to an automated
test case generator produced previously by the authors. All of that would have to be done
from scratch if ISVis was to take advantage of this method. That being said, if it were in
place, it would certainly be beneficial to future development and refactoring.

Another work built on Memon’s is that of Qing Xie in [9] where he gives an overview of a

7



strategy he developed to study GUI faults, GUI event interactions, and the development
of GUI fault detection techniques. The rationale behind this is that when testing a GUI
an unexpected screen could be generated from an incorrect state of the GUI - in such a
case, the tester would want to detect this fault so the test case can be terminated. Xie
proposes a framework to help automate the testing process all built on an automatically
generated model of the GUI. He then proposes a series of steps that would be needed for
the framework to accomplish its purpose.

One module of the framework that would prove useful for ISVis is the Regression Tester.
The author does not go into details about how each of the modules are implemented, but
just the idea of having a separate entity whose sole purpose is to regression test is a sound
one. ISVis could definitely benefit from such a module to verify the refactoring changes
are done correctly.

6 Discussion

From my research on GUI testing referenced above and in [5], it seems that the art of
testing a GUI is still somewhat specialized based on the needs of a particular application.
I have read about efforts made to generalize the art, but I would argue that they would
be too elaborate to implement at the present stage of ISVis’s life cycle. Honestly, I’m not
quite sure what type of testing would best be suited to ISVis so for the moment we are just
logging tests in a test plan as seen in Appendix B. We will continue to add to this log until
a better (preferably automated) solution presents itself.

As I work with the code more and more, I have been thinking about what exactly would
be required for us to consider ISVis “stable”. Of course fixing all the bugs that keep it
from performing its function would be the first step, but on a broader scale, what does
it mean for any application to be considered stable? Does it mean a certain percentage
of test cases pass? Do we have to go a certain amount of time without find a bug? Does
the code have to be structured a certain way and exhibit certain features? Perhaps it is a
function of the percentage of code that is in flux at any given time. This came to my mind
when I was deciding on whether or not to start refactoring while I was still finding bugs.

I realize that I have been performing a balancing act between working on the mural bug
and proceeding with the refactoring of the color buttons - generally we would find and fix
all the bugs first so we don’t risk inserting new ones while still trying to fix an old one. That
is why I used the criteria that I did to pick the candidate for refactoring because I wanted
to be sure to minimize the impact the refactor would have. While it is not completely
unrelated code (because the color buttons can be used to set the colors of modules in
both the main screen and scenario view) it seemed to not be the cause of the mural code
failure.

8



6.1 Current Status

To summarize the projects current status:

• Display - the application starts and displays the GUI successfully. The mural on the
scenario view is not displayed correctly. This is the only observable display related
bug.

• Platforms - ISVis runs on any device with DirectColor - currently the application is
hard coded to only check for that visual class.

For next semester I plan to finish debugging the mural (and any other display bugs I
may find after that). I will also set up the condition to check for the two available visual
classes that are needed for ISVis to successfully execute. Hopefully that will go quickly so
I can focus most of my efforts on moving all references to X Windows into “X” classes (like
XMainView) to prepare for the abstract layer.

9



A Appendix - Code Listing

This is the code from the Main View class that created the color buttons before being
refactored.

10



11



B Appendix - Test Plan

12



C Time Log

13



14



References

[1] Lattix. http://www.lattix.com.

[2] Project bauhaus. http://www.bauhaus-stuttgart.de/bauhaus/index-english.html.

[3] Semantic designs. http://www.semanticdesigns.com/Products/Metrics/index.html.

[4] Understand. http://www.scitools.com/products/understand/features.php.

[5] Andrew Bernard. Isvis adaptation project - fall 2008. December 2008.

[6] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[7] Oliver Jones. Introduction to the X Window System. Prentice Hall, 1989.

[8] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Automated test oracles for
guis. SIGSOFT Softw. Eng. Notes, 25(6):30–39, 2000.

[9] Qing Xie. Developing cost-effective model-based techniques for gui testing. In ICSE
’06: Proceedings of the 28th international conference on Software engineering, pages
997–1000, New York, NY, USA, 2006. ACM.

15


