
Agile Approach to a Legacy System

This paper summarizes the efforts of an XP team from ThoughtWorks Technologies to
introduce new features to a legacy system. It provides a great informal guide to working
with a legacy system using an agile development process (although not all the pointers
necessitate an agile development process). This guide comes in the form of "rules of
thumb" which are listed and briefly explained as follows:

• Don't reproduce legacy code - the first attempt to refactor the system was done
by trying to rewrite the code in Java since it was spread out accross four
different languages. Ultimately the rewrite approach failed (for reasons they
explain in the paper) producing this rule.

• Always ask the user what the problem is - this allowed them to stay away from
parts of the code that were irrelevant and gave them a clear focus for providing
something valuable to the user

• Refactor a legacy application by delivering new business value - they describe
their approach as being low risk because they "didn't change the legacy
application and so the potential cost of failure was small. However the payoff for
success was extremely high. The new system obsoletes legacy application
functionality incrementally while delivering regular new features to users."

• Incrementally build trust - The idea here is to "prove that you can do the hardest
part of the system." From there, each new feature added builds the trust of the
customer.

• Build a small, self-selected team - Obviously this rule is not possible in many
places for a variety of reasons so it was an advantage they were even able to
have this option. Nevertheless they praise the fact that everyone on the team
wanted to be there and that quality gave the team passion about their work.

• Don't get hung up on process - Their normal process was to have one iteration
per week, but there were times when an iteration was needed before that. They
made it happen without stalling their development.

• Involve the whole team with larger refactorings so the team can move on as
quickly as possible - They describe their team discussions as "ego-less but
opinionated." Everyone was willing to be wrong, but once a solution was decided
on the ideas were owned by the group.

• Effective teams need break points - They describe how they would all take a
break at a certain time each day, and go relax together.

• Treat politics as a user requirement - They built people's fears, anxieties, and
doubts into their process by making them activities to be solved. They would all
eventually be solved by the completion of other activities.

• A System that connects to a legacy system must be tested using live feeds -
There was only so much that unit tests and simulations could provide them. They
found many bugs that were in the system for months after they connected to
live data.

• Engage users and not only won't they turn it off, they will fight some of your
battles for you - They never told their users to stop using the legacy system, nor
did they turn it off. They just focused on making the new features more
compelling to use than the old system.

• Don't waste a good team - A good team is wasted when they don't have
motivation and motivation, they discovered, comes from having new hard
problems to solve.


