
Cooperative Application-level Processing on Hosts and their Attached Network
Processors

Ada Gavrilovska, Karsten Schwan, Austen Mcdonald, Hailemelekot Seifu, Ola Nordstrom
Center for Experimental Research in Computer Systems (CERCS)

Georgia Institute of Technology
Atlanta, Georgia, 30332�

ada, schwan, austen, seif, nalo � @cc.gatech.edu

Overlay networks, ranging from simple front-end/back-end distinctions made in large scale server systems, to ones that
extend across multiple Inter- or intra-net nodes, are finding increasing use in large scale distributed and grid applications.
Services required by applications executing on top of such overlays include ‘traditional’ services such as data routing, multi-
cast or quality of service support, security, or new services involving data customization and transformation for XML-based
or multimedia and remote graphics applications. Application- or middleware-level implementations of these services require
participating hosts to execute both application-level data manipulations, as well as the protocols used for data receipt and
forwarding. They also require the data being transported to repeatedly cross hosts’ I/O infrastructures.

An emerging class of programmable network processors (NPs) is becoming an attractive vehicle for deploying new
functionality into the network infrastructure, with shorter development time then custom-design ASICs and with levels of
cost/performance exceeding that of purely server-based infrastructures. NP hardware is optimized to efficiently move large
volumes of packets between their incoming and outgoing ports, and typically, there is an excess of cycles available on the
packet’s fast path through the NP. Such ‘headroom’ has been successfully used to implement network-centric services such
as software routing, network monitoring, intrusion detections, service differentiation, etc.

Our research goal is to utilize such programmable NPs for the execution of application- and middleware-level services
required in large scale distributed applications, in order to attain improvements in end-user application performance, to more
efficiently utilize server capacity, and to offer new services at no additional performance overheads perceived by end-users.
By mapping service functionality to the combined resources offered by hosts and their attached network processors (ANPs),
we obtain integrated host/ANP platforms much better suited for efficient service execution.

In order to enable the host-ANP cooperation, we are developing a communication architecture termed SPLITS (Software
architecture for Programmable, LIghtweighT Stream handling), which allows developers to dynamically deploy and config-
ure service functionality onto ANPs so as to best use the combined ANP/host resources. Services are composed with stream
handlers, lightweight processing units applied on application-level messages, which run on ANPs, in the host kernel, or at
application-level. SPLITS and stream handlers are implemented for hosts that run standard Linux OS kernels and for ANPs
that are based on Intel’s IXP network processor. Performance gains are due to the network-near execution of stream handlers
on the ANP, the load reduction on the host system CPU and memory infrastructure, and the flexibility with which stream
handling can be mapped across host-ANP boundary.

Our approach provides support for executing a rich set of lightweight middleware- and application-level services on the
ANPs, directly on the overlay network’s data paths, using fast ANP hardware. For more complex services, ANP resources
may not be sufficient. In such cases, portions of the overlay processing are performed on the host node to which an ANP
is attached, thereby splitting the protocol stack across host-ANP boundary. Sample services realized with SPLITS include
content-based mirroring or filtering, variable-content multicast, stream merging and differentiation, as well as processing
of XML-structured data as needed at the ‘edges’ of network infrastructures, and graphics services that perform per-client
customizations of graphical displays. Experimental evaluations of SPLITS with NP/host combinations are shown to run
more efficiently and offer better performance to applications compared to those that use pure host-based implementations.


