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ABSTRACT
Systems with specialized processors such as those used for accel-
erating computations (like NVIDIA’s graphics processors or IBM’s
Cell) have proven their utility in terms of higher performance and
lower power consumption. They have also been shown to outper-
form general purpose processors in case of graphics intensive or
high performance applications and for enterprise applications like
modern financial codes or web hosts that require scalable image
processing. These facts are causing tremendous growth in accelerator-
based platforms in the high performance domain with systems like
Keeneland, supercomputers like Tianhe-1, RoadRunner and even
in data center systems like Amazon’s EC2.

The physical hardware in these systems, once purchased and as-
sembled, is not reconfigurable and is expensive to modify or up-
grade. This can eventually limit applications’ performance and
scalability unless they are rewritten to match specific versions of
hardware and compositions of components, both for single nodes
and for clusters of machines. To address this problem and to sup-
port increased flexibility in usage models for CUDA-based GPGPU
applications, our research proposes GPGPU assemblies, where each
assembly combines a desired number of CPUs and CUDA-supported
GPGPUs to form a ‘virtual execution platform’ for an application.
System-level software, then, creates and manages assemblies, in-
cluding mapping them seamlessly to the actual cluster- and node-
level hardware resources present in the system. Experimental eval-
uations of the initial implementation of GPGPU assemblies demon-
strates their feasibility and advantages derived from their use.

Categories and Subject Descriptors
C.1.3 [Other Architectural Styles]: Heterogeneous (hybrid) sys-
tems
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1. INTRODUCTION
Limits on processor frequency scaling have pushed hardware de-

velopers to explore new avenues for increasing application perfor-
mance. Consequently, general purpose graphics processing units
(GPGPUs) have seen increased adoption across multiple areas of
research in both the enterprise and high performance computing
(HPC) domains and are gradually becoming core components of
modern supercomputers. In the enterprise domain, GPGPUs offer
increased application performance while enabling greater hardware
consolidation. In the HPC domain, GPGPUs have become critical
for improving compute performance. Example systems include the
Amazon EC2 cloud infrastructure [1] as well as the Tianhe-1A and
Nebulae supercomputers1.

Past experience in HPC indicates that efficient exploitation of
GPGPU systems can require extensive application tuning and/or
hardware configuration to match application requirements. This
implies application re-tuning for new hardware acquisitions or when
application requirements change. Furthermore, GPGPUs continue
to be treated as devices assigned to specific applications, thereby
constraining flexibility in matching application requirements to hard-
ware configurations. Consider, for example, a compute node con-
figured with a high-end 8-core CPU coupled with a GPGPU device.
Applications executing on such nodes must be structured so as to
make use of all 8 CPU cores such that the attached GPGPU is ef-
ficiently exploited. At a larger scale, batch schedulers on high per-
formance clusters must provide parallelized jobs with reservation-
based access to sets of compute nodes configured with GPGPU de-
vices; not all applications, however, will have the ability to run well
on compute nodes given any specific hardware configuration. Fi-
nally, in enterprise environments, even if servers are shared across
virtual machines, GPGPUs themselves are provided on an exclu-
sive basis for use in hardware virtual machines [1, 12].

This paper proposes the concept of GPGPU assemblies which
allow users to run applications on virtual platforms that can be cre-
ated from a cluster of CPUs and GPGPUs based on application
demands. An assembly management module maps these virtual
platforms to underlying hardware, using methods that allow shar-
ing and consolidation. The implementation of GPGPU assemblies

1http://top500.org
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leverages the increasing presence of virtualization technologies, by
defining virtual GPGPUs or vGPUs as representations of physical
GPGPUs exposed to virtual machines. These vGPUs collectively
form a virtual platform—an assembly— and are multiplexed on
available local as well as remote GPGPUs without disrupting an
application’s execution within a virtual machine. The idea is to
better match the needs of an application with respect to GPGPU
capabilities. We demonstrate the feasibility and utility of this re-
search through our prototype implementation called Shadowfax.

Shadowfax extends and enhances our previous single-node re-
search platform called Pegasus [8]. Pegasus proposes an alterna-
tive approach to GPGPU computing, in which GPGPUs are treated
like CPUs, as first class schedulable and shareable entities. The
approach exploits the fact that shared access to GPGPUs can help
obtain higher levels of GPGPU utilization and/or improved appli-
cation performance. A limitation, however, is that applications are
still limited to only using locally available GPGPUs, constraining
them in how they can use combined CPU/GPGPU resources at a
cluster level. This may prevent them from utilizing more GPG-
PUs than those physically associated with a compute node, thereby
impeding application scalability and limiting throughput. Shad-
owfax addresses these limitations and is used to both identify and
demonstrate the principle components constituting efficient assem-
bly management for large scale GPGPU applications.

Summarizing, we make the following contributions:
• Improved application scalability: by permitting an applica-

tion’s hardware requirements to be fulfilled across physical
machine boundaries, GPGPU assemblies enable continued
scalability of applications.

• Increased application throughput: load balancing contending
workloads and provisioning resources across a cluster can
avoid oversubscribing GPGPUs on a single compute node to
enable greater aggregate throughput

• Reduced application development effort: the use of standard
programming models for writing such applications ensures a
more stable abstraction irrespective of the scale. Program-
mers’ time can be better spent towards improving compute
logic for problem solving, rather than towards work parti-
tioning across the cluster.

Related efforts already demonstrate the use of a remote invo-
cation framework [5] using XMLRPC in the CUDA runtime API
layer. The novel contributions of GPGPU assemblies are the flex-
ibility they offer in establishing virtual platforms composed of po-
tentially heterogeneous local and remote resources. Underlying
hardware resources are dynamically shared among applications, us-
ing diverse and flexible resource management methods. Further-
more, by exploiting system virtualization technology, we decou-
ple realization of a virtual platform from specific operating sys-
tems and application runtime requirements visible across an entire
server platform. This is particularly important in enterprise and
cloud settings, with recent work also showing benefits in the HPC
domain [9, 13].

Experimental results from our prototype indicate that a dynamic
matching algorithm will need to be well-informed about workload
characterization: effects of virtualization, GPGPU access latencies
and bandwidth, as well as both CPU and GPGPU contention on
application performance and its ability to scale significantly de-
pend on an application’s runtime behaviors, such as being CPU- or
GPGPU-bound, and expectations of the underlying hardware. We
provide evidence and discussion of these metrics in Section 4. The
remainder of the paper is organized as follows. Section 2 elaborates
on our concept of a GPGPU assembly as well as which preliminary
components Shadowfax fulfills. Section 3 provides implementa-

tion detail, followed by results from the initial evaluation gathered
on our current prototype in Section 4. Related work and discussion
of our future research directions appear at the end.

2. GPGPU ASSEMBLIES
The bottom half of Figure 1 shows the hardware platform tar-

geted by our research: cluster systems consisting of host nodes
with one or more attached GPUs. Examples of such systems in-
clude Amazon’s EC2 cloud platform or ORNL’s Keeneland ma-
chine, where cluster nodes are typically homogeneous, with pos-
sibly identical types and numbers of GPGPUs. In contrast, with
GPGPU assemblies, system software can configure diverse plat-
forms with heterogeneous node configurations for different appli-
cations based on their requirement. The inter-node differences in
such heterogeneous platforms can be intentional, or a result of par-
tial hardware upgrades occuring over time. Our solution does not
make assumptions about the presence of particular GPGPU fami-
lies or types on each node, but instead, can recognize their capabil-
ity differences and make allocations accordingly.

Figure 1: GPGPU assemblies spanning multiple GPGPU and
CPU (implicit) nodes across a cluster for the example VMs.
Partial overlap indicates partial utilization

For these platforms, specific answers sought by our work include
the following:

1. Platform capacity: how to improve overall platform capacity
and sustain improved application throughput?

2. Platform scalability: how to provide scalability in the pres-
ence of increasing application resource needs, without re-
quiring upgrades to newer, more powerful hardware?

3. Suitable resource allocation for cost of reservation: should
an application, despite being heavily GPGPU-bound, pay to
reserve more cluster nodes instead of paying just the cost of
the accelerators and perhaps marginal cost for CPU usage be-
cause accelerators still need host cores? The unneeded CPU,
storage and I/O resources that come with typical allocations
increase the cost if the resources are unwanted.

To address these issues, we propose the use of GPGPU assem-
blies: virtual platforms providing applications with required CPU
and GPGPU resources. This construct realizes such resources by
assembling a subset of all components from potentially different
physical nodes in a cluster. GPGPU assemblies then allow applica-
tions to access these resources as if they were local, albeit with, for
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example, increased access latencies whenever application code ex-
ecutes on a remote GPGPU. Regarding 1., system throughput is im-
proved by allowing sub-node resource allocations and thereby sup-
porting larger numbers of applications. By permitting the shared
use of all physical resources, including GPGPUs, we ensure im-
proved resource utilization, resulting in improved platform capac-
ity. Regarding 2., GPGPU assemblies allow applications to exe-
cute across individual node boundaries, thereby scaling beyond the
limits imposed by single physical nodes. This is possible because
even on a single node, applications’ GPGPU components—CUDA
kernels— have well-defined code and data boundaries, making it
easier to partition applications across machines without shared mem-
ory support. Finally, regarding 3., by allocating to applications
matching portions of the underlying physical resources, our ap-
proach achieves a better matching between the application resource
needs and the allocations made by the system management soft-
ware. This can improve the overall system capacity and potentially
reduce the costs incurred by applications. Note that programming
models for GPGPUs, such as CUDA and OpenCL, require CPU re-
source allocations. This necessitates an inclusion of these resources
in establishing an assembly; the utilization of which can be kept to
a lower portion, as needed by the application

There is flexibility in how GPGPU assemblies may be built. If
end users insist on low GPGPU call latencies, for instance, assem-
blies may be limited to those that only use locally accessible GPG-
PUs, avoiding the use of cluster-level interconnect. Conversely,
substantial gains may be made for codes able to robustly scale de-
spite higher per-call latencies and/or moderate data movements be-
tween CPUs and GPGPUs. Our work demonstrates that the use
of GPGPU assemblies can improve the aggregrate GPGPU perfor-
mance available to high performance codes. Or, stated differently,
assuming applications do not constrain their own ability to scale,
benefits of accessing any number of non-local GPGPUs may offset
the time taken to reach them, surmounting any individual cluster
node’s ability to scale an application. This includes migrating a
VM itself to a node where GPGPU load may be lower, as appli-
cations are still limited to accessing only locally-attached devices.
Faster networks, for example InfiniBand, connecting cluster nodes
can further lower per-call latencies.

Figure 1 illustrates this design at a high level. We assume the
use of virtualization as shown in the figure due to the benefits it
offers. As mentioned earlier, we have extended and enhanced the
Pegasus system [8] to support GPGPU assemblies. All GPGPUs
participating in an assembly may be programmed as a local de-
vice from the perspective of an application within a guest VM. To
facilitate this, assemblies, i.e., virtual execution platforms for ap-
plications, are instantiated alongside their respective VMs and re-
main consistent throughout their lifetime. GPGPU assemblies are
consistent with the CUDA programming model, thus reducing the
effort for programming, and moving management to lower layers
without additional burden on programmers. The Pegasus frontend
installed in VMs forwards CUDA calls to the management domain
on the system as explained further in Section 3. However, from the
perspective of the application running inside a VM, it has access to
the number of GPGPUs that were requested for the virtual platform
created for the VM. This principal component in an assembly is a
virtual GPGPU instance or vGPU. It is the intermediate representa-
tion between an execution stream originating from the application
and the physical GPGPU on which the stream is executed, either
co-located with the application or present on another networked
machine. An assembly contains a number of vGPUs equal to the
number of physical GPGPU participants irrespective of their loca-
tion. While a vGPU gets associated with one physical GPGPU, a

physical GPGPU could host multiple vGPUs depending on the re-
source management scheme on a node. Thus, multiple applications
can end up sharing physical GPGPUs so long as the performance
is acceptable.

3. SYSTEM IMPLEMENTATION
This section presents a prototype implementation of GPGPU as-

semblies, termed Shadowfax, targeting GPGPU-based clusters like
Keeneland [17]. Figure 2 depicts its primary implementation mod-
ules. The system expands on our previous research effort, Pega-
sus [8], which provides GPGPU virtualization at the CUDA API
layer within virtual machines on the Xen [2] hypervisor, allowing
unmodified applications to execute. The various components lead-
ing to our implementation of assemblies are discussed next.

Virtualization of GPGPUs on a single node: A kernel module
within the guest establishes shared memory regions with the man-
agement domain—ring buffers for marshalled functions plus space
for application data—and event channel mechanisms for commu-
nication and coordination of requests it receives from a user-level
interposer library linked with CUDA applications (implementation
details discussed in [7]). Requests received in the management do-
main are queued and assigned per-guest poller threads that can be
scheduled to execute requests on physical GPGPUs on behalf of the
guest. This scheduling can be based on certain policies suitable for
the system. Each poller thread executes queued requests from the
ring buffer on behalf of the associated guest application and returns
results along the same path. NVIDIA’s CUDA runtime and driver,
present in dom0, manage state and protection contexts at host CPU
thread granularity (e.g. threads created by pthread).

Implementing vGPUs: In order to enable seamless execution
of CUDA applications while keeping them agnostic of the physi-
cal GPGPU locations, two specific realizations of vGPUs exist in
our implementation, one representing a local GPGPU and the other
representing a non-local GPGPU resident on another physical ma-
chine as depicted in Figure 3. For each kind of vGPU, a polling
thread is created and attached to a call buffer supplied by the VM.
Together, a call buffer and polling thread directed to use the lo-
cally available NVIDIA runtime API constitute a local vGPU. A
remote vGPU also consists of a polling thread attached to a shared-
memory call buffer, but does not participate in scheduling schemes
implemented within the management domain. Instead, it connects
to the designated remote machine specified in the GPGPU assem-
bly using a common port to establish a GPGPU link on the other
side. The receiving machine has an admission thread which listens
for these incoming link requests, and once approved, spawns a re-
mote domain, or server, thread. This thread has multiple purposes.
From the client machine’s perspective it manages the receiving end
of RPC communication and is responsible for unmarshalling re-
quests, executing them and returning their results. From the server
machine’s perspective, the locally-executing remote domain thread
acts as a fake guest VM, essentially emulating the booting up of a
real guest VM. It triggers the creation of a polling thread the same
way the creation of a VM does but because it is not a real VM it
does not have a separate and isolated address space or methods for
using event channels for notifications. Instead, it allocates space
for a call buffer and application data and attaches this to the polling
thread, allowing it to believe it is of type local vGPU when it is
in fact the tail end of a remote vGPU. As on the client machine,
the polling thread on the server machine participates in scheduling
schemes when enabled. In contrast, the remote domain or server
thread is not scheduled, allowing it to continue processing requests
off of the network, even while the associated polling thread has
been scheduled out after the expiration of its timeslice.
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Figure 2: Implementing GPGPU Assemblies

Figure 3: Implementation perspective of virtual GPUs in Shad-
owfax. CPU allocations are adjusted using credits assigned to
VMs requesting the assembly

Thus, a virtual GPGPU instance does not constitute a single
structure in our implementation but is in fact a composition of ele-
ments. To reduce runtime overheads, all call paths are instantiated
before an application is executed.

Optimizations for remote execution: Anticipating additional run-
time overhead from the use of remote GPGPUs, we enable support
for batching calls and their data. The CUDA API has a mixture of
synchronous and asynchronous function calls. We can send a set of
asynchronous calls followed by a delimiting synchronous call as a
batch to reduce network overhead. We queue calls labeled as asyn-
chronous by the CUDA API [11] as they are picked by the sched-
uled domain’s polling thread. Functions which carry input param-
eters (i.e. pointers to data, such as cudaMemcpy-toDevice)
have their data copied to the batch directly from the VM-shared
memory locations. A batch is defined to be full under either of the
following situations: 1. memory allocated for the batch has reached
its limit or cannot contain the input parameter for the next function
call; 2. a synchronous function with or without output parameters
or critical return values has been issued by the application. The lat-
ter is a hard requirement, as we cannot assume the application does
not immediately depend on data produced by such a call.

Assemblies: In Section 2, we defined a GPGPU assembly to rep-
resent a virtual execution platform composed of vGPUs, each of
which may be mapped onto a different physical GPGPU within the
cluster of networked machines. Next we discuss our proposed im-
plementation for realizing these assemblies. Applications interface
with GPGPUs within an assembly through the CUDA runtime API

and are led to believe all are local devices, allowing for transparent
management and creation of vGPUs in the management domain.
Application requests to bind to specific GPGPUs can be overridden,
and queries for information pertinent to GPGPUs within its assem-
bly can be injected to return values to function calls captured on the
shared-memory call buffer. For example, information returned for
calls to getDeviceProperties() or getDeviceCount()
from the guest will not be given the exact information returned from
a direct call to the proprietary driver in the management domain.
Instead, information returned will be dynamically generated to re-
flect those GPGPUs participating in the application’s assembly.

When a guest VM is created, it can be assigned a GPGPU as-
sembly created by the Assembly Management Module residing in
the backend within Dom0 (as shown in Figure 2). Therefore, the
creation of an assembly for a guest VM can be viewed as an exten-
sion to the way guest VMs request certain number of VCPUs, de-
vices and disks through a configuration file with the exception that
the Shadowfax backend handles the creation instead of the systems
layer.

Figure 4: Sequence of actions and modules involved in creating
GPGPU Assemblies

Figure 4 shows the sequence of actions required by the backend
to create an assembly whenever a VM is booted. This activity dia-
gram shows the modules or functions from the implementation that
are involved and the primary messages that need to be exchanged
between them on the same machine as well as across machines.
Each time a new VM boots, the backend running in Dom0 is trig-
gered, invoking the handle domain create method. This method is
responsible for interacting with the assembly module, requesting
for the creation of an assembly conforming to the corresponding
guest VM’s requirements. The assembly module in turn may re-
quest for up-to-date information for the various resources on its
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local as well as remote machines. The local information can be
maintained as part of a profile module that tracks the static resource
properties as well as dynamic load characteristics (e.g. available
memory on GPGPUs). For remote GPGPU information, requests
can be sent to the assembly modules running on other cluster nodes.
Once the local assembly module fetches sufficient data, it can re-
turn a set of equivalent assemblies matching the request. It is possi-
ble to implement policies on top of the assembly module, for pick-
ing the right kind of assembly, or for requesting that a certain as-
sembly be booked. The module can then create vGPU components
as shown in Figure 3, excluding call buffers, as these are instan-
tiated by the VM frontend for inserting requests, shown in Fig-
ure 2. The assembly module can also take care of inserting polling
threads into the scheduler on the local machine. Ring buffers car-
rying CUDA calls can be dynamically attached to vGPU polling
threads within the assembly.

For the experiments outlined in this paper, an algorithm dynam-
ically matching application threads to GPGPUs was not employed.
As the experiments were strictly controlled, we manually deter-
mined each assembly avoiding challenges associated with concur-
rent requests for similar resources (each code path was instructed
to follow a predetermined course). This paper aims to present the
potential for a framework to support such dynamic behavior along
with example scenarios targeting specifically configured workloads;
dynamically determining these configurations and appropriate as-
semblies is a main focus of our on-going efforts.

4. EVALUATION
Experimental System. Our experimental system consists of

two GPGPU cluster nodes directly connected via 1 Gbps Ether-
net fabric. Each node consists of one 64-bit 3 GHz quad-core Intel
Xeon X5365 CPU, 4 GiB of DDR2 main memory, an NVIDIA
8800GTX GPGPU on the “client” and a 9800GTS on the “remote”
node, interfaced over the PCI-Express bus. Xen 3.2.1 hosts the
management and guest domains, which run 2.6.18 Linux and the
169.09 NVIDIA driver (a patch for only this version of the driver
has been made available to support GPGPU access from within the
management domain in Xen).

Category Source Benchmarks
Financial SDK Binomial(BOp), BlackSc-

holes(BS)
Media pro-
cessing

SDK or
parboil

MatrixMultiply (MM), MRI-
FHD

Scientific parboil CP

Table 1: Summary of Benchmarks

Benchmarks. The benchmarks used for our evaluation address
two principal uses for future GPGPU systems: 1. computation-
ally expensive enterprise applications including financial codes or
web applications requiring substantial processing resources due to
their manipulation of media for large numbers of end users, and 2.
parallel codes that aim to speed up computations critical to their
performance. We use multiple benchmarks from both the parboil
benchmark suite [14] and the CUDA SDK 1.1, as shown in Ta-
ble 1. Critical to our performance studies is to conduct bench-
mark runs so as to represent a mix of applications which vary in
1. dataset sizes and data transfer frequency that determine network
sensitivity, 2. iteration complexity which is a good measure for
estimating ‘kernel’ size, and 3. frequency of kernel launches or
rate of CUDA call execution which relates directly to the degree
of coupling between CPUs orchestrating accelerator use and the

Figure 5: Effects of GPGPU contention on application thread
performance running BinomialOptions, varying the assembly
size and composition. All local vGPUs attach to the same accel-
erator.

GPGPUs executing these kernels. The reason for doing this is to
be able to identify workload characteristics when establishing the
most appropriate assembly for an application. Using statically con-
figured workloads in our preliminary analysis enables us to make
observations about the influence of decisions made by the assem-
bly module when executing a dynamic matching algorithm on ap-
plication performance. In our evaluation, some applications iden-
tify as 1. throughput-sensitive (e.g. BOp, MM), 2. latency-sensitive
(all scientific), or 3. both (BS, CP). A benchmark is considered
throughput-sensitive when its performance can be measured by the
number of operations or computations performed per second, and
latency-sensitive when it frequently issues CUDA calls demonstrat-
ing a sensitivity to virtualization and/or accelerator scheduling and
reachability delays observable through execution time.

Methodology. Within multi-GPGPU systems, applications scale
by spawning threads and associating each with a particular device.
Given available CPU resources this allows an application to drive
concurrent execution streams to devices. In our prototype we model
this behavior by designating a single application within a virtual
machine in Xen to act as one of these independent call streams and
all VMs within a system as the collective “application”. In our
experiments each VM is configured identically, with 256 MiB of
memory, one VCPU pinned to a physical core and all VMs con-
taining the same single-threaded benchmark application for an ex-
periment. VM VCPUs are pinned, alternating among two of the
four cores available on a cluster node. Two Dom0 VCPUs are as-
signed the remaining two cores, with the polling threads attached
to respective VMs similarly pinned.

A key consideration with this work is to examine and adapt to
new limitations imposed on the system software by the hardware
and software components within the environment as assemblies and
their applications scale outward. Indeed, we make no claims that
enabling applications to use non-local hardware will improve their
performance. Our focus lies with the ability of the underlying sys-
tem software to enable applications to scale as a whole, possibly to
a larger workload, given the various system component configura-
tions such as the availability of CPU cores, memory and bandwidth,
in addition to the observed workloads executing in the system.

Systems’ static configurations constrain applications in the num-
ber of GPGPUs they may use. Contention on individual compo-
nents within a system increases with heavier workloads. Figure 5
illustrates the impact on an application thread’s performance with
increasing contention placed on a local GPGPU. Each vGPU car-
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a) All vGPUs are local, attaching to one common GPGPU.

b) An assembly of four vGPUs with increasing number
of remote vGPUs.

Figure 6: Scaling a GPGPU workload (BlackScholes) using an
assembly. Performance aggregated across all assembly vGPUs.

ries the workload of the BinomialOptions benchmark, saturating
the GPGPU with a single vGPU. The solid curve represents the
performance of this thread as more vGPUs are instantiated and
attached to the same device. The application thread experiences
longer wait times while issuing requests, forced to share the de-
vice. Reattaching vGPUs to remote GPGPUs reduces the con-
tention (moving vertically between data points). This suggests 1.
an increased aggregate performance across all vGPUs within the
assembly is possible, and 2. additional remote vGPUs, for this ap-
plication characteristic, do not impact the local vGPU’s ability to
service its application thread.

Figure 6 juxtaposes two experiments conducted with Shadow-
fax, illustrating the throughput of an assembly aggregated across
all vGPUs themselves. Figure 6.a shows the kernel launch rate
of an assembly as more local vGPUs are instantiated and attached
to application threads, each with idential workloads. A horizontal
curve confirms that while more work is available for the GPGPU, it
cannot sustain rates greater than it was designed for.2 As more ap-
plication threads are spawned, each will have opportunity to submit
less work, but as data is aggregated across all vGPUs, throughput
remains constant. Migrating portions of the total work to avail-
able devices, even if non-local, would allow the assembly, and as
a result the application, to scale. Figure 6.b illustrates just this.

2Additional contributors to the “saturation” of a GPGPU include
lack of kernel interruption and concurrent kernel execution (prior
to Fermi), leading to more unstable environments when shared.

Figure 7: Application sensitivity to virtualization and network
fabric overheads (Ethernet), normalized to direct execution
time measurements within Dom0

Aggregate throughput increases as more work is offloaded using
remote vGPUs. While only slight, it does provide a foundation for
further improvements. We attribute the shallow rate of increase to
both the high-latency interconnect and our unavoidable oversatura-
tion of CPU resources. Future advancements include upgrading our
testbed to use an Infiniband fabric, host greater-capability CPUs as
well as adding additional cluster nodes.

We argue that the layer introduced by a GPGPU assembly presents
a feasible platform solution for enabling a more effective use of the
GPGPU hardware while scaling workloads. To avoid contention on
a device, an application can either select an available or less loaded
GPGPU, or wait for an upgrade to the cluster node’s internal hard-
ware, adding more or newer generations of GPGPUs—a less prob-
able option. Electing to send execution streams through remote
vGPUs, the application enables itself to complete work faster than
if it were multiplexed among other competing workloads on the de-
vice. Figure 7 shows this is possible for workloads which exhibit
characteristics similar to the BinomialOptions (BOp) benchmark.
Each kernel has a relatively long execution time and is launched at
a slower rate3 than in the BlackScholes (BS) benchmark; the lat-
ter exhibits a higher issue rate of ‘smaller’ CUDA kernels. The
higher issue rate of CUDA requests in BOp exacerbates overheads
introduced by virtualization, but with the observed batching value,
shows negligible performance differences between the use of a lo-
cal and remote vGPU. Workloads similar to MRI-FHD indicate lo-
cally attached vGPUs remain the most viable option, with negligi-
ble virtualization overhead.

In enabling applications to scale outward using remote vGPUs,
multiple opportunities exist for increasing the efficiency observed
through the entire data path. In varying the characteristics of work-
loads on our prototype system, we observed multiple factors con-
tributing significantly to the efficiency of an assembly’s ability to
scale an application. One example presented here examines the
combination of highly asynchronous applications and an Ethernet
interconnect. Ethernet is optimized to efficiently handle bulk data
transfers for sustaining high bandwidth rates, albeit with relaxed
guarantees on latencies for individual packets. Application execu-
tion streams exhibiting a high degree of asynchrony benefit from
batching. Figure 8 illustrates this for the BlackScholes workload.
In this specific configuration, a batch size greater than 64 CUDA re-
quests shows negligible improvement, as the performance is almost

3The original BinomialOptions issues one kernel; we modified it to
issue 25 launches throughout its execution.
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Figure 8: Effects of request batching on application throughput
with one vGPU attached to a remote (Ethernet) GPGPU

Figure 9: Effects of CPU contention on application thread per-
formance running BlackScholes, varying the assembly size and
composition. All local vGPUs attach to the same accelerator.

that of using a local vGPU (it compares with the top-left data point
in Figure 9). This batching value has been used in our other ex-
periments when assigning a remote vGPU. We note, however, that
other values may show more benefit for different workload charac-
terisitcs or degrees of asynchrony.

Figure 9 emphasizes an additional bottleneck where high ker-
nel issue rates have a detrimental effect on overall application per-
formance with limited CPU resources. This graph illustrates the
performance as measured from an application thread. A negligi-
ble difference is noticed after instantiating a second local vGPU,
and can be explained from the thread-CPU pinning configuration.
The third application thread shares the same CPU as the one mea-
sured, competing directly for this resource. Both have a reduction
in opportunity to issue work on the GPGPU, dramatically reducing
per-thread throughput. Reattaching to a remote GPGPU shows al-
most no gains as the CPU is still required for moving work to its
destination. Our data shows that neither local nor remote vGPUs
can remove this impediment.

A final examination was performed on individual CUDA func-
tion calls themselves. Using profiling, we are able to observe the
contribution of each layer within the remote vGPU call path, in-
cluding overheads introduced by an Ethernet interconnect. Net-
work overheads contribute the most, leading us to conclude that
with the use of a lower-latency interconnect, this overhead may be
mitigated.

Figure 10: Profiling individual CUDA calls; breakdown of re-
mote vGPU path (using 8 KiB data sizes for memory copies)

Label Description
cuda Native CUDA call latency on server

virt-ovrhd-client Time spent on the client only
virt-ovrhd-serv Time spent at the server, minus ’cuda’

rpc-setup Time spent performing RPC marshalling
network Ethernet latency

Table 2: Legend for Figure 10

5. RELATED WORK
There have been some efforts to virtualize GPGPU systems, typ-

ically with NVIDIA GPGPUs connected to general purpose CPUs,
like GViM [7] and vCUDA [15]. Both are CUDA API level vir-
tualization solutions that follow a similar approach. Neither of the
systems, however, support remote access to GPGPUs. We have
used technologies from GViM and added support for remote ac-
cess along with adding support for creating GPGPU assemblies.

The rCUDA framework [5] enables the concurrent use of non-
local CUDA-compatible devices. However, applications in this
framework are forced to execute on remote nodes. There is no
support for resource sharing on nodes even if local GPGPUs are
available. Furthermore, host and device code require separate com-
pilations. Shadowfax enables local as well as remote GPGPU ex-
ecution, whichever is the best choice at a given time, without re-
quiring separate compilations. It supports unmodified applications
in multiple virtual machines to seamlessly share local as well as
remote GPGPUs. It can scale to any number of GPGPUs with lo-
cal as well as remote access, forming assemblies such that multi-
GPGPU capable applications are constrained only by cluster limits.
Our GPGPU assembly abstraction makes it easier for virtual ma-
chines to request any desired number of GPGPUs while booting,
deferring to the underlying Shadowfax runtime the responsibility
of multiplexing requests across these resources.

Microsoft’s RemoteFX [10] exposes a WDDM driver with the
virtual desktop allowing multiple virtual desktops to share a sin-
gle GPGPU on a Hyper-V server. Xenserver’s multi-GPGPU pass-
through [4] solution now allows for the sharing of GPGPU-based
host workstations across multiple users, one per GPGPU card. Our
work, however, focuses on the general purpose computing aspects
of GPGPUs and allows for scaling computations across GPGPUs
connected to nodes in a cluster. Another difference is the placement
of computation. Shadowfax sends both computation and data to re-
mote nodes whenever a VM is scheduled to a remote vGPU while
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the given RemoteFX and Xenserver examples perform computa-
tions on the server side each time and send the results over to the
clients. Xenserver is also limited in the requirement of NVIDIA’s
SLI Multi-OS technology and the presence of VT-d support in the
server hardware. Shadowfax imposes no such requirement and can
work with different generations of GPGPUs and general purpose
hardware irrespective of VT support.

There exists vast bodies of research in creating virtual platforms
as dynamic compositions of general purpose CPU resources like
‘cluster on demand’ for creating virtual clusters [3], dynamic clus-
ter configuration [16] and others. However, to our best knowledge,
ours is the first to propose creation of virtual platforms or assem-
blies comprised of accelerators like GPGPUs for enabling hetero-
geneous computation. The challenges in such an environment are
exacerbated by the different application dimensions that now need
to be considered for allocating local vs. remote GPGPUs to appli-
cations that differ in their compute and data sizes.

6. CONCLUSIONS AND FUTURE WORK
With increasing compute demands of next-generation applica-

tions, proven utility of heterogeneous computing substantiated by
the growing popularity of GPGPUs and growing systems with at-
tached GPGPUs like Amazon’s EC2, there is a need to provide
scalable and seamless solution for use of heterogeneous resources
by applications. Shadowfax proposes the use of GPGPU assem-
blies, presenting a platform comprised of multiple GPGPUs as re-
quested by virtual machines irrespective of their locations. The
implementation takes care of seamlessly executing CUDA requests
from applications running in guest VMs on local or remote GPG-
PUs depending on the preferred option at any given instant. Our
evaluation motivates the need for, and proves the feasibility of, our
ideas.

An important requirement towards achieving a dynamic and ef-
ficient assembly implementation is to match workload characteris-
tics such as the amount of asynchrony, sizes of data transfers, and
CUDA execution characteristics to 1. available local and remote
resources, 2. interconnect bandwidth and contention, 3. GPGPU
properties, and so on. Identifying and defining such finer-grained
accelerator and application profiles is an important step for our fu-
ture work. We plan to incorporate the instrumentation capabilities
offered by Ocelot [6] to provide such dynamic instrumentation ca-
pabilities in Shadowfax. In order to make assemblies efficient and
dynamic, our future work will also include support for an Infini-
Band network fabric and add improvised scheduling policies on
local machines as well as global cluster level addressing combined
resource consumption of both CPU and GPGPU resources.
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