Problem 1:

<table>
<thead>
<tr>
<th>Instruction Type</th>
<th>Freq. of Inst.</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branches</td>
<td>20%</td>
<td>1</td>
</tr>
<tr>
<td>Loads</td>
<td>20%</td>
<td>2</td>
</tr>
<tr>
<td>Stores</td>
<td>10%</td>
<td>1</td>
</tr>
<tr>
<td>ALU</td>
<td>50%</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Total Execution Time = \(\frac{(0.2 \times 1 + 0.2 \times 2 + 0.1 \times 1 + 0.5 \times 0.5) \text{ cycles/inst} \times 5 \text{B inst}}{5 \text{G cycles/sec}} \)

= 0.95 seconds

Problem 2:

a) Better memory organization: CPI for loads reduced to 1.

CPU Time = \((0.2 \times 1 + 0.2 \times 1 + 0.1 \times 1 + 0.5 \times 0.5) \times 5 \text{B inst} / 5 \text{G} = 0.75 \text{ seconds} \)

b) Reduced the number of ALU instructions: # of ALU instructions: \(5 \text{B} \times 50\% \times 80\% \).

CPU Time = \((0.2 \times 1 + 0.2 \times 2 + 0.1 \times 1 + 0.5 \times 0.8 \times 0.5) \times 5 \text{B} / 5 \text{G} = 0.90 \text{ seconds} \)

Therefore, better memory organization gives better performance.
Problem 3:

a) ILP before register renaming: ILP = # of instructions / Longest Path in Dep’ Graph = 8/6

 cycle 1: I1, I2
 cycle 2: I3
 cycle 3: I4
 cycle 4: I5, I6
 cycle 5: I7
 cycle 6: I8

 Please note that the last instruction is BNE, a branch instruction which never writes (except for condition flags).

b) After register renaming: ILP remains the same = 8/6

 ADD dopey, shovel, dirt
 NOT grumpy, shovel
 ADD doc, dopey, dirt
 SUB happy, doc, grumpy
 MUL bashful, grumpy, happy
 AND sneezy, grumpy, happy
 XOR sleepy, bashful, happy
 BNE sleepy, bashful, label

 Note that every destination registers need to be renamed.
The problem clearly assumed that the result of an instruction can be written in the last cycle of its execution. Some of students ignored this assumption, so made a mistake: for example, the first instruction writes at cycle 10.