

WindowScape:

A Task Oriented Window Manager

Craig Tashman

Georgia Institute of Technology

GVU Center

Atlanta, GA 30332,USA

craig@cc.gatech.edu

ABSTRACT

We propose WindowScape, a window manager that uses a

photograph metaphor for lightweight, post hoc task man-

agement. This is the first task management windowing

model to provide intuitive accessibility while allowing win-

dows to exist simultaneously in multiple tasks. WindowS-

cape exploits users’ spatial and visual memories by provid-

ing a stable thumbnail layout in which to search for win-

dows. A function is provided to let users search the window

space while maintaining a largely consistent screen image

to minimize distractions. A novel keyboard interaction tech-

nique is also presented.

ACM Classification: H5.2 [Information interfaces and

presentation]: User Interfaces.

- Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Scaling, window management, task manage-

ment, visual search, spatial memory.

INTRODUCTION

Throughout the history of personal computing, visual work-

space management has been a problem. Difficulties in man-

aging screen real estate on personal computers were recog-

nized as early as 1983 [1]. The dearth of space provided by

these small screens was one of the motivating factors for

Alan Kay’s initial use of overlapping windows [3]. Today

we see virtual desktop managers included as standard fea-

tures of many Linux and Unix GUI’s, and numerous such

utilities are readily available for Windows and Macintosh.

Although the increasing economic viability of multi-

monitor workstations alleviates some of the workspace

management problems caused by small displays, they only

address part of the problem. Mobile knowledge workers

depend on devices like laptops and PDA’s, where screen

size is limited by the need to minimize device footprint.

And surprisingly, even those users for whom multiple moni-

tors are feasible do not necessarily prefer them, sometimes

choosing instead to use virtual desktop managers [6]. But

even if all users possessed physically large display surfaces,

larger displays may prompt users simply to keep more

documents open [7]. Using modern overlapping window

management systems, very large displays may face the same

organization problems that occur on physical desks when

they are covered with many documents.

Virtual desktop managers (VDMs) have been one of the

popular solutions to the space management problem, oper-

ating on the observation that people tend to use windows in

groups. [1] VDMs allow users to create and switch among

groups of windows explicitly. But in spite of this success,

VDMs and other alternative window managers have limita-

tions in the flexibility of the grouping mechanisms they

provide, and the means offered for finding particular win-

dows. To address these limitations, we have developed

WindowScape, a zooming, task-oriented window manager.

WindowScape uses photograph and history metaphors for

its window grouping system, providing a lightweight

mechanism for grouping windows that are often used to-

gether, and for allowing windows to reside in multiple

groups simultaneously. Although the term task can mean

various things, here we use the term to refer to these win-

dow groups. We do so since end users appear to accept the

idea of equating groups of windows that are used together

Figure 1: Several miniaturized, thumbnail windows
and one full size window.

© ACM, (2006). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in ACM UIST’06

with tasks [7], and since studies of VDM usage show win-

dow groups often corresponding to tasks and subtasks [6].

In addition to task management, WindowScape provides a

spatially stable, readily accessible thumbnail layout to allow

users to search for windows by their appearance and lever-

age spatial memory in recalling locations (Figure 1).

RELATED WORK

Modern Virtual desktop managers can be traced back to

Henderson and Card’s Rooms [2]. VDMs vary considera-

bly, but most require windows to be located in exactly one

desktop. Other work such as Scalable Fabric [7], Kimura

[4], and GroupBar [8] offer users very different systems

with which to group their windows. But even these systems,

which do not require windows to be in any group at all, still

do not allow for windows to be in multiple groups at the

same time. A disadvantage faced by these VDMs is that re-

quiring windows to be in a single group forces users to de-

cide ahead of time where a new window belongs. Likewise,

such a single-group approach is inflexible, in that it neglects

the possibility that some windows might naturally be useful

in several different groups.

A partial exception to this limitation was provided by the

original Rooms system. Although Rooms did not allow

windows to exist simultaneously in multiple groups, it did

provide an abstraction known as a window placement to be

in multiple groups simultaneously. A window placement

represented a particular window at a particular position;

Rooms allowed users to copy window placements from one

group (or Room) to another. The disadvantage to this

mechanism is that there is no clear analog to such an ab-

straction in the real world. Even in other computer envi-

ronments, copying something generally produces a com-

pletely independent duplicate, whereas copied placements

all refer to the same underlying window. Thus, we sought to

provide a more intuitive means of allowing windows to oc-

cupy multiple groups simultaneously.

Another limitation of VDMs is the strict separation they

impose between window groups [7]. For example, VDMs

make it difficult to interact with windows from multiple

groups at the same time. One can move all of the desired

windows to the same group, but doing so alters the group-

ing structure; it also requires the user to remember to return

the windows to their proper groups afterward. Like Scalable

Fabric and GroupBar, WindowScape allows one to interact

with windows from multiple groups at once, and without af-

fecting the grouping structure [7, 8].

Tools such as Scalable Fabric, GroupBar and Kimura pre-

sent the user a layout of window representations [7, 8, 4].

Scalable Fabric and Kimura lay out thumbnail views of the

user’s windows on the desktop; users can expand or other-

wise change those thumbnails into the actual windows they

represent. GroupBar lays out representations as well, but it

represents windows with buttons, which can only be posi-

tioned in rows or columns along the edges of the screen.

However, all of these systems relate the position of a repre-

sentation to the group in which it resides. This relationship

precludes the user from spatially organizing the windows in

other ways, such as with respect to time, or so as to facili-

tate keyboard navigation among the representations.

Another property of VDMs, Scalable Fabric, GroupBar and

similar systems is that the user must explicitly choose the

grouping structure. Some systems, such as GroupBar and

Scalable Fabric, allow the user to create groups, destroy

groups, and specify what a group contains far more easily

than with a VDM. Still, the user is forced to choose exactly

where a window belongs, how many groups the windows

should be divided into, etc. in order to leverage the benefit

of window grouping.

A differentiating feature of WindowScape is its use of a

timeline as part of its window group management system.

WindowScape is not the first system that allows users to

manage their activities based on their histories; prior work

includes Kimura and Rekimoto’s Time-machine Computing

[4, 5]. However, these prior systems have generally focused

on solving a different problem than WindowScape. Kimura,

for example, focuses on workspace management with spe-

cial, large, focus-plus-context display surfaces [4]. Time-

machine Computing is more a file manager than a window

manager.

WINDOWSCAPE OPERATION

In order to consider how WindowScape addresses the

above limitations with prior work, we will first explain

WindowScape’s general operation, and draw some addi-

tional distinctions with other approaches. In the Task Man-

agement subsection we will revisit the above limitations and

suggest how WindowScape addresses them.

Window Management

WindowScape represents windows as small thumbnails that

we refer to as miniatures. These miniatures are positioned

on the desktop by the user; to ensure spatial stability, they

are never moved automatically. The miniatures can be in-

Figure 2: The timeline (right) of desktop states shown
as a series of photograph-like snapshots. The left is
the list of favorite snapshots, the favorites bar.

Figure 3: Two overlapping windows with their title
bars and all miniaturized windows brought to the
top of the z-order.

dependently expanded and re-miniaturized, allowing the

user to display just the windows needed at that moment

(Figure 1). When expanded, windows can be moved about

without affecting where they will go the next time they are

miniaturized. In order to provide users with maximal con-

text, the location to which windows expand depends on

which other windows are expanded as well. Specifically,

and in contrast to Scalable Fabric, when a window is ex-

panded WindowScape puts it in the same location as the

last time it was expanded with the same group of other win-

dows, whether that group is explicitly recognized as a task

by the user or not. Once expanded, windows can be re-

miniaturized individually or in parallel; WindowScape also

provides a function for miniaturizing, and positioning the

resulting miniature, in one mouse stroke.

Finding Obscured Windows

By default, miniatures remain below expanded windows in

the z-order. If the user wants to view the miniatures being

obscured by an expanded window, she must either drag the

occluding window aside or miniaturize it in order to see the

miniatures beneath it. While this is a problem for expanded

windows which routinely cover one another, the problem is

especially acute for miniatures, which are always last on the

Windows z-order. To mitigate this problem without the dis-

traction of dramatically changing the overall screen image,

we added a feature that allows the user to bring all minia-

tures to the top of the z-order, as well as the title bars of all

expanded windows. The user simply drags the cursor over

the desktop background and all miniatures and title bars

appear, while everything else tints red to make the minia-

tures visually stand out (Figure 3). When the mouse is re-

leased, the display returns to normal, and if the mouse was

over a miniature or a title bar, it is expanded or its window

is brought to the front respectively.

Like WindowScape, Scalable Fabric allows users to bring

all window thumbnails to the front [7]. However, Scalable

Fabric does not provide comparable mechanisms for help-

ing users search through their already-expanded windows.

Besides Scalable Fabric, we are not aware of any other sys-

tems that let users visually search among their windows

while maintaining the user-defined spatial relationships dur-

ing the search.

Keyboard Navigation

When no windows are expanded, users can navigate among

the miniatures by keyboard. Mapping the four directional

keys on standard keyboards to transitions among arbitrarily

located items (such as the miniatures) involves a tradeoff. If

we use an algorithm that devises intuitive mappings, then

some miniatures may be unreachable (Figure 4a, where,

starting from item A, intuitive transitions would leave item

E unreachable). Alternately, we could guarantee reachabil-

ity, but leave some transitions counter-intuitive. This type

of algorithm is used in navigating among icons on the Win-

dows desktop, and we experimentally found to be the case

in Scalable Fabric (Figure 4b, showing the directional-key

transitions among five thumbnails). Note how in figure 4b,

pressing the ‘right’ directional key when the bottom left

thumbnail is selected will select the top left thumbnail. Our

solution to this problem was to use a simple mapping algo-

rithm where we could visually represent what the transitions

would be among the miniatures.

WindowScape’s keyboard navigation algorithm groups all

miniatures into columns. It begins with the leftmost minia-

ture Ml, and proceeds right, grouping any miniatures that

overlap with Ml into the same column. This process is re-

peated for all remaining miniatures, resulting in a columnar

grouping (Figure 5a). To navigate among the miniatures,

the left/right arrow keys change the active column, and the

up/down arrow keys change the selected miniature within

that column (Figure 5b, showing directional key transitions

among 5 miniatures). When moving from column C1 to C2,

the miniature that will be activated in C2 is that with that

with the closest height to the last miniature active in C1. We

depict the columns for the user by a drawing a vertical, dot-

ted line through each columnar group. When a column is

active, the dots (which are small squares) are red, otherwise

they are black. We recognize that not all the transitions our

algorithm generates are intuitive, but we hope that repre-

senting the columnar groupings by which the algorithm

generates transitions will let users more easily predict the

effects of their actions, and figure out how to get from one

miniature to another.

WindowScape Task Managament

Unlike earlier window group management systems that re-

quire explicit user creation of groups, and explicit place-

ment of windows in groups, WindowScape provides task

management implicitly, through a history metaphor. Each

time the user expands one or more miniatures, or miniatur-

izes one or more windows, a small photograph-like snap-

shot is added to the timeline pane, located by default on the

a.

A B

C D

E

 b.

Figure 4: (a) A representation of 5 miniatures. (b)
Five thumbnails in Scalable Fabric with arrows
showing the keyboard transitions between them.

Col.1 Col.2 Col.3

Figure 5: (a) How several miniatures would be
grouped into columns. (b) Five miniatures in Win-
dowScape with arrows showing the keyboard tran-
sitions between them.

right half of a panel at the top of the display (Figure 2). If

the panel is full, the leftmost snapshot is discarded. Each

snapshot depicts the appearance and organization of the ex-

panded windows at the time the snapshot was taken. In or-

der to return the windows to earlier expansion (i.e., minia-

turized or expanded) and position states, the user clicks on

the appropriate snapshot. To give users a better sense of

how the screen will appear if a snapshot is selected, the

contents of the windows depicted in the snapshots are occa-

sionally updated to reflect the current content of the actual

windows.

These timeline snapshots constitute short-lived window

groupings since clicking on different snapshots can expand

different groups of windows from their miniature form to

their full, interactive form or vice versa. In contrast to other

window group management systems, WindowScape repre-

sents window groups in terms of abstractions that are inde-

pendent of the window representations (i.e., the miniatures)

themselves. But, since these abstractions are metaphoric

photographs, they retain intuitive accessibility. This method

of group representation has various benefits, including al-

lowing the miniatures to be positioned independently of

their group membership.

Despite its benefits, an implicit timeline-based model does

not have good stability. If a user desires to return to a state

from a dozen snapshots ago, it is likely that snapshot is no

longer visible on the timeline. But even if we made the

timeline larger or the snapshots smaller, the timeline’s spa-

tial instability may make it hard for users to leverage spatial

memory in finding the desired snapshot. Therefore, we use

the left half of the top panel seen in Figure 2 as a favorites

bar. If a user thinks a snapshot may be important, or finds

herself returning to it often, she can simply copy it to the

favorites bar. Also, the user can take a snapshot of the cur-

rent set of expanded windows and put that directly in the

favorites bar with a key combination.

In this model, unlike conventional window grouping sys-

tems, the user never makes an explicit choice about where a

window belongs. Rather, the user just expands windows and

returns to prior states (via snapshots) as needed. The choice

is made implicitly, after the fact, by the snapshots that the

user selects frequently, or copies to the favorites bar. This

approach also solves the problem of allowing windows to

occupy multiple groups simultaneously. The use of the pho-

tograph metaphor provides an intuitive way for a single

window to be represented in several groups, while making

it clear that there really is only one underlying window.

People understand that there can be several photos of an

object with there being only one underlying object.

FUTURE WORK

In the near future, we plan to conduct a long-term deploy-

ment of WindowScape with about twenty participants and

capture comprehensive statistics on how it is used, as well

as user opinions. This study will give us insight into

whether users find WindowScape useful, where they have

difficulties, and how we could improve it.

In the longer term, we plan to study the integration of Win-

dowScape with a traditional virtual desktop manager. We

suspect that a tool like WindowScape would be better for

managing sub-tasks where a stronger sense of context may

be desirable, and a VDM would be better for dividing

whole tasks, where pushing unrelated material out of sight

and out of mind may be more desirable [6].

CONCLUSIONS

WindowScape is a zooming window manager that uses pho-

tograph and history metaphors to provide lightweight task

management. Windows are represented as small miniatures

which can be positioned by the user and expanded or minia-

turized individually or in groups. Users can bring the minia-

tures and the title bars of expanded windows to the top of

the z-order to search through them while keeping their cur-

rently expanded windows visible in the background. To fa-

cilitate keyboard navigation, the miniatures are grouped

into columns. WindowScape allows tasks to be defined im-

plicitly, by taking regular photograph-like snapshots of ex-

panded window positions, to which users can return. This

allows users to defer consideration of tasks until they need

to return to them. Snapshots that are used often can be cop-

ied from the default timeline area to the favorites bar to

avoid the lack of persistence of the timeline. In the near fu-

ture, we plan to conduct user studies to investigate the real

world usability of WindowScape.

REFERENCES

1. Bannon, L., Cypher, A., Greenspan, S., and Monty, M.
(1983). Evaluation and analysis of user’s activity organiza-

tion”. In Proc. CHI’83 (pp. 54-57). NY: ACM.

2. Henderson, D. A., Jr., Card, S. K. Rooms: The use of mul-

tiple virtual workspaces to reduce space contention in a

window-based graphical user interface. In ACM Transac-

tions on Graphics 5 (3, July 1986), 211-243.

3. Kay, A. “The Reactive Engine.” Doctoral dissertation,

Electrical Engineering and Computer Science, University

of Utah, 1969.

4. MacIntyre, B., Mynatt, E. D., Voida, S., Hansen, K. M.,

Tullio, J., Corso, G. M. Support for multitasking and back-

ground awareness using interactive peripheral displays.

CHI Letters, 3 (2), 2001.

5. Rekimoto, J. Time-machine computing: a time-centric ap-

proach for the information environment. In Proceedings of

the 12th annual ACM symposium on User interface soft-

ware and technology, pages 45 - 54, 1999.

6. Ringel, M. When one isn’t enough: an analysis of virtual

desktop usage strategies and their implications for design.

CHI Extended Abstracts 2003, ACM Press, 762-763.

7. Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P.,

Hutchings, D., Meyers, B., Robbins, D., and Smith, G.

Scalable Fabric: Flexible Task Management. In Proceed-

ings of AVI’04, pages 85–89, May 2004.

8. Smith, G., Baudisch, P., Robertson, G., Czerwinski, M.,

Meyers, B., Robbins, D., and Andrews, D. (2003).

GroupBar: The TaskBar Evolved. In Proc. OZCHI’03.

