
Interactive Explanation of Software Systems

W. Lewis Johnson and Ali Erdem
USC / Information Sciences Institute & Computer Science Dept.

4676 Admiralty Way, Marina del Rey, CA 90292-6695
WWW: http://www.isi.edu/isd/johmon.html, erdem.htm1

(johnson,erdem}@isi.ed u

Abstract

This paper describes an effort to provide automated
support for the interactive inquiry and explanation
process that is at the heart of software understand-
ing. A hypermedia tool called I-Doc allows software
engineers to post queries about a software system, and
generates focused explanations in response. These ex-
planations are task-oriented, i.e., they are sensitive t o
the software engineering task being performed b y the
user that led to the query. Task orientation leads to
more eflective explanations, and is particularly help-
ful f o r understanding large software systems. Empir-
ical studies of inquiry episodes were conducted in or-
der to investigate this claim; the kinds of questions
users ask, their relation t o the user’s task and level
of expertise. The I-Doc tool is being developed to em-
body these principles, employing knowledge-based tech-
niques. The presentation mechanism employs World
Wide Web (W W W) technology, making it suitable for
widespread use.

1 Introduction and Motivation

Software engineers, and software maintainers in
particular, spend significant amounts of time attempt-
ing to understand software artifacts [2]. These soft-
ware understanding activities have been characterized
by Brooks and Soloway [l, 151 as being composed of
inquiry episodes. According to Soloway et al., inquiry
episodes involve the following steps: read some code,
ask a question about the code, conjecture an answer,
and search the documentation and code for confirma-
tion of the conjecture. Because of the important roles
that conjecture and search play in the process, Self-
ridge has described software understanding as a dis-
covery process [14].

Search in software understanding is very error-
prone; people do not always know where to look for
information to support their conjectures. In Soloway’s

studies the most successful subjects systematically
scanned code and documentation from beginning to
end, to make sure they found the information they
required. This is clearly impractical for large systems.

The solution that Soloway and others advocate is to
organize documentation to make search easier. Two
principal methods have been attempted. One is to
link documentation, so that the understander can eas-
ily get from the site where the question is posed to
the site where the answer can be found. Soloway uses
this technique to document delocalized plans, linking
the various elements of the plan together. The other
method is to layer documentation, so that different
types of information reside in different layers. For ex-
ample, Rajlich [12] organizes information into a prob-
lem domain layer, an algorithm layer, and a represen-
tation layer. Understanders can then limit their read-
ing and searching to particular layers. The conjecture-
and-search method of obtaining answers to questions
is essentially unchanged in these approaches, but the
search process is made more efficient.

Of course there is another common technique for
obtaining answers to inquiries about software-to ask
somebody who knows. There is no need for searching
at all with this method. Our objective is to develop
a tool that emulates the ideal of having an expert on
hand to answer questions. Such a tool should be able
to respond directly to the user’s inquiry with informa-
tion that helps provide an answer.

Research in automating consultative dialogs has
identified a number of important requirements for ex-
planation systems [ll]. First, they must of course have
the necessary knowledge to provide the desired an-
swers. Second, they must provide answers in a form
that the questioner can understand, and avoid con-
cepts that the questioner is unfamiliar with. Third,
they should take into account the goals of the ques-
tioner. The content of the answer can depend upon
what the user is trying to do with the information.

Principles similar to these are already the basis for
the design of certain types of user manuals, namely

155
1068-3062/95 $4.00 0 1995 IEEE

http://www.isi.edu/isd/johmon.html

minimal manuals [9]. Such manuals attempt to antic-
ipate the tasks that users might need to perform, and
provide information to help achieve them. Although
advocates of minimal manuals claim that novice users
are in particular need of task-oriented documentation.
it is reasonable to hypothesize that software profes-
sionals would benefit as well. Lakhotia [8], for exam-
ple, quotes a software developer who says that what
he would like in the way of a software understanding
tool is “something that helps me get the job done,
fast.” Unfortunately, the tasks of software profession-
als in general are not precisely defined. User manuals
can be oriented toward specific tasks, such as com-
posing a letter or generating a mailing list. Software
engineering tasks such as design or maintenance are
much broader, and the influence of such tasks on soft-
ware understanding is unclear, although software un-
derstanding researchers such as Brooks have conjec-
tured that such influences exist [l].

In order to develop tools that approach the ideal
of an on-line software consultant, our work has pro-
ceeded on two thrusts. First, we have examined the
interactions that occur during expert consultations, in
order to determine what types of questions people ask
and what governs the answers the experts provide. We
have been particularly interested in the following.

e What information about the questioner (e.g..
task, level of expertise), determines the form of
the answer?

e What kinds of information do people ask for? To
what extent is it available from conventional doc-
umentation sources?

Second, we are using these results to revise and en-
hance the implementation of an on-line documentation
tool called Intelligent Documentation (I-Doc) I An ini-
tial version of I-Doc was built prior to the empirical
study with task orientation in mind. The empirical
study helped us clarify the relation between user task
and questions, and build a taxonomy of questions.

Information provided by I-Doc is explicitly orga-
nized in the form of answers to common questions.
Like most expert consulting systems, and unlike typi-
cal on-line documentation, the system has an explicit
model of the user and his or her task. This enables the
system to select information that is likely to be useful,
and present it in an appropriate form. The objective
is to increase the likelihood that the information pro-
vided answers the user’s question. and to reduce the
amount of search and interpretation required. The
presentation medium being employed is dynamzc hy-
permedza, i.e. hypermedia descriptions that are cre-
ated dynamically in response to user queries. Auto-

mated text generation techniques can make hypertext
a medium for human-computer dialog, with features
similar to that of interactive question answering sys-
tems. The hypermedia descriptions are presented us-
ing commonly available tools, namely WWW clients.

2 Empirical Study

In order to find the answers to the questions above,
we decided to analyze the messages in Usenet news-
groups. We were particularly interested in the hier-
archy of newsgroups under comp.lang, which contain
discussions about programming languages. The arti-
cles posted to comp.lang newsgroups included a wide
range of questions about programming languages and
answers to them. The dialog between the user and
the advisor was clearly observable from these mes-
sages. The variety in users’ backgrounds, expertise
and activities made these newsgroups a perfect place
for studying software inquiries.

We focused our attention on the comp.lang.tc1
newsgroup, which contains discussions about Tcl and
T k programming languages. Tcl is a simple textual
language and a library package. Its ease of use and
simplicity makes it useful for writing shell scripts and
prototyping applications. Tk is an extension to Tcl
and provides the programmer with an interface to the
X11 windowing system. When these tools are used
together, it is possible to develop GUI applications
quickly. However, because of the limitations of the
documentation and frequent upgrades to these prod-
ucts, some users rely on the newsgroup to get answers
to their questions. Although it is possible to answer
some of the questions by consulting the source code, it
requires good knowledge of C and the skills to find out
the relevant sections in thousands of lines of code. The
source code is well documented, but it is fairly large,
comprising a total of over 100,000 lines of C code. We
used the information available in documentation and
source code for identifying user’s familiarity with these
languages and determining how easy it was to find out
the answer in the documentation.

2.1 Data Profile

Since most of the users in the newsgroup were pro-
grammers, the data was biased and the number of
questions about different user tasks were not equal.
For example, there were less application users than
programmers. Similarly the number of maintenance
programmers was much lower than program develop-
ers. However this difference is not as significant as the

156

previous one, since both Tcl and Tk are interpretive
languages. Egan claimed that there is some overlap
in terms of the mental processes for coding and de-
bugging in interpretive languages [4]. Programmers
using interpreted languages generate a small amount
of code, read it for comprehension and correct errors in
a continuous fashion [4]. Although most of the ques-
tions posted to this newsgroup came from program
developers, we believe that similar questions will be
asked by maintenance programmers when they try to
understand the same programs.

2.2 Data Analysis

We read 1250 messages posted to the newsgroup
between 2/17/95 and 4/22/95. For data analysis we
followed a method similar to [5] in that we consid-
ered only the messages that asked questions about
Tcl/Tk. Messages asking irrelevant questions (distri-
bution sites, FA& location etc.), product announce-
ments, opinions were ignored. We found 249 questions
and classified them as follows:

We first tried to estimate the user’s expertise level.
In nearly all cases, the expertise level was easily in-
ferred. It was either stated explicitly in the message
or was easily guessed by looking at the contents of the
message. If the user stated that he just started learn-
ing Tcl/Tk or asked a very simple question that was
covered in the documentation, we classified him as a
novice. If he had been using Tcl/Tk for more than
a year or asked complex questions that were not in
the documentation, he was classified as an expert,. All
others were classified as intermediates.

Second, we tried to determine the user’s task. It
was useful to characterize tasks at two levels: the
macro-task and micro-task levels. A macro task is
an activity that the user performs on the system as
a whole, e.g., maintaining it. A micro task is a more
local activity performed on a specific system compo-
nent, e.g., forking a process, configuring a widget, or
invoking the make utility. Macro tasks were catego-
rized as follows:

Installer: Users who are installing Tcl/Tk

User: Users of Tcl/Tk applications

Integration programmer: Programmers who are
trying to integrate Tcl/Tk with C by calling
Tcl/Tk functions from C or vice versa

GUI programmer: Programmers who focus on
graphical user interface issues

Communication programmer: Programmers who
develop applications that communicate with

other applications running on the same or a re-
mote computer

0 Other programmers: All other programmers in-
cluding UNIX shell programmers

After the user’s expertise level and task were deter-
mined, we looked at the type of the question. Ques-
tions were either goal, problem or system oriented.

Goal Oriented: These questions requested help to
achieve task-specific goals and were further cate-
gorized as follows:

- Procedural: Questions like How can I read
a file into an array? asked for a plan to
achieve the goal.

- Feature identification: An example question
in this group was Is at possible to display a
picture on a button widget?. These ques-
tions differed from procedural ones, since
the user was not sure whether the goal was
achievable. However, usually the answers to
both types of questions included the plans
to achieve the goal.

e Problem Oriented When the users couldn’t iden-
tify the source of a problem, they asked these
questions. An example was Tcl installation fails
with an error message. What am I doing wrong?

o System Oriented These questions requested in-
formation for identification of system objects and
functions.They consisted of

- Motivational: The users tried to understand
why the system functioned in a particular
way and how that behavior could be use-
ful. An example was Why is the ability to
bind to the CreateNotify and DestroyNotify
events not supported in Tk bind command?.

Conceptual: These questions asked for de-
scriptions of system objects and functions.
An example was What is an option menu?.

- Explanatory: These questions requested ex-
planations about how the system worked,
e.g. How does auto-path variable work?.

Wright claimed that users’ questions are either task
oriented or symptom oriented [17]. This is the same as
our goal oriented and problem oriented classification.
System oriented questions are less frequently asked
than others, but they are important for some users.
Motivational and conceptual questions are important

157

Figure 1: The distribution of messages by task, expertise and question type (N: Novice I: Intermediate E: Expert)

for novices and explanatory questions are frequently
asked by experts.

In addition to these categorizations, we also noted
whether the message contained any task descriptions
and if they were general or specific descriptions. Code
samples and error messages were classified as specific,
descriptions of desired outcome with no specific infor-
mation were classified as general.

Finally we identified the target for each question
in order to find out the relations between question
type, level of expertise and target. As in Herbsleb and
Kuwana’s study [5], we defined target as the subject
of the question or the task user was asking about. For
example How c a n I p a s s an array from Tcl t o C? had
the target array.

2.3 Results

After all the messages were classified, we counted
the number of messages in each group. Figure 1 sum-
marizes the distribution of questions by macro task.
expertise and question types.

2.3.1 What kinds of information do people
ask for? How does user task and ex-
pertise influence the question?

The type of question users ask is predictable to a cer-
tain extent if users’ task and expertise level is known.
For example, installers were more likely to ask problem
oriented questions than others. This might be due to
the fact that most installers were new users and didn’t
know enough to identify the problems. Besides, some
of the installation problems were complex and required
extensive knowledge outside user domain, like UNIX
operating system, libraries etc.

Task by itself was not the only determiner of ques-
tion type. Expertise level was also important. Figure

2 shows the percentage distributions of question types
by expertise level. It can be seen that more concep-
tual and motivational questions were asked by novices.
As users became more familiar with the system, they
asked less questions and they were more likely to be
goal oriented. Problem oriented questions became less
frequent, since a problem identification repository was
built during the learning process. System oriented
questions decreased from 15% for novices to 8% for in-
termediates. Users’ knowledge about system objects
at this level was high enough to reduce the number
of conceptual and motivational questions, but was not
high enough for asking more explanatory questions.
For experts, system oriented questions increased to
11% mainly because of explanatory questions.

Hill and Miller studied the types of questions asked
by users of an experimental graphical statistics system
[6] . They categorized questions differently like plans
to subgoal, describe system object etc. When their
results are converted to our categorization, goal ori-
ented questions were 70%, system oriented questions
were 22% and problem oriented questions were 4% of
the total questions. In our study, problem oriented
questions were more common (24%) probably due to
the nature of the programming activity, but goal ori-
ented (67%) questions were asked as much.

2.3.2 What information about the questioner
determines the form of the answer?

Users’ task and expertise level were inferable from the
message and this information affected the form of the
answer. Sometimes novice users only got the pointers
to the documentation whereas experts usually received
more detailed and explanatory answers.

Although experts ask less questions, these questions
are more complex and harder to answer. For exam-
ple, a novice procedural question like How c a n I dis-

158

Motivational Feature Feature
3% 23% pqc

Motivational ‘“:gm
Explanatory 96 11%

4%

Problem
23%

Procedural
6%

edural
46%

intermediate Expert Novice

Figure 2: Distribution of question types for different expertise levels

p l a y bitmaps on a button? is easier to answer than
an expert procedural question like How can I scroll
the text in a widget during text selection? We haven’t
attempted to measure the complexity of the targets,
but target attributes like complexity, generality affects
both presentation (e.g. present simple concepts before
complex ones) and content (e.g. do not present com-
plex concepts to novice users) of the documentation.

The way the questions were asked, possibly be-
cause of individual differences, also affected the form
of the answer. Some users requested brief information
whereas some others wanted detailed answers with ex-
planations. For example in the following message, the
user was not only interested in identifying the problem
but also wanted to learn how open worked.

I am trying t o talk t o a process b y opening a p i p e
as described in the Tcl book (set f [open -prog r+])

prog, however, wants its input in stdin only - so it
exits complaining ...

What does really happen in ’open’? Is there any
way out of this?

Soloway et al. found that users employed two macro
strategies for finding the answer to their questions,
systematic and as-needed [15]. Systematic strategy
users read all the documentation whereas as-needed
strategy users sought information only when neces-
sary. Research in behavioral theory supports this ob-
servation. It is known that when faced with a problem
some people use just enough information to arrive at
a feasible solution (satisficers) whereas some others
gather as much information as they can (maximizers)
[13]. Individual differences has to be taken into con-
sideration in answering users’ questions.

2.3.3 To what extent is the information avail-
able from conventional documentation
sources?

Half of the questions could have been answered by
consulting the documentation or source code. How-

ever, Tcl/Tk experience and expertise was necessary
to answer the other half. A simple looking question
like Is it possible to do multitasking in Tcl? required
extensive Tcl and programming knowledge.

Searching the source code was easier if the program
code that implemented the answer was localized. The
answer to the question How can I p u t an image on
a button? was easier to find than Is it possible to
deactivate the toplevel window until another event?,
because Tk code was structured around graphical ob-
jects. The documentation, which was structured sim-
ilarly, was maintainable, but didn’t make finding the
answer to the second question easier. Documentation
that supported delocalized plans could have shortened
the time to find the answer [15]. However, the infor-
mation that needs to be delocalized depends on the
task and separate documentation is required for dif-
ferent tasks, e.g. programmer’s manual, maintenance
manual etc. It is easier to maintain a question answer-
ing system’s repository than task dependent manuals.

It was impossible to find the answers to certain
questions in documentation, since they were either
asking for high level plans or instances of a general
plan. A question like How can I split canvas into pages
and print? asked for a high level plan. The answer to
the question How can I pass an array from Tci to C?
could be answered easily if one knows that Tcl is a
string based language and it is possible to pass these
strings to C and do data conversion. Once a person
learns this general plan, it is simple to answer ques-
tions like How can I pass data-type from Tcl to C? Al-
though it is not feasible to include the answer to each
data-type specific question in static documentation, it
is easy to generate the answers to these questions in a
dynamic documentation environment.

2.3.4 Importance of Examples

Examples had an important role in both questioners’
and answerers’ messages. Figure 3 summarizes the

159

Goal Oriented 81 (49%) 38 (23%)
Problem Oriented 11 (19%) 3 (5 %)
System Oriented 9 (39%) 6 (26%)

Total 101 (41%) 47 (19%)

Figure 3: Distribution of examples by question type

48 (28%)
45 (76%)
8 (35%)

101 (40%)

number of examples by question type.
Examples were most frequently seen in problem ori-

ented questions (81%). It was the easiest and most
descriptive way of describing the error and presenting
the solution. Similarly 51% of goal oriented questions
included examples. However, the task descriptions in
goal oriented questions were more general than prob-
lem oriented ones. Especially complex tasks were spec-
ified with general descriptions rather than specifics.

2.3.5 Importance of Discovery Sharing

Usually the answerer knew the solution, since he expe-
rienced the same problem. For example, someone from
Germany asked how to display umlauts in entry wid-
gets and not surprisingly the answer also came from
there. Accumulating user discoveries in a repository
will provide learning and discovery sharing capabili-
ties.

2.4 Implications for I-Doc

Some of the properties of good documentation [lo]
and this study’s implications on them are as follows:

a Organize around users tasks and goals, hide un-
necessary complexity: We will tailor the docu-
mentation depending on user’s task, expertise and
individual characteristics and present the answer
in a brief, understandable form. Task orientation
is important in preparing the documentation, but
support for individual differences are also impor-
tant and they are going to be included in I-Doc.
Details not related to the task and information
that is too complex for the user will be filtered
out to make documentation easier to understand.

Dynamically generated documentation can sup-
port multiple delocalized plans depending on the
task and is easier to maintain than task depen-
dent manuals. Such a system’s knowledge repre-
sentation has to be broad enough to incorporate
information from existing documents and sup-
port new ones. I-Doc’s repository mechanism cur-
rently has this capability.

a Support discovery sharing: Discovery sharing is
an important part of the documentation. Cur-
rently it is possible to annotate documents in I-
Doc. We are planning to add a central repository
of annotations to support discovery sharing.

Include examples: Examples are important for
understanding the questions and presenting an-
swers. We are going to study examples further
and try to generate situation specific examples.

3 I-Doc System Architecture

An initial version of I-Doc system was up and run-
ning before the empirical study was conducted. The
results of the study gave us a richer taxonomy of ques-
tion types and user tasks. Since the initial version was
built with task-orientation in mind, its capabilities are
broadly consistent with the the above study, and are
being extended to further reflect these results.

The system has three major components: a soft-
ware repository, a presentation generator, and a
viewer. The software repository contains annotated
software artifacts, and provides the information nec-
essary for question answering. It responds to requests
from the presentation generator for information rele-
vant to the user’s inquiry. The presentation generator

160

(‘“““‘“‘“I a
Rdine

Figure 4: I-Doc System Architecture

takes this information and uses it to compose a pre-
sentation description. This is then sent to the viewer,
which displays it. The viewer also accepts user queries,
which are passed to the presentation generator. Cur-
rently this is accomplished by showing the user a list
of hypertext links, each of which represents a different
query; the user then selects a link from the list. For
example, one of the links might be labeled with the
string “What are the platform dependencies?”. By
clicking on this link the user is able to obtain an an-
swer to this question.

Figure 4 shows how the components described
above are currently implemented. The software repos-
itory is built on top of Software RefineryTM. The
repository consists primarily of annotated source code,
together with pointers to other available documents.
Representations of other types of objects besides
source code are also included. The system is currently
designed to process Ada code, although there are plans
to support other languages. Annotated source code
was chosen as the primary information source because
it is mechanically analyzable and is usually available
for an implemented system. An interface process is
used to transmit between the repository and the rest
of the I-Doc system.

The presentation generator is built upon HTTPD, a
common WWW server. HTTPD is usually employed
at Web sites to transmit files to remote users. How-
ever, one can also configure HTTPD to run programs
to generate the information to be displayed, rather
than to access a file. We have implemented a number
of presentation scripts to be executed in this man-
ner. The scripts access two information sources in or-
der to generate presentations: the software repository,
and a database of information about each I-Doc user.
HTTPD provides security and password protection, to
control access to the software repository.

To access I-Doc, one uses standard Web clients,
such as NCSA Mosaic or Netscape. This makes it

Figure 5: High-level description of the AMPSE system

easy for multiple members of a software project to ob-
tain information about a common system, and reduces
the need for special-purpose software. A demonstra-
tion version of the system is accessible via the Web
addresses at the beginning of the paper.

4 Examples

The following example screen images illustrate
how I-Doc works. The system documented here
is Advanced Multi-Purpose Support Environment
(AMPSE), a system developed by TRW in Ada for
the U.S. Air Force. This particular example was con-
structed from the Ada source code and corresponding
design documents, which were annotated and cross-
linked by hand. Editing facilities have since been
built which enable I-Doc users to create such anno-
tated knowledge bases themselves.

Each I-Doc user must provide some simple profile
information: their role on the project (e.g., applica-
tion programmer, maintainer, etc.), their macro task,
and their level of familiarity with the system. In this
example, the user has selected Application Program-
mer as the role, Interface to System as the task, and
High as the level of familiarity. In other words, the
user has an understanding of what AMPSE does, and
is building an application which interfaces with it.

Figure 5 shows an overview of the system, from the
designated perspective. The description is a combi-

161

Advanced Multi-Purpose Support Environment
W AMPSE @em is asuppr! envhnment satisfy@ t k MISFionCritlcBi
Computer Resources (MCCR) requirements for m t q embedded softw“e 86

speclfled In t k Alr Force Logistics Commwd (AFLC) Lorg--Rqe Plan for
Embedded Computer System Support The AMPSE provides m Biternative to
mt-generation wesponspstem-apeclfic test Support envuonmem The obFtive of
tk AMFSE design is to Improve Iqisticz supportability of w p system soihuare
byreducirg m t snd me%;% tothcspabtlity .A flexibility of the Lest upp port
environment The REO model Is one of srwral SORwwe mode15 that provides tte
simulated environment for t k ECS eokware d e r test The p m p e of t k REO
csci is to provlde supprt In t k teat@ of t k Op~at lonai Flight Prcgram (OFQ for
the F-16AJB Eapwded FlreControi Computer (X F M The AdaCommon
Environment (ACE) packages u3e4 In thls system abstract t k melets wd support
eoftwsre from t k environment k b y k i p i r g to ~mlele the ~pplication code from
machm depeniemes and providiq traqwrtability “mox different kat$ See also
here

Platform Information

Advanced Multi-Purpse Support Environment r m on MinoVAX ll .A
M i w V A X 3 I t m o n t k V A X N M S V 5 4 o ~ r m l r g ~ e m I twswri t tenln
VAX AdaV2 2

No Informellon Is avallble about speclfic platform dependewies 19 the code

A n n H ~ a d n n Plnmg.nmpr I n f w b .

Figure 6: A non-task-oriented view

nation of dynamically generated structured text and
dynamically constructed hyperlinks. The objective is
always to provide a manageable amount of informa-
tion relevant to the user’s question. Two types of hy-
perlinks are shown: links for obtaining elaborations
on the information presented, and links for obtaining
answers to other questions. An example elaboration
link is the link labeled “REO Model Control Func-
tions” , which provides information about procedures
that external applications are expected to invoke. An
example question link is the one labeled “What are the
platform dependencies?” When this link is selected,
available information about platform dependencies is
provided. Such links are needed in case information
that the presentation generator filtered out is in fact
of interest to the user.

Figure 6 shows what results if the information is
not filtered using the user model. All attributes of the
system are then shown, only some of which fit on the
screen shown.

Descriptions can be similarly obtained for various
objects and concepts associated with a system. One
may also view the actual source code using the hyper-
text interface, as shown in Figure 7. Declared symbols
in the text appear as hypertext links; by traversing
these links one can obtain information about the cor-
responding symbols.

--Set timers for last run of failure update routine (Reoflr
8.W. .E&?. L>xrm : - 0.0 ;
a.p&Gw.rirniow :- 0.0:

--Hard wire Dt or Delta Time to 02 CHANGE WHEN DARTE I S IM
8.D C W - 0 0 2 ;

--Blank time data for last failure data set reoeived
a.?. pw . - (o t h e r s -> C w C T E R ’ m S (’ ’)) ;

end if,

end REO-IHIT,

Figure 7: A hypertext view of program code

5 Underlying Mechanisms

The following is a brief description of the represen-
tations and inference mechanisms used in the I-Doc
software repository, and the presentation generation.

5.1 Software repository mechanisms

Conceptually, the software repository is simply a
collection of objects, each with a set of attributes and
relationships with other objects. Some objects cor-
respond to individual program components, and are
represented internally using Software Refinery’s parse
tree representation. Some objects contain information
from multiple program components. For exampIe, in
Ada each package has a specification and a separate
body. For presentation purposes, however, the pack-
age may be treated as a single object, whose proper-
ties are obtained from both the specification and the
body. Other objects do not correspond to any pro-
gram component at all, in which case a separate frame
representation is used. The repository manages this
heterogeneous representation so that the presentation
generator need not be concerned with the internal rep-
resentations employed.

Some object relations, such as component and
definition-use relations, are derived from the source
code. Other attributes are inserted as annotations.
The annotation syntax consists of markup tags in the
style of markup languages such as SGME. The tags
are enclosed in angle brackets, and either represent
the attribute values individually or serve as starting

162

and ending delimiters surrounding the attribute value,
This scheme is somewhat similar to the one used by
the GRASP-ML system for annotating source code
[3]. Attribute values may be text strings or collec-
tions of features used to identify the object that is the
attribute value. Figure 8 shows the internal represen-
tation of the control portion of AMPSE’s application
programmer interface. This object corresponds to a
collection of procedures in the source code which are
not structured as a syntactic unit.

The repository also performs automated process-
ing on object attributes. Some attributes are com-
puted from more primitive attributes; some are de-
feasibly inherited from the attributes of other objects.
For example, the attributes of an Ada procedure body
may be derived from attributes of the corresponding
procedure specification or from the package specifica-
tion containing it. This capability is similar to the
relation derivation mechanisms incorporated in the
ARIES system [7], although limited in that no pro-
vision exists as of yet for editing derived attributes.

6 Future work

We are going to investigate the inquiry episodes
further to understand the relation between the task
and the questions better for common user tasks. The
results will give a richer taxonomy of question types
and provide a good starting point. However, since it’s
not easy to capture this relation for all tasks, we are
planning to incorporate the analysis process itself into
I-Doc. This will give I-Doc the ability to derive the
relations for new tasks and adapt to individual users.

Examples are important in understanding the ques-
tions and presenting answers. We are planning to
study the examples further and try to generate sit-
uation specific examples in the documentation.

Another area we are looking into is the multimedia
presentations. Currently I-Doc uses only text, but we
are planning to generate graphics tailored to user task.
This tailoring will provide the necessary details and
hide the unnecessary ones.

5.2 Presentation mechanisms

7 Conclusion
Presentations are generated by scripts written in

the Perl language [16]. Perl was chosen because it is
a high-level language somewhat comparable to Lisp,
has strong string manipulation facilities, but does not
produce large binary files. The scripts can executed
on demand by the HTTPD server, without delays for
system initialization as in Lisp.

Each script is supplied a set of parameters, some
identifying the object to be described, and sorne de-
scribing the user making the request. These parame-
ters are encoded in the WWW addresses (URLs) for
the hypertext links. Each script is responsible for gen-
erating URLs for follow-on questions, and associating
them with hypertext links in the generated page.

Presentation generation occurs in the following
phases. First, the script retrieves relevant attributes
from the software repository. Next, the script deter-
mines what attributes need to be included in the pre-
sentation. Some of these attributes may need to be
derived from primitive repository information, using
natural language generation techniques. For exam-
ple, a platform dependency “attribute” might be de-
rived from lower-level information about what hard-
ware platforms, compilers, etc. were used. Next, any
embedded markup tags are converted into the Hyper-
Text Markup Language (HTML) used in the World
Wide Web. Finally, the attributes are inserted into
an HTML presentation template and transmitted to
the user’s WWW client.

This paper has described efforts to analyze the in-
quiry process that is central to software understand-
ing, and to build a tool which provides automated
support for this inquiry process. Software understand-
ing thus becomes less search-oriented, and more like a
question-answer dialog.

The components of the system are currently un-
dergoing trial evaluation. Groups outside of USC/ISI
have expressed interest in using I-Doc for their own
projects, and plans are in place for providing them
with the system for their own use. Results from these
evaluations should be available by the time this paper
goes to press.

We are planning to extend the I-Doc work in several
directions. First, we hope to enrich the software rep-
resentation in the software repository, and enhance it
with program transformations. Such transformations
could automatically generate program slices relevant
to a given inquiry, and extract more semantic infor-
mation from the program code. Second, the natu-
ral language generator, which in the current system
is fairly primitive, needs to be significantly expanded,
and made flexible enough to select from among multi-
ple presentation styles. Third, we wish to incorporate
dynamically generated diagrams, as indicated above.
Meanwhile further empirical studies of software in-
quiries will be conducted.

163

<NAME>REO Model External Routines</NAME>
<OVERVIEW>
These routines are called to make the AMPSE software simulate the REO. The executive calls
the PROCESS-INPUTS to simulate inputing data, then calls COMPUTE to simulate computations
on the data, and then calls PROCESS-OUTPUTS to simulate outputs in response to the data.
</OVERVIEW>
<COMPONENT NAME="REO-Process-Inputs" PACKAGE="REO-EXPORT" TYPE="PROCEDURE-SPECIFICATION">
<COMPONENT NAME="REO-Compute" PACKAGE="REO-EXPORT" TYPE="PROCEDURE-SPECIFICATION">
<COMPONENT NAME="REO-Process-Outputs" PACKAGE="REO-EXPORT" TYPE="PROGEDURE-SPECIFICATION">

Figure 8: Internal representation of part of the AMPSE program interface

Acknowledgements knowledge. IEEE Trans. on Software Engineer-
ing, 18(10):853-869, October 1992.

The authors wish to thank Wright Laboratory for
providing the software examples used in this paper.
This work is sponsored by the Advanced Research
Projects Agency and administered by Wright Labo-

[8] A. Lakhotia. Understanding someone else's code:
Analysis of experiences. Journal of Systems Soft-
ware, 2:93-100, 1993.

ratory, Air Force Materiel Command, under Contract
NO. F33615-94-1-1402.

[9] A.W. Lazonder and J. van der Meij. The minimal
manual: is less really more? Int. J Man-Machine
Studies, 39:729-752, 1993.

References
[lo] D. Mayhew. Principles 61' Guidelines in Software

User Interface Design. Prentice Hall, 1992.

[1] R. Brooks. Towards a theory of the comprehen-
sion of computer programs. International Journal
of Man-Machine Studies, 18:543-554, 1983.

[ll] J .D . Moore. Participating in Ezplanatory Dia-
logues. MIT Press, Cambridge, MA, 1995.

[la] V. Rajlich, J . Doran, and R.T.S. Gudla. Lay-
ered explanation of software: A methodology for
program comprehension. In Proceedings of the
Workshop on Program Comprehension, 1994.

[2] T.A. Corbi. Program understanding: Challenge
for the 1990s. IBM Systems Journal, 28(2):294-
306, 1990.

[3] J.H. Cross and T.D. Hendrix. Using generalized
markup and SGML for reverse engineering graph-
ical representations of software. In Proceedings
of the 2d Working Conference on Reengineering,
1995.

[4] D.E. Egan. Individual differences in human-
computer interaction. In M. Helander, editor,
Handbook of Human-Computer Interaction, chap-
ter 24, pages 543-568. Elsevier Science Publishers
B.V. (North Holland), 1988.

[5] J.D. Herbsleb and E. Kuwana. Preserving knowl-
edge in design projects: What designers need to
know. In INTERCHI'93, 1993.

[B] W.C. Hill and J .R Miller. Justified advice: A
semi-naturalistic study of advisory strategies. In
CHI'88. ACM, 1988.

[7] W.L. Johnson, M.S. Feather, and D.R. Harris.
Representation and presentation of requirements

[13] P.L. Hunsaker R.E. Coffey, C.W. Cook. Manage-
ment and Organizational Behavior. Austen Press,
1994.

[14] P.S. Selfridge. Integrating code knowledge with
a software information system. In Proceedings of
the 5th Annual Knowledge-Based Software Assis-
tant Conference, pages 183-195, Syracuse, NY,
1990.

[15] E. Soloway, J . Pinto, S.I. Letovsky, D. Littman,
and R. Lampert. Designing documentation to
compensate for delocalized plans. Communica-
tions o f the ACM, 31(11), November 1988.

O'Reilly & Associates, Sebastopol, CA, 1991.
El61 L. Wall and R.L. Schwartz. Programming p e d .

[17] P. Wright. Issues of content and presentation
in document design. In M. Helander, editor,
Handbook of Human-Computer Interaction, chap-
ter 28, pages 629-652. Elsevier Science Publishers
B.V. (North Holland), 1988.

164

