XML Schema Mappings for Heterogeneous
Database Access *

Samuel Robert Collins, Shamkant Navathe, Leo Mark

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

Abstract

The unprecedented increase in the availability of information, due to the success of
the World Wide Web, has generated an urgent need for new and robust methods
that simplify the querying and integration of data. In this research we investigate a
practical framework for data access to heterogeneous data sources. The framework
utilizes the eXtensible Markup Language (XML) Schema as the canonical data
model for the querying and integration of data from heterogeneous data sources. We
present algorithms for mapping relational and network schemas into XML schemas
using the relational mapping algorithm. We also present libSyD (library System of
Databases), a prototype of a system for heterogeneous database access.

Key words: Multidatabases, Heterogeneous Databases access, XML Schema,
Schema Integration

1 Introduction

XML [1] is quickly emerging as the standard for data exchange on the World
Wide Web. Its potential has sparked a flurry of activity in the business and re-
search communities. Businesses are racing to develop applications that utilize
XML for business-to-business (B2B) transactions. Researchers are develop-
ing new and innovative methodologies to employ and enhance the features of
XML. In this research we propose a practical framework for heterogeneous
database access. We use the XML Schema [2-4] as the canonical data model

* This research is part of the XMLApe project.
Email addresses: scollins@cc.gatech.edu (Samuel Robert Collins),

sham@cc.gatech.edu (Shamkant Navathe), leomark@cc.gatech.edu (Leo Mark).

Preprint submitted to Elsevier Science 30 November 2001

for a schema integration technique to facilitate the querying and integration
of data from various data sources. A crucial point of schema integration is to
overcome the semantic heterogeneity of the schemata to be integrated [5]. If
we have data source schemas in a canonical data model, we can provide users
a single uniform interface to facilitate data integration and querying without
changing the underlying data sources.

This proposed research utilizes XML schemas as the unifying data model
for data integration. It is greatly dependent on the mapping of data source
schemas into XML schemas. In section 3, two algorithms are presented for
mapping relational model and network model schemas into XML schemas. In
section 4, we present libSyD, a system which allows easy access to data that
resides in a library system of databases. libSyD was implemented using the
relational mapping allgorithm presented in this paper.

2 Querying Heterogeneous Data

The motivation for this research stems from our ongoing efforts to develop
more robust methods for querying and integrating data from heterogeneous
data sources. The unprecedented increase in the availability of information
due to the success of the World Wide Web has generated an urgent need for
new and robust methods that simplify the querying and integration of data.

A lot of research in the past and present has focused on developing methodolo-
gies for querying heterogeneous data sources. The intent is to integrate data
from existing databases in a distributed environment while minimizing the im-
pact of operations on the databases [6]. One approach is to use a unified global
integration schema, such as the relational schema, to facilitate efficient global
processing. Pegasus [7], DAVID [8], MERMAID [9], CI [10], and [11] are all
examples of systems, which promote this type of methodology. These systems
utilize schema integration techniques, similar to those presented in [12-14,4],
to efficiently query and integrate data. But, their global schemas become hard
to manage as the number and types of data sources increase.

Another approach for querying data sources involves a system based on medi-
ators and wrapper. Wrapper-mediator systems are sophisticated applications
that abstract the data source from the users. In addition they translate queries
into the terms of the data sources and integrate the results. SIMS [15] and [16]
are examples of this type of system. The wrapper-mediator approach is re-
markably scalable, and allows the integration of an increasing number of data
sources.

This research is similar to the work done with mediators and wrappers as well

as global schemas. Our approach utilizes XML Schemas as the unifying data
model. It is similar to work presented in [17].

3 Mapping to XML Schema

A crucial objective of schema integration is to overcome the semantic hetero-
geneity of the schemas to be integrated. In order to create a unified interface
to the heterogeneous sources we must first develop a set of schema and data
mappings from the existing databases to XML. In the following sections we
concentrate on the translation of schemas from the network, and relational
databases into XML schemas.

3.1 Relational to XML Mapping Algorithm

In this section we assume that the database is stored in a relational database
management system (DBMS). Today, it is almost a certainty that any large
commercial application would be implemented using some relational DBMS.
The dominant relational DBMSs include ORACLE, DB2, INFORMIX and
SYBASE. Out of these, DB2 is the product that is the oldest and has been
around since 1982. Every relational DBMS stores a database in the form of
relations (informally tables) which are defined over a set of domains (columns).
Each relation is populated with a set of tuples (records, or rows of table). In
the following algorithm, we use the above terminology for referring to the
constructs of the relational model.

STEP 1: The first step of the algorithm is to create a schema tag with the
correct XML Namespace [18] information.

<?xml version="1.0" encoding="UTF-8"7>

<schema
targetNamespace="http://www.example-uri.com/Sample-DB"
xmlns="http://wuw.w3.org/2001/XMLSchema"
xmlns:dbns="http://www.example-uri.com/Sample-DB"
elementFormDefault="unqualified"
attributeFormDefault="unqualified">

</schema>

STEP 2: The next step of the algorithm is to create a complex type for
each relation to hold the individual records for that relation. Therefore,
for each relation R with attributes Al...An, create a complex type R—
RecType, and include Al...An as elements with correct simple types. In

addition, if A1... An is allowed to be NULL, add the attribute nillable to
the corresponding element and set its value equal to true.

R
A1:String | A2:Integer | A3:String

<complexType name="R-RecType">
<sequence>
<element name="A1l" type="string" />
<element name="A2" type="integer" />
<element name="A3" type="string" />
</sequence>
</complexType>

STEP 3: For each relation R, create a complex type R—RelType, and include

an element R of type R—RecType. Set the minOccurs attribute to 0 and
maxQOccurs attribute to unbounded for each element.

R

<complexType name="R-RelType'">
<sequence>
<element name="R" type="dbns:R-RecType"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>

STEP 4: In this step the database element is created. For the database DB
with relations R1 ... Rm, add a DB element to schema and insert an anony-
mous complex type. Then, include R1-Rel ... Rm—Rel as elements of cor-
responding complex types Ri... RelType.

R1

R2

<element name="DB">
<complexType>
<sequence>

<element name="R1-Rel" type="dbns:R1-RelType" />
<element name="R2-Rel" type="dbns:R2-RelType" />
</sequence>
</complexType>
</element>

STEP 5: For each relation R, if a primary key exists with the attributes
Al...Aj, insert a key tag R-Key to the database element. Add a selector
tag with the xpath value set to dbns : R—Rel/dbns : R to the key tag. In
addition, insert field tags for the attributes Al...Aj.

R

Al A2

<key name="R-Key">
<selector xpath="dbns:R-Rel/dbns:R" />
<field xpath="QA1" />
<field xpath="QA2" />

</key>

STEP 6: For each relations R with foreign keys F'K1... FKn,insert a keyref

tag R—F K1 for each foreign key. Insert a selector tag with the xpath value
set to R—Rel/R and field tag(s) with the zpath value set to QF K.

R1

Al

R2

FK

<keyref name="R2-FK" refer="R1-Key">
<selector xpath="dbns:R2-Rel/dbns:R2" />
<field xpath="QFK" />

</keyref>

3.1.1 Relational Mapping Fxample

In this section we illustrate how the algorithm can be applied to a sample
relational database. The sample relational schema is shown below in figure 15.
The resulting XML schema, Sample-DB.xsd is also shown.

R1
Al:Integer |A2:Varchar| A3:Varchar | A4:float

R2
Ab5:Integer | A6:Char(50) | A7:Datetime

Sample-DB.xsd

<?xml version="1.0" encoding="UTF-8"7>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.example-uri.com/Sample-DB"
xmlns:dbns="http://www.example-uri.com/Sample-DB"
elementFormDefault="unqualified"
attributeFormDefault="unqualified">
<element name="Sample-DB">
<complexType>
<sequence>
<element name="R1-Rel" type="dbns:R1-RelType" />
<element name="R2-Rel" type='"dbns:R2-RelType" />
</sequence>
</complexType>
<key name="R1-Key">
<selector xpath="dbns:R1-Rel/dbns:R1" />
<field xpath="QA1" />
</key>
<key name="R2-Key">
<selector xpath="dbns:R2-Rel/dbns:R2" />
<field xpath="@A5" />
<field xpath="QA6" />
</key>
<keyref name="R2-Ab" refer="dbns:R1-Key">
<selector xpath="dbns:R2-Rel/dbns:R2" />
<field xpath="QA5" />
</keyref>
</element>
<complexType name="R1-RelType">
<sequence>
<element name="R1" type="dbns:R1-RecType"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>
<complexType name="R2-RelType">
<sequence>
<element name="R2" type="dbns:R2-RecType"
minOccurs="0" maxOccurs="unbounded" />
</sequence>

</complexType>
<complexType name="R1-RecType">
<sequence>
<element name="A1" type="int" />
<element name="A2" type="string" />
<element name="A3" type="string" />
<element name="A4" type="float" nillable="true" />
</sequence>
</complexType>
<complexType name="R2-RecType">
<sequence>
<element name="A5" type="int" />
<element name="A6" type="string" />
<element name="A7" type="date" />
</sequence>
</complexType>
</schema>

3.2 Network to XML Schema Algorithm

This section deals with mapping schemas of databases stored in the network
data model [19]. This model was endorsed by the Database Task Group [20] of
ANSI back in 1971 and have resulted in a number of network DBMS implemen-
tations. Popular products include IDMS (Computer Associates), IDS II (Bull,
France), IMAGE (Hewlett Packard), VAX-DBMS (DIGITAL) and DMS 1100
(Unisys). The network data model uses two basic constructs: Record Types
and Set Types. A record contains data items which may be of type repeating
group (multivalued item) or a vector (a list). Relationships are of type one-to-
many with the one side being the owner record type and the many side being
the member record type. Further information on this model may be found
in [19].

STEP 1: The first step of the algorithm is to insert schema tags with the
correct XML Namespace information.

<7xml version="1.0" encoding="UTF-8"7>

<schema
targetNamespace="http://www.example-uri.com/Sample-DB"
xmlns="http://wuw.w3.org/2001/XMLSchema"
xmlns:dbns="http://www.example-uri.com/Sample-DB"
elementFormDefault="unqualified"
attributeFormDefault="unqualified">

</schema>

STEP 2a: The next step of the algorithm is to create a complex type to for
the individual records of the various record types. Therefore, for each record
type RT with data items D1... Dn, create a complex type RT—-RecType,
and include D1Dn as elements. If Dx is a vector observe Step 2b. If Dz4 is
a repeating group observe Step 2c.

RT
D1 D2

<complexType name="RT-RecType'">
<sequence>
<element name="D1" type="string" />
<element name="D2" type="integer" />
</sequence>
</complexType>

STEP 2b: For the data item D, if D is a vector, add an anonymous complex
type to the element D4. Insert element D — Item and set the minOccurs
attribute to 0 and the maxOccurs attribute to unbounded.

RT
D:Vector

<complexType name="RT-RecType'">
<sequence>
<element name="D">
<complexType>
<sequence>
<element name="D-Item" type="string"
minOccurs=0 maxOccurs=unbounded />
</sequence>
</ complexType>
</element>
</sequence>
</complexType>

STEP 2c: For each data item D, if D is a repeating group with data items
D1...Dn, add an anonymous complex type to the element D. If Dz is a
vector or repeating group, recursively call Step 2b and Step 2c for each data
item that is a vector or repeating group.

RT
D22
D2-1 D22

D1

<complexType name="RT-RecType'">
<sequence>
<element name="D1" type="string" />
<element name="D2"
minOccurs=0 maxOccurs=unbounded>
<complexType>
<sequence>
<element name="D2-1" type="string" />
<element name="D2-2" type="Integer" />
</sequence>
</complexType>
</element>
<sequence>
</complexType>

STEP 3: The attribute of type ID is used to identify all instances of owner
records. Hence, for each owner record type RT insert an attribute tag RT—
1D4 of type = “ID” into the RT—-RecT'ype complex type.

RT

Owns

MRT

<complexType name="RT-RecType">
<sequence>
<element name="D1" type="string" />
<element name="D2" type="integer" />
<attribute name="RT-ID" type="ID" />
</sequence>
</complexType>

STEP 4: Member records identify their owner records with attributes of type
IDREF. These IDREF attributes reference an owner record ID. Hence,

for each member record type with set types S1...Sn, insert an attribute
tag Sx—IDREF of type IDREF.

RT

Owns

MRT
D3

<complexType name="MRT-RecType">

<sequence>
<element name="D3" type="string" />
</sequence>
<attribute name="Ownes-IDREF" type="IDREF" />
</complexType>

STEP 5: The next step is to create complex types for the record types,
which include zero to many records. For each record type RT, create a
complex type RT—-RecTypeType, and include an element RT—Rec of type
RT—-RecType. Set the minOccurs attribute to 0 and maxQccurs attribute
to unbounded for each element.

RT

<complexType name="RT-RecTypeType'">
<sequence>
<element name="RT" type='"dbns:RecType"
maxOccurs="0" minOccurs="unbounded" />
</sequence>
</complexType>

STEP 6: In step four the database element is created. For the database DB
with record types RT'1... RTn, add DB element to schema and insert an
anonymous complex type. Then, include RT'1-RecTypeldots RTn—RecType
as elements with corresponding complex types of RT'1-RecTypeType ... RTn—
RecTypeType.

10

RT

Owns

MRT
D3

<element name="DB">
<complexType>
<sequence>
<element name="RT1"
type="dbns:R1-RecTypeType" />
<element name="RT2"
type="dbns:R2-RelRecTypeType" />
</sequence>
</complexType>
</element>

STEP 7: For each record type RT, if duplicates are not allowed for data
items D1...Dn, insert a unique tag RT-D1...Dn-DN A to the database
element. Add selector tag with the xpath value set to RT/RT—Rec and
insert D1...Dn field tags with xpath value set to @QD1...@QDn.

RT
D1 D2

<unique name="RT-D1_D2-DNA">
<selector xpath="dbns:RT-RecType/dbns:RT" />
<field xpath="@D1" />
<field xpath="@D2" />

</unique>

3.2.1 Sample Network Database

The XML schema for a sample network data model is shown below.

11

RT1

D1 D2
Owns

RT2
D3 D4

<?xml version="1.0" encoding="UTF-8"7>

<schema
targetNamespace="http://www.example-uri.com/Sample-DB"
xmlns:dbns="http://www.example-uri.com/Sample-DB"
xmlns="http://wuw.w3.org/2001/XMLSchema"
elementFormDefault="unqualified"

attributeFormDefault="unqualified">

<element name="Sample-DB">
<complexType>
<sequence>
<element name="R1-Rel" type='"dbns:R1-RelType" />
<element name="R2-Rel" type="dbns:R2-RelType" />
</sequence>
</complexType>
<key name="R1-Key">
<selector xpath="dbna:R1-Rel/dbns:R1" />
<field xpath="@QA1" />
</key>
<key name="R2-Key">
<selector xpath="dbns:R2-Rel/dbns:R2" />
<field xpath="QA5" />
<field xpath="QA6" />
</key>
<keyref name="R2-A5" refer="R1-Key">
<selector xpath="dbns:R2-Rel/dbns:R2" />
<field xpath="QA5" />
</keyref>
</element>
<complexType name="R1-RelType">
<sequence>
<element name="R1" type="dbns:R1-RecType"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>
<complexType name="R2-RelType">

12

<sequence>
<element name="R2" type="dbns:R2-RecType"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>
<complexType name="R1-RecType">
<sequence>
<element name="Al1" type="int" />
<element name="A2" type="string" />
<element name="A3" type="string" />
<element name="A4" type="float" nillable="true" />
</sequence>
</complexType>
<complexType name="R2-RecType">
<sequence>
<element name="A5" type="int" />
<element name="A6" type="string" />
<element name="A7" type="date" />
</sequence>
</complexType>
</schema>

4 1libSyD: Library System of Databases

The relational to XML algorithm presented above has been implemented using
relational databases as the data sources. The prototype, libSyD, attempts to
mimic a public library system. The system is an interactive Web application
that is comprised of eight different library branches and a query engine. The
query engine acts as a single point of entry for the 8 branches. Users of the
system may issue title and author queries using their favorite browser as the
user interface. Data is stored in the relational database mySQL at every site.
However, our algorithm appliesx to any relational database system with a
JDBC driver that supports catalog access functions. No network database is
included in the libSyD prototype.

4.1 libSyD Implementation

The architecture for 1ibSyD (see Figure 1) is organized in three layers, the
User Layer, the Query Engine Layer, and the Data Source Layer. Each layer
utilizes XML to exchange data. In addition, XML schemas are proposed as the
unifying data model for querying and integrating data from the heterogeneous
data sources.

13

User Interface

l

Query Engine
and el
Schema Integrator Ll

olojololalolalo

Fig. 1. Architecture

= Netscape: libSyD: A Library Sy of Datab =]
File Edit View Go Communicabor Help |
| \f” Bookmarks i Location: http: //cgid-int. cc. gatech. edu/servlets/proj: ¢ Q" Whats Relaied I
-
l y Title Search
Library System of Databoses This example illustrates a tile search query across multiple data sources. Please
enter a title.
About BSYD
Title Search
Author Search Tile | Foundat iod
Data Sources.
Submit| | Clear
= {5 %w P @ 2|

Fig. 2. Title Search Form

The user interface is a Web site which allows the user to initiate a title and
author search (see Figure 2). This Web site can be accessed by any standard
Web browser. Other applications that are directly connected to the Internet
can also be developed as user interfaces to the query engine.

The user requests information through queries submitted to the system via an
HTML form. Figure 2 shows an example of a query for books with the word
“Foundation” found in the title.

Once the query has been submitted it is sent to the query engine in an XML
document. Sub-query XML documents are then generated and sent to the
data sources at the lower layer. The data sources translate the queries into
equivalent SQL statements, execute the queries and return the results to the

14

= Netscape: libSyD: A Library System of Databases |

File Edit View Go C Help |
[A Bookmerte & GoTo mhttp://oqad-int co_gatech edu/serviets/pei /| 3 Whate Relsied [
P e

B
libSyD T Serch

Library Systen of Databases Below is a list of books with tiles that contein the string “Fowmdation™.

About IbSYD XML Document Alphavetta Branch 3 Book(s) Found
Tute Seage ISBN Tille Publisher Date Authors
— 1 S8601080 Foundation Granada Publishing 1960 Issac Asimov
Data Sources

"

58601355 Foundation and Empire Granads Publishing 1964 Isaac Asimov
58601713 Second Foundation Granada Publishing 1962 Isaac Asimov

w

XML Document Buckhead Branch 3 Bookis) Found
ISBN Title Publisher ~ Date Authors
1 58601080 Foundation Granads Publishing 1960 Isanc Asimov

"

58601355 Foundation and Empire Granads Publishing 1964 Isaac Asimov
58601713 Second Foundation Granada Publishing 1962 Isaac Asimov

w

= [e wer @ 2

Fig. 3. Title Search Result

copies
| access_no
isbn
buy_price
buy_date

publisher —

pub_code
| pub_name
loancop_foreign_key
book foreign_key o
7 access_no
bor _rio
cop_foreign_key loan_date
book
EHED loarbor_foreign_key
[|pub_code
title
—| borrower
pLb_date
— 7[bor_ro
ronpres bor_name
bor_state
addr1
addrz
town
allow
book i ke
auth_foreign_key (SRR posteode bor_forsion key || 2|bor_state
[|ioan_timit
vesbor foreign_key
author
[9]itn reservation
author_name b
or_no

7
B isbn
reserve_date

Fig. 4. Library Database Schema

query engine as XML documents. Once all the resulting XML documents
are received, the query engine combines them and presents them to the user
interface for viewing (Figure 3).

4.2 Data Sources

The key components of the system are the data sources at the Data Source
Layer. The main function of a data source is to provide a common interface for
the Query Engine Layer to each library database. In this implementation of
1ibSyD they share the same schema (Figure 4). They are thus homogeneous,
but independent. A data source’s duties include:

(1) Map relational schema into XML Schema
(2) Parse and validate the XML query documents that are sent from the
query engine

15

(3) Generate equivalent queries in SQL and execute the queries against the
database

(4) Translate the results of the query into an XML document and return it
to the query engine

4.8 1ibSyD Implementation

libSyD is an interactive Web application built using Java Servlets and JDBC.
The system shown comprises eight different data sources representing libraries
(Alpharetta, Buckhead, Central, Kirkwood, Northside, Peachtree, Roswell,
Southwest) and a query engine database maintained in mySQL running on
a Microsoft Windows NT 4.0 Server. The query engine database maintains
information about the different data sources in the system. The XML parser
for the system is Apache’s Xerces parser. The query engine servlet and the
data source servlets are hosted on an Apache Jserv server.

5 Future Work

In this paper a framework for querying and integrating data from hetero-
geneous data sources was outlined. The proposed framework uses the XML
schema as the canonical data model for schema integration. In this paper we
presented algorithms for mapping relational and network data models to XML
schemas, and illustrated them with examples. Future work, currently done in
the scope of the XMLApe project, will include:

(1) Additional methods to facilitate schema mapping for legacy systems such
as the hierarchical model

(2) Methods for integration of XML Schemas of the data sources into a static
global schema

(3) Development of a data model for XML with graphical notation

(4) XML query processing (and a query algebra)

(5) XML query optimization

(6) Development of quality metrics for ”goodness” of XML document

References

[1] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, Extensible markup
language(XML) 1.0 (second edition), W3C (October 2000).
URL http://www.w3.org/TR/2000/REC-xm1-20001006/

16

[2] P. Biron, A. Malhotra, XML schema part 2: Datatypes; W3C recommendation,
W3C (2001 May).
URL http://wwuw.w3.org/TR/2001/REC-xmlschema-2-20010502/

[3] D. Fallside, XML schema part 0: Primer; W3C recommendation, W3C (May
2001).
URL http://wwuw.w3.org/TR/2001/REC-xmlschema-0-20010502/

[4] H. Thompson, D. Beech, M. Maloney, N. Mendeldohn, XML schema part 1:
Structures; W3C recommendation, W3C (May 2001).
URL http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

[6] S. Chung, P. Mah, Schema integration for multidatabases using the unified
relational and object-oriented model, Proceedings of the 1995 ACM 23rd annual
conference on computer science (1995) 208-215.

[6] M. Bright., A. Hurson, S. Pakzad, A taxonomy and current issues in
multidatabase systems, IEEE Computer 25 (3) (1992) 50-60.

[7] R. Ahmed, P. D. Smedt, W. Du, W. Kent, M. Ketabchi, W. Litwin, A. Rafii,
M. Shan, The pegasus heterogeneous multidatabase system, IEEE Computer
24 (12) (1991) 19-27.

[8] B. Bhaskar, C. Egyhazy, K. Triantis, The architecture of a heterogeneous
distributed database management system: The distributed access view

integrated database (david), Proceedings of the 1992 ACM annual conference
on Communications (1992) 173-179.

[9] M. Templeton, D. B. et al., Mermaid: A front-end to distributed heterogeneous
databases, In Proceedings of the IEEE 75 (5) (1987) 695-708.

[10] T. Lee, M. Chams, R. Nado, M. Siegel, S. Madnick, Information integration with
attribution support for corporate profiles, Procedings of the eighth international
conference on information knowledge management (1999) 423-429.

[11] L. Mark, N. Roussopoulos, T. Newsome, P. Laohapipattana, Incrementally
maintained network -; relational database mapping, Software Practice &
Experience 22 (12) (1992) 1099-1131.

[12] J. Larson, S. Navathe, R. Elmasri, A theory of attribute equivalence in
databases with application to schema integration, IEEE Transactions on
Software Engineering 15 (4) (1989) 449-463.

[13] S. Navathe, R. Elmasri, J. Larson, Integrating user views in database design,
IEEE Computer 19 (1) (1986) 50-62.

[14] Savasere, S. Navathe, et al., On applying classification to schema integration,
In Proceedings of IEEE 1st International Workshop on Interoperability in
Multidatabase Systems (1991) 258-261.

[15] C. Knoblock, J. Ambite, Agents for information gathering, In J. Bradshaw,
editor, Software Agents. AAAI/MIT Press (1997) 347-374.

17

[16] N. Ashish, C. Knoblock, Semi-automatic wrapper generation for internet
information sources, Conference on Cooperative Information Systems (1997)
160-169.

[17] A. Sahuguet, F. Azavant, Building light-weight wrappers for legacy web data-
sources using w4f, The VLDB Journal (1999) 738-741.

[18] T. Bray, D. Hollander, A. Layman, Namespaces in XML, W3C (January 1999).
URL http://www.w3.org/TR/1999/REC-xm]l-names-19990114/

[19] R. Elmasri, S. Navathe, Fundamentals of Database Systems, Vol. 3, Addison
Wesley, 2000.

[20] DBTG, Report of the CODASYL Data Base Task Group, ACM .

18

User Interface

l

Query Engine
and
Schema Integrator

Query
Engine
DB

oiololoioloialo

Library Data Sources

Fig. 5. Architecture

19

- AbowthbSyD

Library System of Datoboses mllﬂhm-ﬁﬂnwﬁwmumlﬁphdm'm.ﬂwe
. enter s

Title | Foundat io

[sutme] [t

Fig. 6. Title Search Form

20

yD

Library Systen of Dat

AboutIbSYD.
Title Search

S
Dasa Sources.

xhttp: //cgi3-int. cc.gatech. edu/servlets/pri /|

Title Search

® Below is a list of books with titles that contain the string "Formdation™.

XMLDocument | AlphaettaBronch | 3 Book(s) Found
Tille Publisher Date Authors
1 58601080 Foundation Granada Publishing 1960 Isanc Asimov

2 58501355 Foundetion end Empire Grensds Publishing 1964 Isaac Asimov
3 58601713 Second Foundation Granads Publishing 1962 Issac Asimov

XMLDocument | BuckheadBramch | 3 Book(s) Found
Tille Publishes Date Authors
1 58601080 Foundation Granada Publishing 1960 Isanc Asimov

2 58601355 Foundetion end Empire Grensds Publishing 1964 Isaac Asimov
58601713 Second Foundation Granads Publishing 1962 Issac Asimov

Fig. 7. Title Search Result

21

capies
F|access_na
isbn
[|buv_price
[Jbuy_dats
loarco_forsign_key
book forsign_key aan
7 [access_no
bor o
cop_foreign_key loan_date
book
[2]isbn loarbor_foreign_key
pub_code
I
— barrawer
pub_date
| row_price 2|bor.no
= bor_name
bor_state
addr1
addre
tawn allow
uth_Foreign_key bl tenid posteode bor_foreign_key por_state
loan_limit
reshor_Fareign_key
reservation
7 [bor_no
F]isbn
reserve_date

Fig. 8. Library Database Schema

22

