
CS4440 CS4440
Emerging Database TechnologiesEmerging Database Technologies

Project ProposalProject Proposal
October 2, 2007October 2, 2007

Bus Prediction AlgorithmBus Prediction Algorithm
EvaluationEvaluation

John AbrahamJohn Abraham
Galen HusseyGalen Hussey
Matt Weber Matt Weber

1. Introduction

Providing accurate and timely information about bus arrival is important for Intelligent Transportation
Systems (ITS) which use Automatic Vehicle Location (AVL). It drastically enhances the user experience
while at the same time providing the operators with information about lagging or leading buses which
can then take corrective action. Our objective in this project will be to utilize historical and current GPS
records of the Georgia Tech Bus system to implement and compare algorithms for better bus arrival-
time prediction.

2. Related Work

This project will attempt to build upon two existing projects, BuzzRoute and the SMS bus tracker. Here
we briefly summarize both projects. We then discuss the related the current arrival time prediction
service employed by GA Tech NextBus.

BuzzRoute is a project to provide a visual interface to the bus locations on a mobile device. BuzzRoute
itself was built on a previous prototype that successfully implemented the mobile client and
architecture, improving the architecture in some places, and adding a route detection component. Much
of the code used in BuzzRoute is relevant to our bus prediction, so portions will be re-used in our
application.[6]

SMS bus tracker was a project to provide an SMS-based query response interface to the NextBus
(described later) predictions. Unfortunately, this project was not completed, but it has plenty of code
relevant to our application. We hope to use this project as our interface to the bus prediction algorithm.

To our knowledge, the only service that attempts to predict the arrival time of a Georgia Tech bus is
NextBus, which uses the existing schedule of the bus system, as determined by the transportation
directory, and simply predicts the arrival time as the scheduled time of arrival. This system works well
in cases where a given bus is either running early or on schedule, because the drivers are required to
delay their progress to allow the schedules to catch up. This system’s obvious flaw is in cases where the
buses are running behind schedule, since there is little a bus driver can do to compensate for most
causes of delay, such as traffic or large numbers of people entering or leaving the bus.
The bus schedules are broken into blocks for each route. Each bus on a single route is given its own
block, which has static times for its arrival at each stop. The tables below show samples of the block
schedule for the Green route, effective August 2007.

Block Lv. Lv. Lv Ar. Lv. Lv. Lv. Ar.
1 TEP CRC Hemphill & 10th St. GTRI GTRI Hemphill & 10th St. S. Cntr TEP

Garage
7:00 AM 7:15 AM 7:19 AM 7:21 AM 7:25 AM 7:30 AM 7:35 AM 7:38 AM 7:42 AM

1 7:45 AM 7:49 AM 7:51 AM 7:55 AM 8:00 AM 8:05 AM 8:08 AM 8:12 AM
1 8:15 AM 8:19 AM 8:21 AM 8:25 AM 8:30 AM 8:35 AM 8:38 AM 8:42 AM
1 8:45 AM 8:49 AM 8:51 AM 8:55 AM 9:00 AM 9:05 AM 9:08 AM 9:12 AM
1 9:15 AM 9:19 AM 9:21 AM 9:25 AM 9:30 AM 9:35 AM 9:38 AM 9:42 AM
1 9:45 AM 9:49 AM 9:51 AM 9:55 AM 10:00 AM 10:05 AM 10:08 AM 10:12 AM
1 10:15 AM 10:19 AM 10:21 AM 10:25 AM 10:30 AM 10:35 AM 10:38 AM 10:42 AM

1 10:45 AM 10:49 AM 10:51 AM 10:55 AM 11:00 AM 11:05 AM 11:08 AM 11:12 AM

Block Lv. Lv. Lv Ar. Lv. Lv. Lv. Ar.
2 TEP CRC Hemphill & 10th St. GTRI GTRI Hemphill & 10th St. S. Cntr TEP

Garage
8:00 AM 8:15 AM 8:20 AM 8:23 AM 8:27 AM

8:30 AM 8:34 AM 8:36 AM 8:40 AM 8:45 AM 8:50 AM 8:53 AM 8:57 AM
2 9:00 AM 9:04 AM 9:06 AM 9:10 AM 9:15 AM 9:20 AM 9:23 AM 9:27 AM
2 9:30 AM 9:34 AM 9:36 AM 9:40 AM 9:45 AM 9:50 AM 9:53 AM 9:57 AM
2 10:00 AM 10:04 AM 10:06 AM 10:10 AM 10:15 AM 10:20 AM 10:23 AM 10:27 AM
2 10:30 AM 10:34 AM 10:36 AM 10:40 AM 10:45 AM 10:50 AM 10:53 AM 10:57 AM
2 11:00 AM 11:04 AM 11:06 AM 11:10 AM 11:15 AM 11:20 AM 11:23 AM 11:27 AM
2 11:30 AM 11:34 AM 11:36 AM 11:40 AM 11:45 AM 11:50 AM 11:53 AM 11:57 AM

Another flaw NextBus suffers from is in the bus system itself. In order for the route to be reported from
the bus correctly, the bus driver must enter the route code into a keypad interface. Due to intermittent
hardware problems, this is sometimes not accomplished. In this case, the bus location is still reported,
but its route is not. When this happens, NextBus simply discards the updates for that bus, and
predictions do not take that bus into account. It is worth noting that we will be using the same data
stream for our predictions as NextBus.

3. Proposed Work

Upon completion, we hope to have evaluated two of the latest bus prediction algorithms and
implemented one for the final application. To do this, we have acquired access to bus location update
archives going back over 3 years, as well as source code for both the BuzzRoute and SMS bus tracker
projects mentioned above. We have selected two bus-prediction algorithms to evaluate, one using a
Kalman filter and the other a neural network. We have chosen to use MySQL as our spatial database
solution and Java as our primary coding language. The rest of this section will explain these
components in more detail.

Bus Location Archives:
Each bus, on the Georgia Tech transit system, is equipped with a GPS receiver and a cellular chip.
Every 7 to 15 seconds the bus uploads its location to a server. This server combines the updates from
all of the buses into a stream that NextBus accesses. In addition to being streamed to NextBus, the
updates are also written to a daily log for archiving. As a result we have bus update records from as
early as December of 2003.

This is a sample update with an explanation of each line:

1. $GPRMC,050010.923,A,3346.6145,N,08423.6269,W,0.00,90.58,030107,,*2E // NMEA
sentence

2. I=1 // bus ignition status
3. U=0 // deprecated and will not be used
4. VID=810 // vehicle id
5. RSSI=-71 // cellular signal strength
6. NU=1:18:00 // time up on the network
7. ND=0 // times rebooted the network card
8. J=0202 // route id and block number

Line one is a NMEA sentence used by most GPS receivers. It is broken down as follows:
RMC - Recommended Minimum Navigation Information
 12
 1 2 3 4 5 6 7 8 9 10 11| 13
 | | | | | | | | | | | | |
$GPRMC,hhmmss.ss,A,llll.ll,a,yyyyy.yy,a,x.x,x.x,xxxx,x.x,a,m,*hh<CR><LF>
Field Number:
 1) UTC Time
 2) Status, V=Navigation receiver warning A=Valid
 3) Latitude
 4) N or S
 5) Longitude
 6) E or W
 7) Speed over ground, knots
 8) Track made good, degrees true
 9) Date, ddmmyy
 10) Magnetic Variation, degrees
 11) E or W
 12) FAA mode indicator (NMEA 2.3 and later)
 13) Checksum

Issues:
There is ample information from each update to complete our project. However, there are a number of

issues that must be addressed before the data can be effectively used for predictions.
The first problem we must overcome is with

the route designations. As mentioned above, the
route codes are not always entered, resulting in
updates not associated with any route. NextBus'
solution is to disregard these updates, but there are
often a large number of updates that fall into this
category. For example, the pie chart to the right
depicts the percentages of updates associated for
each route on Friday September 28, 2007. As
illustrated, 33 percent of almost 90,000 updates
were not associated with a route.

Another related problem concerns the wrong
route being reported. If a bus' route is changed
during the day, and the route code is not updated,
it will report being on a route different than the one

it is actually serving. For
example, the image to the left
shows all of the location
updates associated with the
Trolley route on Friday
September 28, 2007. It is
evident that not all of the
updates were actually on the
reported route, rather, it seems
the bus was on the Blue route
for a period of time. For the two
previous problems, we intend to
improve the dataset by
developing a way to determine
the routes these updates were
on, based on their motion
patterns.

The next problem that
must be dealt with is caused by
GPS read errors. In most areas
of the bus system, the accuracy
of the samples appears to be
within the Differential GPS error
range of one to five meters, but
in areas near tall buildings the
error range becomes much
larger. For example, the image
to the left shows a portion of the
Trolley route where this is the
case. In the lower left region,
we see that the samples are
fairly accurate - this is the
accuracy we have for most of
the samples. As we follow the
route near tall buildings, shown
in the lower and upper right
corners of the image, it is
apparent that the accuracy
decreases considerably. To deal
with this problem, we intend to
develop a way to snap the
samples to the appropriate
points on the route's path.

The final problem with the data is that much of the samples are not on any route. When the
buses begin or end for the day, are driven to a maintenance shop, or are refueled, the updates do not
stop. This can easily be dealt with by throwing out data not following the pattern of any route.

Database:
MySQL 5.0 supports spatial queries in
the form of spatial extensions outlined
in the MySQL manual.[5] We have
designed our database using the basic
spatial types to leverage this spatial
query support in any way that may be
necessary. We have also added fields
to store all data found in the bus
updates, regardless of its relevance to
our project, so that it can be of use to
future studies. To the right is our
schema diagram. Our next step will
be to modify the code from the
BuzzRoute project, used to parse the
data archives, to populate our
database.

Kalman Flter:
a. What is a Kalman filter:

The Kalman filter is essentially a set of mathematical equations that implement a predictor-
corrector type estimator that is optimal in the sense that it minimizes the estimated error covariance—
when some presumed conditions are met.

b.Why choose a Kalman filter:
The Kalman filter attempts to use all information provided to it. It processes all available

measurements, regardless of their precision, to estimate the current value of the variables of interest,
with use of

 The knowledge of the system and measurement device dynamics.
 The statistical description of the system noises, measurement errors, and uncertainty in

the dynamics model.
 any available information about the initial conditions of the variables of interest.

The Kalman filter, being recursive, does not require all previous data to be stored and reprocessed
every time a new measurement is taken. This is important for quick predictions of Bus-arrival times.

c. Operation of a Kalman filter:
The Kalman filter estimates a process by using a form of feedback control: the filter estimates

the process state at some time and then obtains feedback in the form of (noisy) measurements. As
such, the equations for the Kalman filter fall into two groups: time update equations and measurement
update equations. The time update equations are responsible for projecting forward (in time) the
current state and error covariance estimates to obtain the a priori estimates for the next time step. The
measurement update equations are responsible for the feedback—i.e. for incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate. The time update
equations can also be thought of as predictor equations, while the measurement update equations can
be thought of as corrector equations.
The Kalman filter maintains the first two moments of the state distribution (the terms Xk,Pk are described
later)

For brevity we represent the algorithm as a diagram

Where

K is chosen so as to minimize the a posteriori error covariance
The residual mentioned above indicates the discrepancy between the prediction and actual
measurement.

d. Applying the Kalman filter, Experimental Parameters and Issues:

Most of our current understanding of the Kalman filter's feasibility is based on [1]. However, their
assumptions maybe different from ours, for instance they assume that the vehicles move with constant speed
over a limited distance, the variability of the process model is normally distributed at all times. At present we
will use the approach they used, i.e, initially divide the route into shorter segments where linearity can be
assumed and hence the time to arrival can be calculated linearly as Time = distance/velocity (Since the GPS
records also indicate instantaneous velocity). This is obviously unrealistic and the actual measurements will
deviate from the linear estimate. We aim to characterize this deviation as the “Process noise” distribution
(from our historical data) rather than use normal distribution. Further ways to characterize process noise can
be obtained from mining the distribution of the dwell time at the bus stops, positive or negative delay in
meeting the bus schedules, etc. We may also take into account GPS read errors to characterize the
measurement noise. Once we obtain a distribution for process and measurement noise we apply them to the
Kalman Filter to obtain the time update and measurement update equations, as described in the diagram
above. In our case , the state variables are vehicle location, time and time until arrival. The observables are
the reported position, reported time of measurement and velocity. We contacted the authors of [1] to know
how they characterized noise and are awaiting their response.

Neural Network:
a. What is a Neural net

Neural nets emulate the learning process of the human brain. They are good at pattern
recognition, prediction, classification, etc. In essence, a neural net is a multi-layer set of feedback
loops. Individual neurons, made up of simple equations, can perform very complex
compensation/prediction calculations in a group.

b. Why choose a Neural net
The dynamic nature of the transportation environment is ideally suited to a neural network

approach. Traffic delays, route changes, season, time of day - they are all factors that significantly
influence transit and arrival times. The advantage of a neural net is that we can feed it all these many
inputs, and, without necessarily devising equations to map all the relations of the inputs to arrival
times, we can have the net figure out the mappings on its own.

c. Elements of a Neural net:
A typical neural net is composed of three layers - the input layer, the hidden layer, and the

output layer. These layers are made with multiple neurons. An "oracle" is used to provide accuracy
feedback on the net's predictions.

d. Applying a Neural net:
The nets are calibrated using two steps - training and testing. During the training stage, the net

uses inductive learning principles to learn from a training data set. There are two types of learning
techniques used in net development: unsupervised and supervised. In unsupervised learning, the
network attempts to classify the training set data into different groups based on input patterns. In
supervised learning, the desired output from output layer neurons is known, and the network adjusts
the weight of connections between neurons to produce the desired output. During this process, the
error in the output is propagated back from one layer to the previous layer by adjusting weights of the
connections. Our implementation will probably involve supervised learning with archived bus data, and
then we'll switch over to unsupervised to let the system handle streamed data. We'll input all the known
variables and their current states, and use historical data to gauge the net's accuracy.

e. Experimental parameters and issues :
In the neural net prediction paper we examined[2], Automatic Vehicle Location (AVL) data

collected in Houston, Texas was used for the test bed. The Houston data was collected by Houston
Metro buses equipped with DGPS receivers at 5 second intervals. The data was collected over 6 months
in 2000 (from June to November). The test bed was Route 60, which is highly congested in the morning

and afternoon peaks, and only the southbound direction was studied. This DGPS provides time, speed,
heading, etc as well as bus location. The only points they considered in their prediction algorithms were
the bus stations, which we think limits the effectiveness for routes that share pathways. The data
stream we have is quite similar to theirs, although it sounds like we have more complex routes to
consider.

The two major factors they attempted to measure were traffic congestion and dwell time at the
stops. It's more difficult for us to get accurate dwell time measurements, but if we segment the bus
routes properly, we should be able to get fairly detailed traffic congestion mappings. In the Houston
case, heavy congestion made the 5-second updates more useful, since the slow speed would provide
more measurement points per unit of distance. Our situation will not be so fortunate, as most of the
bus routes do not typically remain in bumper-to-bumper traffic for long periods of time.

System Architecture:
Our system architecture is a
modification of the architecture
used in BuzzRoute. The modified
architecture is illustrated to the
right. Most of the components
will reside on the bus server,
gump.gatech.edu, hosted by
OIT. As location updates arrive
from the buses they will go
through our post-processing
algorithm to ensure they are
helpful to our application. The
prediction algorithm, that we
ultimately choose, will
periodically update its state from
this database. The SMS bus
tracking application, which will
act as our user interface, will listen for SMS requests for a specific bus/stop pair, call the prediction
algorithm, and return the results as a text message.

Milestones:
Assuming an eight week schedule, our milestones are as follows:

Week Milestone

1 -Database population code complete

2 -Algorithm parameters modeled

3 -Data post-processor complete

4
-Algorithms implemented
-SMS service up

5 -Simulation and evaluation planning period

6 -Evaluation complete

7 -Analysis of results
-Presentation planning period

8 -Final presentation

Evaluation:

Evaluation of our results will be crucial to the project’s success. As we obtain a better understanding of
the algorithms and their implementations, we will be better prepared to intelligently design our
evaluation method. In general, we will compare results from each algorithm's prediction to actual bus
arrival times and use the results as a metric of the algorithm’s accuracy. It is important to note that the
evaluation is the primary objective of this project. The integration of the most accurate algorithm into
the final application is secondary. As such, our evaluation will be entirely on the accuracy of the
algorithms and not on the performance of the end application. We will consider this project a success
when we are confident that we have correctly implemented the Kalman filter and the neural net,
compared their performance, and declared a winner between the two.

Works Cited:

[1]. Dailey, D., Wall, Z., Mclean, S., Cathey, F., 2000. An algorithm and implementation to predict the
arrival of transit vehicles. In: Proceedings of the
IEEE Intelligent Transportation Systems Conference.

[2]. Jeong, R. and L.R. Rilett. Bus arrival time prediction using artificial neural network model. in
Proceedings - 7th International IEEE Conference on
Intelligent Transportation Systems, ITSC 2004. 2004. Washington, DC, United States.

[3]. Welch, Greg, and Gary Bishop. Introduction. An Introduction to the Kalman Filter. Chapel Hill:
University of North Carolina At Chapel Hill, 2006. 2 Oct.
2007

[4]. Lin, Wei-Hua and Zeng, Jian “ Experimental Study of Real-Time Bus Arrival Time Prediction with
GPS Data”. Transportation Research Record 1666, PP 101-109,
1999

[5]. "MySQL 5.0 Reference Manual :: 17 Spatial Extensions." MySQL 5.0 Reference Manual. 2 Oct. 2007
<http://dev.mysql.com/doc/refman/5.0/en/spatial-extensions.html>.

[6]. "BuzzRoute." 2 Oct. 2007 <http://gump.gatech.edu/buzzroute/doc_root/>

