
CS4440
Project Proposal – Group 2

Dustin Burke, Bryan Davidson, Arcadiy Kantor, Adam Leonard

‘

Motivations and Objectives

Often times when creating a database, there are certain datasets that need to be

exclusive to either the database designer or to an administrator. Moreover, there is often

a division between sets of data that a power user can access and modify and other sets

that a regular user can work with. Finally, there can even be aspects of the database that

guests can access. Taking this idea, you can extend it to other application such as

software design. User types can include Developer, Designer, Engineer, Tester, and

Requirements. Each of those users needs to see specific tables in a database; no more

and no less. By implementing Role Based Access Control, you can handle what specific

users are able to see and what they are not.

There are many ways to tackle this problem, but we think a useful way to go

about it is to write a PHP library that will first examine a query that would be sent to the

database to see if the user creating the query has access to the data he or she is requesting.

If the user has sufficient privileges, the query will be passed to the database, but, if not,

the query will be rejected. For this to be even more useful the PHP library we write will

be largely database-agnostic; as long as the database implements the ODBC API, our

library can be used.

Related Work

The field of Role Based Access Control (RBAC) has been extensively researched

since its introduction in the early 1990s in the appropriately titled paper by David

Ferraiolo and Richard Kuhn, “Role Based Access Control.” This paper built on the work

done at the Department of Defense to develop two basic types of access control:

Mandatory Access Control (MAC) and Discretionary Access Control (DAC). MAC was

substantially more secure, but DAC was considered to be more appropriate for industry

use. RBAC, then, built upon the basics of MAC but, as Ferraiolo and Kuhn noted in their

original paper, adapted the controls to be “more central to the secure processing needs of

non-military systems.”

This research has been expanded significantly since with a number of publications

from a variety of researchers, culminating in the publishing of a book by Ferraiolo, Kuhn

CS4440
Project Proposal – Group 2

and Ramaswamy Chandramouli in 2003. Most significantly, Kuhn, Ferraiolo and Cugini

formally outlined the RBAC model and several variations thereof in the paper “Role

Based Access Control: Features and Motivations” in 1995. This was the first major paper

allowing for implementations of the access control technology to follow a certain set of

guidelines and to allow researchers to concisely explain what subset of RBAC

functionality they are implementing. The National Institute of Standards and Technology

published a standard (again with the involvement of Kuhn and Ferraiolo) in 2000, and

finally an ANSI publication recognized the method in 2004.

While the concept of RBAC has become more notable in recent years, the extent

of its implementation and therefore use in many major systems remains inconsistent.

According to the 1998 paper, “Role-Based Access Control Features in Commerical

Database Management Systems” by Ramaswamy and Sandhu, although all three systems

they evaluated had support for role hierarchies, only one of the three systems had support

for the mutual exclusion of roles. Even today, MySQL, an open source relational

database management system, has only marginal support for RBAC.

The concept has also been implemented in a number of software systems beyond

the database level. Many systems, including the Windows administrative control, now

use some form of role-based access management. In addition, basic access control list

management has been extended to use role-based means of authentication in a number of

frameworks for web development. For instance, the Zend Framework includes a

component called Zend_Acl which provides for role-based “lightweight and flexible

access control list functionality and privileges management.” The Zend Framework is a

set of modules for developing flexible PHP applications. However, this component

focuses on permissions for actions a user might take in a PHP application, rather than

database-specific constructs like tables.

We were unable to find PHP implementations of role-based permission controls

that were fine-grained enough to work on a database table level rather than query actions.

Furthermore, many implementations of RBAC in PHP are specific to a certain database

system. This is the area we seek to address with our work.

Proposed Work

Our proposed project is to create a PHP library that enforces role based access

CS4440
Project Proposal – Group 2

control policies in database agnostic environments. Current role based access control

policies are built directly into the database engine and are only available in a limited

number of database systems. Our new approach to role based access is beneficial

because it will facilitate faster implementation and enforcement of role based policies

than before through the combined use of a newly developed PHP library and any

database that supports ODBC. Users will interface with their database through our

library (as opposed to the current MySQL and ODBC functions found in PHP) in order to

enforce role based access policies when querying, updating, and maintaining their

database. Because we will use ODBC functions in our new library, our implementation

will be database agnostic and have no problems running with any ODBC compliant

database beneath it.

In order to evaluate the success of the project, one must look at a few criteria.

First and foremost, the solution should correctly enforce role based access control

policies in databases. We plan to demonstrate this functionality by building a sample web

application that makes use of the new PHP library. Secondly, the library should work

correctly with any SQL-based underlying database. This will be accomplished through

the use of standardized ODBC wrappers throughout the new library to query and update

the underlying database. To verify that the new library is indeed database agnostic, we

will show that it works when using different underlying database systems, such as

MySQL, Microsoft SQL Server, and Oracle.

A rough system overview needed to accomplish these goals simply includes the

new PHP library and any database that is supported by ODBC. In order to enforce the

role based access policies, users will interface with their database through the PHP

library. When a user attempts to issue an action on the database, our library will first

identify and verify the user's role(s). From there, we will determine what actions the user

is able to perform on the database. This role and permission data will be stored in

metadata tables directly in the user's database. If the user is allowed to perform the

requested action, their SQL statement will be passed on to the database. Otherwise, the

library will not allow the statement to execute and return an error to the user.

Plan of Action

CS4440
Project Proposal – Group 2

For our project, one of our members has a PHP webserver that will run our code

once it is written. The PHP code can be written in any text editor like Notepad or JEdit.

Once we have written our library, we plan to test it on an SQL Server, MySQL database,

and Oracle database. MSNDAA will provide access to a SQL server, MySQL databases

are open-source and free, and Prism has Oracle databases for every Georgia Tech student.

Weekly Schedule/Milestones:

October 15 – Get databases set up

October 22 – Have structure of user tables set up to query

October 29 – Decide on syntax for checking users privileges and begin writing code

November 5 – Continue to write library

November 12 – Finish writing library and begin testing

November 19 – Finish working out bugs and testing

Evaluation and Testing

 As noted above, we will have access to three databases for testing purposes. If

time permits at the end of the project, we may be able to perform further tests on any

other available database(s). Our testing plan is to create an example application in PHP

which uses our library for its database access methods. In this example, we will define

various roles and then create several users, each with a different role. We will then

attempt to perform several operations on the database through this application (e.g.

creating a new table, deleting tuples, updating columns, etc.) with each user. Some of the

users will have the access privileges to perform these actions and others will not. None

of the users who do not have the correct privileges for an operation should be able to

execute that operation.

CS4440
Project Proposal – Group 2

Bibliography

Comparing Simple Role Based Access Control Models and Access Control Lists, J.
Barkley, (1997), Second ACM Workshop on Role-Based Access Control.

Formal Specification for Role Based Access Control User/Role and Role/Role
Relationship Management, S. Gavrila, J. Barkley, Third ACM Workshop on Role-Based
Access Control.

An Introduction to Role Based Access Control NIST CSL Bulletin on RBAC (December,
1995).

Role Based Access Control: Features and Motivations, D.F. Ferraiolo, J. Cugini, D.R.
Kuhn, Computer Security Applications Conference.

Role Based Access Control, D.F. Ferraiolo and D.R. Kuhn (1992), 15th National
Computer Security Conference.

Role Based Access Control , D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli, Artech House,
2003.

RBAC References – Zend Framework Wiki.
<http://framework.zend.com/wiki/display/ZFUSER/RBAC+(Role+Based+Access+Contr
ol)+References>. September 2, 2007.

Role Based Access Control. <http://csrc.nist.gov/rbac/>. September 2, 2007.

Zend Framework Documentation: Zend_Acl.
<http://framework.zend.com/manual/en/zend.acl.html>. September 2, 2007.

